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We investigate the effect of ring exchange on the ground-state properties and magnetic excitations of the
S = 1/2 Heisenberg model on the anisotropic triangular lattice with ring exchange at 7 = O using linear spin-wave
theory. Classically, we find stable Néel, spiral and collinear magnetically ordered phases. Upon including quantum
fluctuations to the model, linear spin-wave theory shows that ring exchange induces a large quantum disordered
region in the phase diagram, completely wiping out the classically stable collinear phase. Analysis of the
spin-wave spectra for each of these three models demonstrates that the large spin-liquid phase observed in the
full model is a direct manifestation of competing classical orders. To understand the origin of these competing
phases, we introduce models where either the four spin contributions from ring exchange, or the renormalization
of the Heisenberg terms due to ring exchange are neglected. We find that these two terms favor rather different

physics.
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I. INTRODUCTION

Quantum spin liquids are characterized by ground states
with no long-range magnetic order and no breaking of
spatial (rotational or translational) symmetries that are not
adiabatically connected to the band insulator [1-3]. Recently,
a number of experiments have identified a handful of ma-
terials as candidate spin liquids [4—14]. Both the organic
charge transfer salts «-(BEDT-TTF),Cu,(CN); (Refs. [5-8])
and Me;EtSb[Pd(dmit),], (Refs. [8-10]), where Et = C,Hj
and Me = CHj are spin-liquid candidates. However, other
members of the organic charge transfer salt families «-(BEDT-
TTF), X and Y[Pd(dmit),], display long-range magnetic or-
der, for example, X = Cu[N(CN),]Cl or Cu[N(CN),]Br (for
deuterated BEDT-TTF) and Y = Me4P, MesAs, EtMe;As,
Et;Me,P, Et;Me;As, and MeySb [3,8,11]. Additionally, the
inorganic materials Cs,CuCly [12], BazCoSb,O9 [13], and
BazCuSb,0y [14] have also been suggested to be spin-liquid
candidates.

The simplest model for the Mott insulating states of the
k-(BEDT-TTF), X and Y[Pd(dmit);], salts is the half-filled
Hubbard model on the anisotropic triangular lattice [3] [see
Fig. 1(a)], where each site represents a dimer, (BEDT-TTF),
or [Pd(dmit),],. This model contains three parameters: U the
effective on-site Coulomb repulsion, ¢ the nearest-neighbor
hopping integral, and ¢ the next-nearest-neighbor hopping
integral along one diagonal only. The Hubbard model on the
anisotropic triangular lattice has been studied via a number of
approaches [15-21]. Some methods have suggested that a spin
liquid is realized in the insulating phase.

For U > 1,1, i.e., deep in the Mott insulating phase, the
model simplifies further to the Heisenberg model on the
anisotropic triangular lattice with J = 4¢2/U and J' = 4t/ U
to leading order. Electronic structure calculations on the
anisotropic triangular lattice [22-26] suggest that both spin
liquids «-(BEDT-TTF),Cu,(CN)3; and Me;EtSb[Pd(dmit),],
and the valence bond solid, Me;EtP[Pd(dmit),],, have
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0.5 < J'/J <0.8; whereas salts that display long-range or-
der have either J'/J < 0.5 or J'/J 2 0.8. The anisotropic
triangular lattice is also realized in Cs;CuBry4 (J'/J =~ 2) and
Cs,CuCly (J'/J & 3) [12] and the isotropic limit (J'/J = 1)
describes Ba3;CoSb,O9 and BazCuSb,0q [27].

Many of the organic charge transfer salts considered here
undergo Mott metal-to-insulator transitions under relatively
modest hydrostatic pressures [8,28]. This suggests that higher
order terms in the U/t expansion may be relevant. Further-
more, there is significant variation in the critical pressure
required to drive the Mott transition in different salts [29],
which suggests that different salts represent different values
of U/t and not just different values of #'/t. There has been
far less investigation of how U/t affects the properties of
the materials than ¢'/z. If one continues to integrate out the
charge degrees of freedom, the first nontrivial new terms
appear at fourth order with the “ring-exchange” processes
illustrated in Fig. 1(b) [see also Eq. (1), below]. Such ring
exchange processes frustrate the system. There are two distinct
ring exchange terms on the anisotropic triangular lattice
K = 80t4/U3 and K’ = 80t2t/2/U3 to lowest order [30,31],
which originate from the different ways to arrange four-sites on
the anisotropic triangular lattice. Note that the large prefactor
means that the ring exchange term is relevant to larger values
of U/t than one would expect naively. It has been argued
[32,33] that near the Mott transition ring exchange destroys
the long-range magnetic order. In particular, for J' = J and
K’ = K Motrunich [32] found that AFM order is preserved for
small K/J < 0.14-0.20 [34] but is destroyed for larger K /J
leading to a gapped spin liquid for K /J > 0.28. However, this
implies that applying pressure, which decreases U/t, should
drive a magnetically ordered to spin-liquid transition, which
has not been observed in the antiferromagnetically ordered
organic charge transfer salts with ' >~ .

The isotropic triangular lattice with multiple-spin exchange
has been widely studied since the 1960s in the context of
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FIG. 1. (a) Sketch of the anisotropic triangular lattice showing
the exchange interactions J and J’, which act in the nearest neighbor
and next-nearest neighbor along one diagonal directions as shown.
(b) The three distinct ways to draw the four-site plaquettes relevant
to ring exchange on the anisotropic triangular lattice. We have also
shown the x-y coordinate system in which we perform our analysis.

solid He; for an extensive review of magnetism in solid
3He, see Roger [35] and references therein. Since the early
studies by Thouless [36], single monolayers of solid *He
have been absorbed on graphite [37,38] and several studies
were performed to develop a theoretical understanding of
the experiments in terms of multiple spin-exchange models
[39—47]. Additionally, multiple spin-exchange models have
gained interest in frustrated spin systems, in particular the
parent cuprate high-temperature superconductors [48-50].

The Heisenberg model on the isotropic triangular lattice
without ring exchange (J' = J, K = K’ = 0) has been studied
extensively [1,3]. Anderson first proposed the resonating
valence bond (RVB) spin-liquid state as a possible ground
state of the isotropic triangular lattice [51]. However, later
numerical work [52] has shown that the ground state has “120°
order”—a special case of spiral order, discussed below, with
an ordering wave vector Q = (27 /3,27 /3). A range of other
methods have been used to study the Heisenberg model on the
anisotropic triangular lattice including linear spin-wave theory
[53,54], modified spin-wave theory [55], series expansions
[12,56], the coupled cluster method [57], large-N expansions
[58], variational Monte Carlo [59], resonating valence bond
theory [15,19,60-62], pseudofermion functional renormaliza-
tion group [63], slave rotor theory [64], renormalization group
[65], and the density matrix renormalization group [66]. These
calculations show that for small J'/J, Néel (7,7) order is
realised and spiral (q,q) long-range AFM order is realized for
J'/J ~ 1. There remains controversy as to whether another
state is realized between these two phases, but no conclusive
evidence for a spin-liquid ground state has been found in this
model.

The only works we are aware of to discuss the Heisenberg
model on the anisotropic triangular lattice with ring exchange
consider two-leg [67] and four-leg [68] ladders. Both studies
suggest the existence of quantum spin liquids. Therefore it is
important to ask how these states survive as one moves to the
full two-dimensional problem.

Hauke [55,69] has considered the fully anisotropic triangu-
lar lattice and argued that this can explain the phase diagram
of the organic charge transfer salts. Alternative models such as
the quarter-filled Hubbard model, with each site representing
a monomer [70] and multiorbital models [25] have also been
proposed. These works do not consider ring exchange and
it is believed that additional interaction terms beyond the
nearest neighbor Heisenberg model need to be included to help

PHYSICAL REVIEW B 89, 174415 (2014)

understand and explain why some materials have magnetically
ordered or spin-liquid ground states.

Very recently we studied the effect of third nearest-neighbor
interactions within a mean-field Schwinger-boson framework
[71] and found a spin-liquid phase for J'/J > 1.8 and J3/J <
0.1. Such terms can arrive as the two-spin contribution from
ring exchange. Majumdar et al. [72] has performed a spin-wave
theory study to order 1/8? of the effect of ring exchange
on the Néel phase, but only considered the four-spin terms
and neglected the two-spin renormalization. It is therefore
interesting to study the effect of the full ring-exchange term on
the observed magnetic properties of the anisotropic triangular
lattice.

The aim of the present work is to investigate the effect of
ring exchange on the magnetic properties of the anisotropic
triangular lattice, using linear spin-wave theory. Linear spin-
wave theory provides an important benchmark and is a good
starting point for more technical studies. Furthermore, we will
explicitly compare the behavior of the model keeping only
spin-exchange or four-spin exchange terms from ring exchange
with the full model considering both exchange terms.

For the full model, we found Néel order is robust to ring
exchange for J'/J <« 1, being stable up to around J'/J &
0.59 for K/J ~0.12. For K/J > 0.12, minima develop
along the (k,k) direction which cause the Néel order to
become destabilized. We also found that the spiral phase was
dramatically suppressed in the quantum calculations. With
strong quantum fluctuations, the spiral phase was only able to
surviveup to K/J = 0.10 for J'/J = l in contrast to K /J =
1/3 found classically. In the weakly-coupled chain limit of our
model J'/J > 1, we found spiral order persists in the presence
of weak frustration from ring exchange (K'/K <« 1). This is
highly analogous to the “order-by-disorder” mechanism due
to quantum or thermal fluctuations [73—75]. In a large region
of the quantum phase diagram, the classically stable collinear
phase is wiped out and replaced with a spin-liquid phase.
Analysis of the spin-wave spectra show that the spin liquid
is a consequence of competition between classical ordered
states.

The present work is organised as follows. In Sec. II,
we introduce the anisotropic triangular lattice with ring
exchange model. We consider the classical phase diagrams
for three variants of the ring exchange model III. In Sec. IV,
we present the spin-wave theory formalism, while in Sec. V, we
consider the ground-state properties: quantum phase diagram
and staggered magnetization of the three models studied. In
Sec. VI, we discuss the elementary excitations of the three
models, in particular, (i) the existence of minima along the
diagonal in the Néel phase and (ii) why the collinear phase
is so fragile to quantum fluctuations. In Sec. VII, we relate
our findings to the organic materials. Finally, in Sec. VIII, we
present our conclusions.

II. HEISENBERG MODEL ON AN ANISOTROPIC
TRIANGULAR LATTICE WITH RING EXCHANGE

We are interested in understanding the magnetic properties
of the S = 1/2 multiple-spin exchange Hamiltonian [36,40]
on an anisotropic triangular lattice involving ring exchange on
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four sites at T = O:
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where J and J' measure the relative strengths of the nearest
neighbor and next-nearest neighbor spin exchange, while K,
and K’ measure the relative strengths of the ring exchange
terms on four-sites (since there are three ways to have four-site
rings on the anisotropic triangular lattice c.f. Fig. 1). Note that
we defined the ring exchange coupling constants K /S? and
K’/S? to have a meaningful semiclassical limit for S — oo,
i.e., so that the two-spin exchanges are not negligible with
respect to the four-spin exchange terms in this limit. The
permutation operator that exchanges two spins on sites i and j
is givenby P;; =2S; - S; + 2 I and $; is the usual spin operator
on site i, while ﬁi_,-k[ =P, P,ksz cyclically permutes four
spins around a plaquette, cf. F1g 1(b). At this point, it is helpful
to note that, to lowest orderint/U and t'/U, K'/K = J'/J.
In this work, we take this equality to hold, primarily to limit
the size of the parameter space of the model.

III. CLASSICAL PHASE DIAGRAM

Writing out the Hamiltonian in terms of spin operators gives
1:121:12+I:I;+I:14. 2)

The first term A, arises from the usual Heisenberg exchange
terms on the anisotropic triangular lattice:

H=J) Si-S;j+J) S-S;j+J > 88,
.- ! o
3)

The next term ﬁz* arises from the two-spin terms from the
four-spin permutation operators. Physically it dresses the
nearest-neighbor and  next-nearest-neighbor  exchange
strengths and induces next-next nearest-neighbor contributions
in the Heisenberg model:

=QK +3K) ) S;-S;+ (2K +3K) ) _S;-S;
.o !
+(K+4K) Y S;-S;+K Y _S;-S;
+K' Y S-S+ K' >SS
" /

“
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The final term consists of the four-spin plaquette terms on the
anisotropic triangular lattice:

Hy = S2 Z Tl,k1+ Z T,,kz-i-— Z Tijuis

%)
where
Tiji = (Si - S;)(Sk - S) + (Si - S(S; - Se)
—(S;i - S(S; - Sp). (6)
We are interested in the relative effects of each of the
terms in Eq. (2). We will therefore explicitly compare three
models: (i) the full model given by Eq. (2), (ii) the extended
Heisenberg model, H.; = H, + H,, and finally (ii) the four-
spin plaquette model I:Ip = ﬁz + ﬁ4. From now on, these
three models will be referred to as the “full,” “extended
Heisenberg,” and “plaquette” models.

The four-spin terms in Eq. (6) are decoupled in a leading
order mean-field approximation taking

(Sy - Sp) = S cos(Q - 8up), @)
so that

1
?(Sa . Sﬂ)(sy . SB)
=c0s(Q - 348)S; - S5 + cos(Q - 8,5)Sqs - Sp
— 5%cos(Q - §4p) cos(Q - §). 8)

At this level of approximation, ring exchange contributes
by dressing the effective two spin exchange and, in particular,
introduces additional long-range frustrated interactions:

Ji=J+2K +3K' +2(K + K')cos(Qy)
— K'cos(Qx +20,),
Jy =J 42K +3K' +2(K + K')cos(Q,)
- K/ COS(ZQX + Qy),
Jsvg = J + K +4K' + 4K cos(Q + Q) €))
— K cos(Q, — 0,),
Jey = K[1 —cos(Q: + 0,)],
Dy = K'[1 — cos(Qy)],
Jxr2y = K1 = cos(Q)],
where Jj; describes an antiferromagnetic exchange interaction
in the # direction. Here, X and ¥ are vectors of length one lattice
spacing in the x and y directions respectively [cf. Fig. 1(a)].
All other Jj are zero.

The classical ground-state energy per site for the full model

is
EY)
—o5 = Jlcos(Qy) + cos(Q))] + J cos(Qy + Qy)

N§?
+ K[1+2cos(Qx) +2cos(Qy)
+2cos(Q,)cos(Q,)] + K'[2 4+ 3cos(Qy)
+3cos(Qy) +4cos(Qx + Qy)
+ cos2Qx + Qy) +cos(Qx +20y)]. (10
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FIG. 2. Classical phase diagrams for the (a) full, (b) extended Heisenberg, and (c) plaquette models. The four-spin terms in the
Hamiltonian, H,, contribute as trivial constants classically, resulting in the full and extended Heisenberg models having identical classical phase

diagrams.

We note that the four-spin contribution [Eq. (5)] to the classical
ground-state energy leads to a trivial constant K + K’ and
the energies (and thence all other properties) of the full and
extended Heisenberg models are identical.

To calculate the classical phase diagram, we considered
Néel, collinear, and spiral phases with ordering vectors
Q = (w,7), Q = (,0), and Q = (q,9), respectively. We also
considered several other phases including the diagonal, incom-

J

mensurate spiral, columnar dimer and diagonal dimer phases
with Q = (/2,7/2), Q = (1.q), Q = (¢ — 7.9, and Q =
(mr — 2q,q), respectively, when considering the classical phase
diagram but these are all higher in energy. The ordering vector
for the commensurate spiral phase ¢ is found by minimizing
Eq. (10) with respect to ¢ assuming Q, = Q, = ¢g. We find
that the spiral ordering vector for the full and extended Hei-
senberg models depend on ring exchange, and are given by

q = cos ™! |:—

whereas for the plaquette model we find

— -1 _ J
g = cos ( 2J’>' (12)

In Fig. 2, we plot the classical phase diagrams obtained
for the three models. For K = 0, we observe a transition
from Néel to spiral order with ¢ = cos™'(—J/2J') for
J'/J = 0.5, consistent with previous studies of the Heisenberg
model [53,54]. With increasing ring exchange the Néel and
collinear phases are stabilized, while the spiral order is
destabilized in the full and extended Heisenberg models.
Even at the classical level the spiral phase is most stable
to ring exchange when J' = J. We will see below that this
stabilisation of the spiral phase is reflected in the quantum
calculations.

For the plaquette model, we find that the critical point
between the Néel and spiral phases is independent of ring
exchange classically since the ordering vector for the spiral
phase in this model [Eq. (12)] is independent of ring ex-
change. The collinear phase is not observed in the plaquette
models since it is always higher in energy than the spiral
ordering.

IV. LINEAR SPIN-WAVE THEORY

We study the quantum phase diagram and elementary
excitations for S =1/2 at T =0 using linear spin-wave
theory. It is convenient [76,77] to assume that the spins lie
in the x-z plane and rotate the quantum projection axis of the

J 4+ K+4K' —\/(J' + K +4K')* — 12(J +2K)K' a
12K’ ’
[
spins at each site along its classical direction:
¥ =S¥ cos(6;) + SF sin(6)),
8" =57, (13)

>
~R

= —S8"sin(6;) + 87 cos(;).

Here, 6; = Q - r;, where r; is the position of the it spin
and Q = (Q,,Qy) is the ordering vector of the lattice. This
simplifies the spin-wave treatment with the result that only
one, rather than three, species of boson is required to describe
the spin operators.

The bosonization of the spin operators is performed via the
Holstein-Primakov transformation:

28 — alaia;, (14)

where S‘li = S‘lx + zS'f with subsequent expansion of square
roots in powers of aja,- /(2S). Linear spin-wave theory takes
the leading order terms in a 1/S expansion, which describe
noninteracting spin waves. Performing a Fourier transform of
the bosonic operators results in the following Hamiltonian:

N B
Hyiswr =28 Z |:Aka;£ak - Tk(aiaik + aka—k)i|v (15)
k
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where

Ay = Z % cos(k - 8,)[cos(Q - 6,) + 1] — J; cos(Q - §;),

n , (16)
By = Z ?" cos(k - 6,)[1 — cos(Q - 6,)],

n
Introducing the Fourier transform of the exchange interac-

tion

Jo=)_ Jycos(k-8,) 17)
n

allows us to conveniently express the functions Ax and Bk
through J as

1 Jk
Ay = Z(JQ+k + Jo-k) + 5~ Jo,

o1
By = 5~ Z(JQJrk + Jo—k)-
We proceed by diagonalizing Eq. (15) via a Bogoliubov
transformation

(18)

T T
ay = Uy + vgo_g,
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It is already clear from Eq. (22) that the magnon spectrum has
zeros at k = 0 and k = £Q in the two-dimensional Brillouin
zone.

In studying the quantum phase diagram a key quantity is
the staggered magnetization,
T 1 1
ms—<Si>—S+2 -

as m; vanishes in a quantum disordered state.

A
K 21
BZ Wk

(23)

V. GROUND-STATE PROPERTIES

A. Quantum phase diagrams

The quantum phase diagrams for the three models are
shown in Fig. 3. All three models are equivalent for K /J =
K’/J = 0.0. This model has been studied via LSWT previ-
ously [53,54]. As in these studies, we find a quantum critical
point driven by the vanishing of the spin-wave velocity at
J'/J = 0.5 and a quantum disordered phase for J'/J = 3.75.

1. Full model

In the full model [Fig. 3(a)], ring exchange initially favours
Néel order until the critical value of ring exchange, K, further
increase of the ring-exchange coupling destabilizes Néel order.

: (19) Similar behavior was observed by Majumdar et al. [72].
Ak = Uk + Uk _y, Interestingly, for K < K., the transition between the Néel
where and spin-liquid phases is second order, but for K > K, this
transition is first order (cf. Figs. 4 and 5).
A 1 We also found that the spiral phase was dramatically
ug = [ — + 3 suppressed in the quantum calculations compared to that found
@k (20) classically; the spiral phase only survives up to K/J = 0.10
A 1 for J'/J = lincontrastto K/J = 1/3, found classically. In a
vk = sgn(By) Zk —, large region of the quantum phase diagram, the classically
2 stable collinear phase is wiped out and replaced with a
. . spin-liquid phase.
which yields The behavior that we observe in the quantum phase diagram
N 1 is highly analogous to the “order-by-disorder” mechanism
) o
H=Egg+ ) Z(“’k — A+ Zwkakak’ 2D due to quantum or thermal fluctuations [73-75,78]. In this
k k mechanism, the fluctuations determine which ground states
where the spin-excitation spectrum, w, reads are stabilized and hence selected.
For the isotropic case (J'/J = 1), we found spiral order
wg = 25\/ (Jx — JQ)([Jo+k + Jo—k1/2 — Jo). (22) persists for K/J < 0.1. Previously Motrunich [32] predicted
0.5 w —— 0.5 w w 0.5 ‘ ‘ ‘
(a H= H2+H2*+H4 (b) HEH = H2+ HQ* (c) HP = H2+H4
0.4 0.4 Q=m0 0.4f \ < Spin Liquid
o
>
- 0.3*,&\ N 0.3¢ ® N 0.3r _Ig
S S Spin Liquid S E o & ® Q=(q,9 c
0.2 02f Spin Liquid 02} > o
] ] o
0.1 0.1t 0.1t
- Q=9
Q=(q,9
O'00 1 2 3 4 0'00 1 2 3 4 0'00 1 2 3 4
J'NJ J'J J'J

FIG. 3. (Color online) Quantum phase diagrams for (a) the full and extended Heisenberg models and (b) for the plaquette model. It is clear
that, even in these semiclassical calculations, quantum fluctuations strongly suppress long-range order in the full and extended Heisenberg
models when ring exchange is introduced. In addition, we have marked the critical end point where the staggered magnetization transitions
from a second-order phase transition to a first-order phase transition with a red cross.
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FIG. 4. (Color online) Staggered magnetization for the anisotropic triangular lattice with ring exchange calculated using linear spin-wave
theory (LSWT). In each plot, we show the Néel-spiral transition for the (a) full, (b) extended Heisenberg, and (c) plaquette models. For the
plaquette model (c), the magnetization is independent of ring-exchange for J'/J > 0.5 since the ordering vector in Eq. (12) is independent of

ring exchange.

spiral order to be preserved for small K/J < 0.14-0.20 [34]
but be destroyed for larger K /J leading to a gapped spin liquid
for K/J > 0.28. Additionally, Kubo and Momoi considered
numerous mean-field ground states with up to 144 sublattices
[46]. In zero magnetic field, they found the spiral phase with
120° order exists for K/J < 0.1. Our results are consistent
with both of these studies.

The most striking feature of the phase diagram is that,
even in this semiclassical theory, quantum fluctuations destroy
long-range magnetic order over large areas of the phase
diagram. These quantum disordered regions occur in the
parameter region consistent with DMRG calculations on
four-leg triangular ladders [68].

2. Extended Heisenberg and plaquette models

For the extended Heisenberg model [Fig. 3(b)], we find that
Néel order is stabilized by ring exchange and extends to the
isotropic case (J'/J = 1) for K/J ~ 0.44 where it undergoes
a first-order transition to the collinear phase. Additionally,
we find that the spiral phase was suppressed in the quantum
calculations relative to that found classically, although not as
dramatically as in the full model. However, unlike the full
model, the collinear phase is stable, although suppressed in
the extended Heisenberg model. Furthermore, like the case for
the full model, we found that the extended Heisenberg model
also sustains a sizable spin-liquid phase. This is consistent

with our recent Schwinger boson mean-field theory study of
the effect of the third-nearest neighbor exchange terms on the
magnetic properties of the anisotropic triangular lattice [71].

For the plaquette model in Fig. 3(c), we find that the Néel
phase is stable forall J'/J < 0.5upto K/J = 0.1, but further
increasing ring exchange drives a quantum disordered phase
for J'/J ~ 0.5. Additionally there is a spin-liquid phase for
all K/J > 0for J'/J > 3.75.For 0.5 < J'/J < 3.75, spiral
order is robust to ring exchange, as predicted classically.

Understanding the competing orders in both the extended
Heisenberg and plaquette models is helpful in understanding
the competing orders in the full model. The behavior of the
Néel phase in the full model [see Fig. 3(a)] is as follows. For
moderate values of K/J, the two-spin renormalization of the
Heisenberg terms by ring exchange help stabilize Néel order,
while for large values of K /J, the four-spin terms from ring
exchange render the Néel phase unstable since such terms
drive the development of a spin-liquid phase. The change in
order of the Néel-spin-liquid phase transition is also consistent
with this picture, as the phase transition remains second order
in the extended Heisenberg model of all K, whereas this phase
transition is always first order in the plaquette model. Similarly,
the development of a large spin-liquid phase for large K/J
in the full model can be understood from the two-spin ring
contributions wanting to drive a collinear ground state, while
the four-spin terms favor a spiral ground state.

0.5 e 0.5 — 05 —
() H=Ho+ Hy"+ H, (W) Hep = Hot+ Hp® Hp = Ho+ H,
0.4f — K/J=0.10 | 0.4¢ — K/iJ=030 | 0.4}
- K/J=0.20 - K/J=03s
0.31 = K/ =030 | 0.3 = K/ =040 | 0.3
=2 =2 2
E; - K/J=0.40 E; = K/ =045 E; — Kig=010
€02 Ki=050 | € ol Ki=050 | Eooal - K/T =020
- K/ =030
0.1 o1t T 0.1 - K=040
: K/J = 0.50
0.0 T R 0.0 e N 0.0 L I
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
I ) )

FIG. 5. (Color online) Staggered magnetization for the anisotropic triangular lattice with ring exchange calculated using linear spin-
wave theory (LSWT). In each plot, we show the destabilization of Néel order for the (a) full, (b) extended Heisenberg, and (c) plaquette

models.
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B. Staggered magnetization

In Fig. 4(a), we present the staggered magnetization for
the full model for the Néel and spiral phases as a function
of J'/J for several values of K/J. The strong dip in the
magnetization in the region 0.5-0.8 for the values of K/J
considered, indicates a disordered intermediate phase. The
nature of the ground state cannot be determined from linear
spin-wave theory and will have to be determined by more
sophisticated techniques.

Examination of the staggered magnetization in this pa-
rameter region indicates that both the Néel-spin-liquid and
spiral-spin-liquid phase boundaries are lines of second-order
phase transitions vanishing at a quantum critical point at
K =K' =0, J'//J =0.5. This is consistent with what has
previously been found in the K = K’ = 0 case [53,54].

In Figs. 4(b) and 4(c), we present the staggered magne-
tization for the extended Heisenberg and plaquette models
respectively for the Néel and spiral phases as a function of
J'/J for several values of K/J. We observe that the two
and four spin terms compete with each other with the former
decreasing mg, while the latter increasing my with increasing
K /J. This results in the negligible change in m in the Néel
phase of the full model in Fig. 4(a). Furthermore, we observe
the suppression of the spiral phase with increasing K/J is
driven purely by the two-spin terms.

InFig. 5, we present the staggered magnetization in the Néel
phase for each of the three models. For the full and plaquette
models, we observe that for small values of K /J the Néel order
undegoes a second-order phase transition to the spiral phase
[Figs. 5(a) and 5(c)], while for moderate K /J the transition
from Néel order to the spin-liquid phase is clearly first order.
Therefore the transition from enhancement to suppression of
Néel order with increasing K /J can be understood in terms of
a quantum critical endpoint being reached where the quantum
phase transition changes from second to first order [marked
by ared X in Fig. 3(a)]. For the extended Heisenberg model,
we observe that for large K/J, the transition from Néel to
collinear order is first order.

VI. SPIN-EXCITATION SPECTRA

We begin our discussion of the excitation spectra by
considering the Néel phase. In the Néel phase of the full

3.0
— |K/J=0/0 T =
(a) = RAZN I/1=0.0
2.5 = K/J =020
= K/J=030
2.0l i K/J =0/40
K/J=0
31
§< 5t
1.0t
0.5
0.0% P —~ =~ —~ —
) 3 B (=) Bl [S)
S £ E E I S
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model, the antiferromagnetic exchange constants [Eq. (9)]
reduce to
Jy=Jy =J 42K,
Jivg = J + 8K/,
Jiy =0,

(24)

Josty = Jayog = 2K,

For the square lattice K’ = J' = 0, since K’ = J'K, the spin-
wave dispersion is independent of the ring exchange coupling
K in the full model, Eq. (1),

wp = {20 — J' + J[cos(k,) + cos(ky)] + J' cos(ky + ky)}
x {2J — J' — J[cos(ky) + cos(ky)] + J' cos(ky + ky)}.
(25)

We plot this in Fig. 6.
In the plaquette model the antiferromagnetic exchange
constants [Eq. (9)] in the Néel phase are

Jg=Jy=J—2K—K’,
Jevg=J +4K' — K,
Ji—y =0,

(26)

Jogyy = Jzqoy = 2K'.

However, the effect of ring exchange is opposite to that of the
plaquette model, this results in the near independence of the
spin-excitation spectrum observed of the full model to ring
exchange observed in Fig. 6(a).

A. Excitation spectra for the full model

In Fig. 7(a), we plot the calculated spectra in the Néel
phase for J' = 0.5. We find that increasing K /J leads to the
softening of the mode at k = (;r,0) and another along the
diagonal 0-z direction, where 0 = (0,0) and & = (7). The
later is more physically significant as it drives the Néel-spin-
liquid transition. For sufficiently large K /J, local minima in
wy emerge at k = ky = (ky,ky) and k =  — ky with

(k1 — /K2)/ K"
ky = arccos |: / , 227)
83
3.0 — K/J=000
® Tzl TI=00
25 == K/J = 0220
= K/T=030
20l — K/I=040
K/J = 0%
=15
1.0
0.5
0.0 Yo
=X [ Bl e =) ) =)
S & 5 & [ S

FIG. 6. (Color online) Comparison of spin-excitation spectrum on the square lattice obtained using (a) the full model H = H, + ﬁz* + H,

and (b) the plaquette model A = H, + Hj,.
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FIG. 7. (Color online) Spin-excitation spectra calculated for the full model for (a) the Néel phase with J'/J = 0.5 as well as for the
commensurate spiral phase J'/J = 0.7 (b), J'/J = 1.0 (¢c), and J'/J = 2.0 (d). In (a)—(d), we mark spiral ordering vectors ky, gp, g., and g,
with ky =~ 0.40r, g, ~ 0.767, g, = %n, and g, ~ 0.587. In all cases, ring exchange increases the competition between the different classical
phases, which causes a dramatic softening of the dispersion at the competing ordering wave vectors in (a)—(c). Above the critical value of the
ring exchange, the dispersion becomes imaginary at these wave vectors—thus the competition between the different ordered phases is seen to

be directly responsible for the quantum disordered phases.

where
ki =J?+16K'(J' — J +8K'),
ko =J*+32K'[J° — J?(J —4K') —4J'K'(J +4K")
+2K'(J +4K")). (28)
As K/J is further increased, these minima deepen and
eventually wy, = w,_k, becomes imaginary (wlz(N < 0). The

softening of these modes can be understood by considering
them to be massive modes with an “effective mass”

1 _ 32(,()k
m*  ok? [’

(29)

where Kq is the momentum of the mode of interest, i.e., the
momentum where the local minimum occurs. In Fig. 8, we
plot the (a) gap and (b) effective mass of the k = (ky,ky) and
k = (r,0) modes in the Néel phase for J'/J = 0.5 as functions
of K/J. In calculating the effective masses we calculate the
derivative along thek = (k,k)andk = (ky /~/2 + k.ky /~/2 —
k) directions for the k = (ky,ky) mode. Similarly, for the
k = (7,0) mode, we calculate the derivative along the (,k)
and (k,m) directions as well as along (/2 + k,7/2 — k) and
(/2 + k, — /2 + k) directions.

With increasing ring exchange we observe that the effective
masses of both modes decrease. Eventually, the k = (ky,ky)

mode becomes massless and Goldstone’s theorem implies that
the long-range order commensurate with that mode competes
with the Néel phase. This leads to an instability of the Néel
phase. This is a clear indication that Néel order has become
unstable due to competition with the spiral phase. Explicit
calculation shows that long range spiral order with Q = ky or
m — ky is also unstable in this parameter regime. Generally,
the instability of ordered phases for K/J > 0O results from
the competition between two (or more) classical orders. It
is the competition between Néel (Q = x) and spiral (Q = ky)
orders destroys the Néel long range order in the full model.
This is very different from the mechanism for the vanishing
of long range order at the quantum critical point in the K = 0
limit, which has been shown [53,54] to be due to the vanishing
of the spin-wave velocity along 0-r and can be observed in
Fig. 7(a).

In Figs. 7(b)-7(d), we plot the spectra in the spiral
phase for J' = 0.7, J, and 2J. In all three cases, one can
clearly observe the expected Goldstone modes at k = 0 and
k = Q = (¢,9). In the spiral phase, increasing K /J induces
softenings at k =m and k = (7,0), i.e.,, at the momenta
of the Goldstone modes of the Néel and collinear phases,
respectively. For J'/J = K'/K < 1, the mode softens most
rapidly at k = m. For sufficiently large K/J, we find that
@y becomes imaginary (as w2 becomes negative) indicating
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S
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FIG. 8. (Color online) (a) Spin-wave gap and (b) effective masses for the Néel phase of the full model as functions of K/J for J'/J = 0.5.
We consider both the k = ky = (ky,ky) and k = (7r,0) modes as the compete with each other. In calculating the effective masses, we calculate
the derivative along the diagonal k = (k,k) and perpendicular k = (ky/ V2 + ko ky / /2 — k) directions for the k = (ky,ky) mode. These are
shown by the black solid and red dashed curves respectively. Similarly for the k = (7,0) mode, we calculate the derivative along the boundary
(,k) and (k,m) directions as well as along the diagonal (7 /2 + k,7/2 — k) and (/2 + k, — w /2 + k) directions. These are shown by the blue

dot-dashed and purple dotted curves, respectively.

that the competition with the Néel phase has destroyed the
long-range spiral order. For J'/J = K'/K > 1, the mode
softens most rapidly at k = (7,0). For sufficiently large
K/J, we find that w(, o) becomes imaginary indicating that
the competition with the collinear phase has destroyed the
long-range spiral order. At J'/J = K'/K =1 [Fig. 7(c)] both
the Néel and collinear phases compete with the spiral phases
[as one would suspect from the classical phase diagram,
Fig. 2(a)] and the dispersion becomes imaginary at k = & and
k = (7,0) simultaneously and likewise their effective masses
also vanish simultaneously. A similar minimum at (7r,0) has
been found from series expansions for the Heisenberg model
on an anisotropic triangular lattice with no ring exchange due
to recombination of particle-hole spinon pairs of momenta:
(/2,7/2),(—m/2,—m/2) into magnons [12,56] in that case.

It is also interesting to note that for J' = J, the spiral order
is more robust to the disordering effects induced by the ring
exchange than for any other value of J’/J even classically.
The effective two spin exchange couplings of Hamiltonian
(are J'=J' + K +4K'and J = J + 2K + 3K’ implying
that J' = J for all K/J when J'/J = K'/K = 1. Further-
more, the strong geometrical frustration suppresses Néel and
collinear phases thereby decreasing their ability to compete
with spiral phase and drive an instability to the quantum spin
liquid.

B. Absence of collinear phase in quantum calculations

We found that, in the parameter range covered by Fig. 2, the
collinear phase is classically stable [see Fig. 2(a)]. However, in
the quantum phase diagram [see Fig. 3(a)] the collinear phase
is always unstable as there is always some point (or, typically,
area) of the Brillouin zone for which a)lz( < 0. To demonstrate
that the spectrum is unstable in the full model, we write down
explicitly the expression for a)lz( assuming Q = (i,0) ordering:

wp = {J +[J + 4K + K')] cos(k,)}
—{cos(k)[J + 2K’ + 4K cos(k,)]
+ J' cos(ky + ky) + 2K’ cos(k, + 2ky)}2. (30)

In Fig. 9(a), we plot the minimum values (with respect to k) of
Eq. (30) and notice that min(a)lz() < —1 for the entire parameter
space considered. Therefore we conclude that competition
with other classical phases means that the collinear phase is
not stable in our calculations.

An important question to answer is why is the collinear
phase so fragile in the quantum calculations for the full model.
To address this, we consider explicit expressions for the spin-
excitation spectrum in the collinear phase for the extended
Heisenberg:

Open = [J +2K + 4K+ (J 4+ 2K + 3K') cos(ky)
+ K’ cos(2k, + ky)I* — [(J + 2K + 3K') cos(k,)
+ K cos(ky — ky) + (J' + K +4K") cos(k, + ky)
+ K’ cos(k, + 2k,)1? (3D

and plaquette models

wpp=1[J —2K —4K' + (J + 2K + K') cos(k,)
— K’ cos(2k, + ky)I* — [(J — 2K — K') cos(k,)
+ K cos(ky — ky) + (J' + K — 4K") cos(ky + ky)
+ K’ cos(ky + 2k,)1. (32)

We plot the values of the minima (with respect to k) of
Egs. (31) and (32) in Figs. 9(b) and 9(c). There is a broad
region of the phase diagram where the collinear phase is stable
for the extended Heisenberg model but is unstable in the entire
parameter space considered for the plaquette model. Therefore
we conclude that it is the four-site ring exchange terms,
rather than the renormalization of the exchange couplings that
destabilizes the collinear phase.

One might wonder whether the instability of the collinear
phase at harmonic order (leading order in 1/S) in the spin-
wave calculations is due to the spin waves in this phase not
being properly described by this level of treatment. Hartree-
Fock corrections, coming from the spin-wave interaction terms
could stabilize the collinear phase. We have performed such a
calculation but we find that the collinear phase is also unstable
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FIG. 9. (Color online) Minimum value of wlz( assuming Q =

(7,0) ordering. In (a), we use a)lz( obtained using the full model
[Eq. (30)]; in (b), we use the spectrum calculated using the extended
Heisenberg model [Eq. (31)]; while in (c), we use the spectrum
calculated using the plaquette model [Eq. (32)]. Calculations were

performed using LSWT.

for the full model with points (or regions) of the Brillouin zone
where the renormalized spin excitation spectrum is imaginary.
We will discuss this calculation in detail in a forthcoming
manuscript, where we will calculate the full quantum phase
diagram using Hartree-Fock mean-field theory.
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VII. COMPARISON WITH ORGANICS

So far, we have limited the discussion to the spin degrees
of freedom only. However, in the materials of interest, par-
ticularly the organic charge transfer salts, the charge degrees
of freedom eventually become important and a Mott transition
occurs under pressure. For J' = J (120°), spiral order is found
for K/J <0.1. To lowest order U/t = +/20J/K, which
would suggest that the spiral-spin-liquid transition occurs at
U/t >~ 14, which is in good agreement with the previous
calculations of Motrunich [32] and Yang et al. [33] for the
isotropic triangular lattice model. This is also close to the
estimated value of the critical ratio of U/t for the Mott
transition on the triangular lattice [79]. This suggests that
for J' ~ J, there is a direct transition from a spiral ordered
Mott insulator to a metal as pressure is increased, which is
believed to decrease U/t [3,8,80,81]. This is consistent with
the observation [22] that organic charge transfer salts with
' ~ t undergo a Mott transition directly from a magnetically
ordered phase to a superconducting/metallic phase, whereas
salts with J’/J ~ 0.8 display spin-liquid (or other exotic
quantum) phases.

In Fig. 10, we present a qualitative sketch of a proposed
phase diagram for the Hubbard model on the anisotropic
triangular lattice with ring exchange. The boundary lines for
the Néel and spiral-ordered phases are based on the linear
spin-wave theory for the full model, reported above. It is well
known that the perfect nesting of the square lattice means
that is insulating for arbitrarily small U/z. For ¢ =1¢, it is
found, numerically, that the Mott transition occurs at around
U/t = 10-15, depending on the method used [3,15-21,79].
The metal-insulator transition line in Fig. 10 is simply a smooth
curve joining these points. Nevertheless, this simple analysis
suggests that there will be a region of the phase diagram in the
full model where the magnetic orderings compete strongly
enough to induce a stable spin-liquid region. Comparing
the observed phase diagrams of the x-(BEDT-TTF),X and
Y[Pd(dmit),], salts to this picture and taking into account the
frustration (J'/J) estimated from first-principles calculations

0.20 : . . .
0.15
2 0.10

0.05}

0.08.:

t'/t

FIG. 10. Qualitative sketch of a proposed phase diagram for
the Hubbard model on the anisotropic triangular lattice with ring
exchange based on the LSWT calculations reported here and
electronic structure calculations [22].
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[22], one finds that this is consistent with what is observed
experimentally.

VIII. CONCLUSIONS

In this paper, we have shown that the competition between
different long-range order states creates a quantum disordered
phase in the anisotropic triangular lattice Heisenberg model
with ring exchange even at the semiclassical level. Analysis
of the spin-wave spectra show that the spin-liquid state is a
consequence of competition between classical ordered states.
Thus we conclude that the interplay of ring exchange and
geometrical frustration is responsible for the spin-liquid state

PHYSICAL REVIEW B 89, 174415 (2014)

found. Our results are relevant to weak Mott insulators, i.e.,
insulators lying close to the insulator-to-metal transition so that
ring exchange is relevant. A future challenge is understanding
ring exchange effects on two-dimensional metals close to the
Mott transition which may lead to exotic non-Fermi liquid
d-wave [82] phases.

ACKNOWLEDGMENTS

We thank Michel Gingras for helpful comments. This work
was funded in part by the Australian Research Council under
the Discovery (DP1093224), Future (FT130100161), and and
QEII (DP0878523) schemes. J.M. acknowledges financial
support from MINECO (MAT2012-37263-C02-01).

[1] L. Balents, Nature (London) 464, 199 (2010).

[2] B. Normand, Contemp. Phys. 50, 533 (2009).

[3] B. J. Powell and R. H. Mckenzie, Rep. Prog. Phys. 74, 056501
2011).

[4] P. A. Lee, Science 321, 1306 (2008).

[5] Y. Shimizu, K. Miyagawa, K. Kanoda, M. Maesato, and G. Saito,
Phys. Rev. Lett. 91, 107001 (2003).

[6] S. Yamashita, Y. Nakazawa, M. Oguni, Y. Oshima, H. Nojiri,
Y. Shimizu, K. Miygawa, and K. Kanoda, Nat. Phys. 4, 459
(2008).

[7] M. Yamashita, N. Nakata, Y. Kasahara, T. Sasaki, N. Yoneyama,
N. Kobayashi, S. Fujimoto, T. Shibauchi, and Y. Matsuda, Nat.
Phys. 5, 44 (2009).

[8] K. Kanoda and R. Kato, Annu. Rev. Condens. Matter Phys. 2,
167 (2010).

[9] M. Yamashita, N. Nakata, Y. Senshu, M. Nagata, H. M.
Yamamoto, R. Kato, T. Shibauchi, and Y. Matsuda, Science
328, 1246 (2010).

[10] T. Itou, A. Oyamada, S. Maegawa, and R. Kato, Nat. Phys. 6,
673 (2010).

[11] Y. Shimizu, H. Akimoto, H. Tsujii, A. Tajima, and R. Kato,
J. Phys.: Condens. Matter 19, 145240 (2007).

[12] J. O. Fj®restad, W. Zheng, R. R. P. Singh, R. H. McKenzie, and
R. Coldea, Phys. Rev. B 75, 174447 (2007).

[13] Y. Shirata, H. Tanaka, A. Matsuo, and K. Kindo, Phys. Rev. Lett.
108, 057205 (2012).

[14] H. D. Zhou, E. S. Choi, G. Li, L. Balicas, C. R. Wiebe, Y. Qiu,
J.R.D. Copley, and J. S. Gardner, Phys. Rev. Lett. 106, 147204
(2011).

[15] J. Liu and J. Schmalian, and N. Trivedi, Phys. Rev. Lett. 94,
127003 (2005).

[16] T. Watanabe, H. Yokoyama, Y. Tanaka, and J. Inoue, J. Phys.
Soc. Jpn. 75, 074707 (2006).

[17] P. Sahebsara and D. Senechal, Phys. Rev. Lett. 97, 257004
(2006).

[18] B. Kyung and A. M. S. Tremblay, Phys. Rev. Lett. 97, 046402
(2006).

[19] B. J. Powell and R. H. McKenzie, Phys. Rev. Lett. 98, 027005
(2007).

[20] K. S. Chen, Z. Y. Meng, U. Yu, S. Yang, M. Jarrell, and
J. Moreno, Phys. Rev. B 88, 041103(R) (2013).

[21] L. E. Tocchio, H. Feldner, F. Becca, R. Valenti, and C. Gros,
Phys. Rev. B 87, 035143 (2013).

[22] E. P. Scriven and B. J. Powell, Phys. Rev. Lett. 109, 097206
(2012).

[23] K. Nakamura, Y. Yoshimoto, T. Kosugi, R. Arita, and M. Imada,
J. Phys. Soc. Jpn. 78, 083710 (2009).

[24] H. C. Kandpal, 1. Opahle, Y.-Z. Zhang, H. O. Jeschke, and
R. Valenti, Phys. Rev. Lett. 103, 067004 (2009).

[25] K. Nakamura, Y. Yoshimoto, and M. Imada, Phys. Rev. B 86,
205117 (2012).

[26] T. Tsumuraya, H. Seo, M. Tsuchiizu, R. Kato, and T. Miyazaki,
J. Phys. Soc. Jpn. 82, 033709 (2013).

[27] T. Susuki, N. Kurita, T. Tanaka, H. Nojiri, A. Matsuo, K. Kindo,
and H. Tanaka, Phys. Rev. Lett 110, 267201 (2013).

[28] B.J. Powell and R. H. Mckenzie, J. Phys.: Condens. Matter 18,
R8&27 (2006).

[29] J. 1. Yamaura, A. Nakao, and R. Kato, J. Phys. Soc. Jpn. 73, 976
(2004).

[30] A. H. MacDonald, S. M. Girvin, and D. Yoshioka, Phys. Rev. B
37,9753 (1988).

[31] L. Balents and A. Paramekanti, Phys. Rev. B 67, 134427
(2003).

[32] O. 1. Motrunich, Phys. Rev. B 72, 045105 (2005).

[33] H. Y. Yang, A. M. Lauchli, F. Mila, and K. P. Schmidt, Phys.
Rev. Lett. 105, 267204 (2010).

[34] Note in the convention followed in this paper J is a factor of
two larger than in Ref. [32].

[35] M. Roger, J. H. Hetherington, and J. M. Delrieu, Rev. Mod.
Phys. 55, 1 (1983).

[36] D. J. Thouless, Proc. Phys. Soc. 86, 893 (1965).

[37] H. Franco, R. E. Rapp, and H. Godfrin, Phys. Rev. Lett. 57, 1161
(1986).

[38] H. Godfrin, R. R. Ruel, and D. D. Osheroft, Phys. Rev. Lett. 60,
305 (1988).

[39] G. Misguich, B. Bernu, C. Lhuillier, and C. Waldtmann, Phys.
Rev. Lett 81, 1098 (1998).

[40] G. Misguich, C. Lhuillier, B. Bernu, and C. Waldtmann, Phys.
Rev. B 60, 1064 (1999).

[41] M. Roger, C. Béerle, Yu. M. Bunkov, A. S. Chen, and H. Godfrin,
Phys. Rev. Lett. 80, 1308 (1998).

[42] K. Kubo and T. Momoi, Z. Phys. B 103, 485 (1997).

174415-11


http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1080/00107510902850361
http://dx.doi.org/10.1080/00107510902850361
http://dx.doi.org/10.1080/00107510902850361
http://dx.doi.org/10.1080/00107510902850361
http://dx.doi.org/10.1088/0034-4885/74/5/056501
http://dx.doi.org/10.1088/0034-4885/74/5/056501
http://dx.doi.org/10.1088/0034-4885/74/5/056501
http://dx.doi.org/10.1088/0034-4885/74/5/056501
http://dx.doi.org/10.1126/science.1163196
http://dx.doi.org/10.1126/science.1163196
http://dx.doi.org/10.1126/science.1163196
http://dx.doi.org/10.1126/science.1163196
http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1038/nphys942
http://dx.doi.org/10.1038/nphys942
http://dx.doi.org/10.1038/nphys942
http://dx.doi.org/10.1038/nphys942
http://dx.doi.org/10.1038/nphys1134
http://dx.doi.org/10.1038/nphys1134
http://dx.doi.org/10.1038/nphys1134
http://dx.doi.org/10.1038/nphys1134
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140521
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140521
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140521
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140521
http://dx.doi.org/10.1126/science.1188200
http://dx.doi.org/10.1126/science.1188200
http://dx.doi.org/10.1126/science.1188200
http://dx.doi.org/10.1126/science.1188200
http://dx.doi.org/10.1038/nphys1715
http://dx.doi.org/10.1038/nphys1715
http://dx.doi.org/10.1038/nphys1715
http://dx.doi.org/10.1038/nphys1715
http://dx.doi.org/10.1088/0953-8984/19/14/145240
http://dx.doi.org/10.1088/0953-8984/19/14/145240
http://dx.doi.org/10.1088/0953-8984/19/14/145240
http://dx.doi.org/10.1088/0953-8984/19/14/145240
http://dx.doi.org/10.1103/PhysRevB.75.174447
http://dx.doi.org/10.1103/PhysRevB.75.174447
http://dx.doi.org/10.1103/PhysRevB.75.174447
http://dx.doi.org/10.1103/PhysRevB.75.174447
http://dx.doi.org/10.1103/PhysRevLett.108.057205
http://dx.doi.org/10.1103/PhysRevLett.108.057205
http://dx.doi.org/10.1103/PhysRevLett.108.057205
http://dx.doi.org/10.1103/PhysRevLett.108.057205
http://dx.doi.org/10.1103/PhysRevLett.106.147204
http://dx.doi.org/10.1103/PhysRevLett.106.147204
http://dx.doi.org/10.1103/PhysRevLett.106.147204
http://dx.doi.org/10.1103/PhysRevLett.106.147204
http://dx.doi.org/10.1103/PhysRevLett.94.127003
http://dx.doi.org/10.1103/PhysRevLett.94.127003
http://dx.doi.org/10.1103/PhysRevLett.94.127003
http://dx.doi.org/10.1103/PhysRevLett.94.127003
http://dx.doi.org/10.1143/JPSJ.75.074707
http://dx.doi.org/10.1143/JPSJ.75.074707
http://dx.doi.org/10.1143/JPSJ.75.074707
http://dx.doi.org/10.1143/JPSJ.75.074707
http://dx.doi.org/10.1103/PhysRevLett.97.257004
http://dx.doi.org/10.1103/PhysRevLett.97.257004
http://dx.doi.org/10.1103/PhysRevLett.97.257004
http://dx.doi.org/10.1103/PhysRevLett.97.257004
http://dx.doi.org/10.1103/PhysRevLett.97.046402
http://dx.doi.org/10.1103/PhysRevLett.97.046402
http://dx.doi.org/10.1103/PhysRevLett.97.046402
http://dx.doi.org/10.1103/PhysRevLett.97.046402
http://dx.doi.org/10.1103/PhysRevLett.98.027005
http://dx.doi.org/10.1103/PhysRevLett.98.027005
http://dx.doi.org/10.1103/PhysRevLett.98.027005
http://dx.doi.org/10.1103/PhysRevLett.98.027005
http://dx.doi.org/10.1103/PhysRevB.88.041103
http://dx.doi.org/10.1103/PhysRevB.88.041103
http://dx.doi.org/10.1103/PhysRevB.88.041103
http://dx.doi.org/10.1103/PhysRevB.88.041103
http://dx.doi.org/10.1103/PhysRevB.87.035143
http://dx.doi.org/10.1103/PhysRevB.87.035143
http://dx.doi.org/10.1103/PhysRevB.87.035143
http://dx.doi.org/10.1103/PhysRevB.87.035143
http://dx.doi.org/10.1103/PhysRevLett.109.097206
http://dx.doi.org/10.1103/PhysRevLett.109.097206
http://dx.doi.org/10.1103/PhysRevLett.109.097206
http://dx.doi.org/10.1103/PhysRevLett.109.097206
http://dx.doi.org/10.1143/JPSJ.78.083710
http://dx.doi.org/10.1143/JPSJ.78.083710
http://dx.doi.org/10.1143/JPSJ.78.083710
http://dx.doi.org/10.1143/JPSJ.78.083710
http://dx.doi.org/10.1103/PhysRevLett.103.067004
http://dx.doi.org/10.1103/PhysRevLett.103.067004
http://dx.doi.org/10.1103/PhysRevLett.103.067004
http://dx.doi.org/10.1103/PhysRevLett.103.067004
http://dx.doi.org/10.1103/PhysRevB.86.205117
http://dx.doi.org/10.1103/PhysRevB.86.205117
http://dx.doi.org/10.1103/PhysRevB.86.205117
http://dx.doi.org/10.1103/PhysRevB.86.205117
http://dx.doi.org/10.7566/JPSJ.82.033709
http://dx.doi.org/10.7566/JPSJ.82.033709
http://dx.doi.org/10.7566/JPSJ.82.033709
http://dx.doi.org/10.7566/JPSJ.82.033709
http://dx.doi.org/10.1103/PhysRevLett.110.267201
http://dx.doi.org/10.1103/PhysRevLett.110.267201
http://dx.doi.org/10.1103/PhysRevLett.110.267201
http://dx.doi.org/10.1103/PhysRevLett.110.267201
http://dx.doi.org/10.1088/0953-8984/18/45/R03
http://dx.doi.org/10.1088/0953-8984/18/45/R03
http://dx.doi.org/10.1088/0953-8984/18/45/R03
http://dx.doi.org/10.1088/0953-8984/18/45/R03
http://dx.doi.org/10.1143/JPSJ.73.976
http://dx.doi.org/10.1143/JPSJ.73.976
http://dx.doi.org/10.1143/JPSJ.73.976
http://dx.doi.org/10.1143/JPSJ.73.976
http://dx.doi.org/10.1103/PhysRevB.37.9753
http://dx.doi.org/10.1103/PhysRevB.37.9753
http://dx.doi.org/10.1103/PhysRevB.37.9753
http://dx.doi.org/10.1103/PhysRevB.37.9753
http://dx.doi.org/10.1103/PhysRevB.67.134427
http://dx.doi.org/10.1103/PhysRevB.67.134427
http://dx.doi.org/10.1103/PhysRevB.67.134427
http://dx.doi.org/10.1103/PhysRevB.67.134427
http://dx.doi.org/10.1103/PhysRevB.72.045105
http://dx.doi.org/10.1103/PhysRevB.72.045105
http://dx.doi.org/10.1103/PhysRevB.72.045105
http://dx.doi.org/10.1103/PhysRevB.72.045105
http://dx.doi.org/10.1103/PhysRevLett.105.267204
http://dx.doi.org/10.1103/PhysRevLett.105.267204
http://dx.doi.org/10.1103/PhysRevLett.105.267204
http://dx.doi.org/10.1103/PhysRevLett.105.267204
http://dx.doi.org/10.1103/RevModPhys.55.1
http://dx.doi.org/10.1103/RevModPhys.55.1
http://dx.doi.org/10.1103/RevModPhys.55.1
http://dx.doi.org/10.1103/RevModPhys.55.1
http://dx.doi.org/10.1088/0370-1328/86/5/301
http://dx.doi.org/10.1088/0370-1328/86/5/301
http://dx.doi.org/10.1088/0370-1328/86/5/301
http://dx.doi.org/10.1088/0370-1328/86/5/301
http://dx.doi.org/10.1103/PhysRevLett.57.1161
http://dx.doi.org/10.1103/PhysRevLett.57.1161
http://dx.doi.org/10.1103/PhysRevLett.57.1161
http://dx.doi.org/10.1103/PhysRevLett.57.1161
http://dx.doi.org/10.1103/PhysRevLett.60.305
http://dx.doi.org/10.1103/PhysRevLett.60.305
http://dx.doi.org/10.1103/PhysRevLett.60.305
http://dx.doi.org/10.1103/PhysRevLett.60.305
http://dx.doi.org/10.1103/PhysRevLett.81.1098
http://dx.doi.org/10.1103/PhysRevLett.81.1098
http://dx.doi.org/10.1103/PhysRevLett.81.1098
http://dx.doi.org/10.1103/PhysRevLett.81.1098
http://dx.doi.org/10.1103/PhysRevB.60.1064
http://dx.doi.org/10.1103/PhysRevB.60.1064
http://dx.doi.org/10.1103/PhysRevB.60.1064
http://dx.doi.org/10.1103/PhysRevB.60.1064
http://dx.doi.org/10.1103/PhysRevLett.80.1308
http://dx.doi.org/10.1103/PhysRevLett.80.1308
http://dx.doi.org/10.1103/PhysRevLett.80.1308
http://dx.doi.org/10.1103/PhysRevLett.80.1308
http://dx.doi.org/10.1007/s002570050403
http://dx.doi.org/10.1007/s002570050403
http://dx.doi.org/10.1007/s002570050403
http://dx.doi.org/10.1007/s002570050403

MICHAEL HOLT, BEN J. POWELL, AND JAIME MERINO

[43] T. Momoi, K. Kubo, and K. Niki, Phys. Rev. Lett. 79, 2081
(1997).

[44] K. Kubo, H. Sakamoto, T. Momoi, and K. Niki, J. Low. Temp.
Phys. 111, 583 (1998).

[45] T. Momoi, H. Sakamoto, and K. Kubo, Phys. Rev. B 59, 9491
(1999).

[46] K. Kubo and T. Momoi, Physica B 329, 142 (2003).

[47] C. Yasuda, D. Kinouchi, and K. Kubo, J. Phys. Soc. Jpn. 75,
104705 (2006).

[48] S. Sugai, M. Sato, T. Kobayashi, J. Akimitsu, T. Ito, H. Takagi,
S. Uchida, S. Hosoya, T. Kajitani, and T. Fukuda, Phys. Rev. B
42, 1045 (1990).

[49] R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost,
T. E. Mason, S. W. Cheong, and Z. Fisk, Phys. Rev. Lett. 86,
5377 (2001).

[50] T. S. Nunner, P. Brune, T. Kopp, M. Windt, and Markus
Griininger, Phys. Rev. B 66, 180404(R) (2002).

[51] P. W. Anderson, Mat. Res. Bull 8, 153 (1973); P. Fazekas and
P. W. Anderson, Philos. Magn. 30, 423 (1974).

[52] P. Sindzingre, P. Lecheminant, and C. Lhuillier, Phys. Rev. B
50, 3108 (1994).

[53] J. Merino, R. H. McKenzie, J. B. Marston, and C. H. Chung,
J. Phys.: Condens. Matter 11, 2965 (1999).

[54] A. E. Trumper, Phys. Rev. B 60, 2987 (1999).

[55] P. Hauke, Phys. Rev. B 87, 014415 (2013).

[56] W. Zheng, R. H. McKenzie, and R. R. P. Singh, Phys. Rev. B
59, 14367 (1999).

[57] R. FE. Bishop, P. H. Y. Li, D. J. J. Farnell, and C. E. Campbell,
Phys. Rev. B 79, 174405 (2009).

[58] C. H. Chung, J. B. Marston, and R. H. McKenzie, J. Phys.:
Condens. Matter 13, 5159 (2001).

[59] S. Yunoki and S. Sorella, Phys. Rev. B 74, 014408 (2006);
D. Heidarian, S. Sorella, and F. Becca, ibid. 80, 012404 (2009).

[60] B. J. Powell and R. H. McKenzie, Phys. Rev. Lett. 94, 047004
(2005).

PHYSICAL REVIEW B 89, 174415 (2014)

[61] J. Y. Gan, Y. Chen, Z. B. Su, and F. C. Zhang, Phys. Rev. Lett.
94, 067005 (2005).

[62] Y. Hayashi and M. Ogata, J. Phys. Soc. Jpn. 76, 053705 (2007).

[63] J. Reuther and R. Thomale, Phys. Rev. B 83, 024402 (2011).

[64] J. G. Rau and H.-Y. Kee, Phys. Rev. Lett. 106, 056405 (2011).

[65] O. A. Starykh and L. Balents, Phys. Rev. Lett. 98, 077205 (2007).

[66] M. Q. Weng, D. N. Sheng, Z. Y. Weng, and R. J. Bursill, Phys.
Rev. B 74, 012407 (2006); A. Weichselbaum and S. R. White,
ibid. 84, 245130 (2011).

[67] D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher, Phys. Rev. B
79, 205112 (2009).

[68] M. S. Block, D. N. Sheng, O. I. Motrunich, and M. P. A. Fisher,
Phys. Rev. Lett. 106, 157202 (2011).

[69] P. Hauke, T. Roscilde, V. Murg, J. Cirac, and R. Schmied, New
J. Phys. 13, 075017 (2011).

[70] H. Li, R. T. Clay, and S. Muzumdar, J. Phys.: Condens. Matter
22, 272201 (2010).

[71] J. Merino, M. Holt, and B. J. Powell, arXiv:1402.3463.

[72] K. Majumdar, D. Furton, and G. S. Uhrig, Phys. Rev. B 85,
144420 (2012).

[73] J. Villain, J. Phys. 38, 385 (1977); J. Villain, R. Bidaux, J. P.
Carton, and R. Conte, ibid. 41, 1263 (1980).

[74] P. Chandra, P. Coleman, and A. I. Larkin, Phys. Rev. Lett. 64,
88 (1990); J. Phys. Condens. Matter 2, 7933 (1990).

[75] A. V. Chubukov and T. Jolicoeur, Phys. Rev. B 46, 11137 (1992).

[76] S. Miyake, J. Phys. Soc. Jpn. 61, 983 (1992).

[77] R. R. P. Singh and D. A. Huse, Phys. Rev. Lett. 68, 1766 (1992).

[78] Q. Sheng and C. L. Henley, J. Phys. Condens. Matt. 4, 2937
(1992).

[79] J. Merino, B. J. Powell, and R. H. McKenzie, Phys. Rev. B 73,
235107 (2006); A. Liebsch, H. Ishida, and J. Merino, ibid. 79,
195108 (2009).

[80] E. Scriven and B. J. Powell, J. Chem. Phys. 130, 104508 (2009).

[81] E. Scriven and B. J. Powell, Phys. Rev. B 80, 205107 (2009).

[82] H.-C. Jiang et al., Nature (London) 493, 39 (2012).

174415-12


http://dx.doi.org/10.1103/PhysRevLett.79.2081
http://dx.doi.org/10.1103/PhysRevLett.79.2081
http://dx.doi.org/10.1103/PhysRevLett.79.2081
http://dx.doi.org/10.1103/PhysRevLett.79.2081
http://dx.doi.org/10.1023/A:1022249501044
http://dx.doi.org/10.1023/A:1022249501044
http://dx.doi.org/10.1023/A:1022249501044
http://dx.doi.org/10.1023/A:1022249501044
http://dx.doi.org/10.1103/PhysRevB.59.9491
http://dx.doi.org/10.1103/PhysRevB.59.9491
http://dx.doi.org/10.1103/PhysRevB.59.9491
http://dx.doi.org/10.1103/PhysRevB.59.9491
http://dx.doi.org/10.1016/S0921-4526(02)01939-7
http://dx.doi.org/10.1016/S0921-4526(02)01939-7
http://dx.doi.org/10.1016/S0921-4526(02)01939-7
http://dx.doi.org/10.1016/S0921-4526(02)01939-7
http://dx.doi.org/10.1143/JPSJ.75.104705
http://dx.doi.org/10.1143/JPSJ.75.104705
http://dx.doi.org/10.1143/JPSJ.75.104705
http://dx.doi.org/10.1143/JPSJ.75.104705
http://dx.doi.org/10.1103/PhysRevB.42.1045
http://dx.doi.org/10.1103/PhysRevB.42.1045
http://dx.doi.org/10.1103/PhysRevB.42.1045
http://dx.doi.org/10.1103/PhysRevB.42.1045
http://dx.doi.org/10.1103/PhysRevLett.86.5377
http://dx.doi.org/10.1103/PhysRevLett.86.5377
http://dx.doi.org/10.1103/PhysRevLett.86.5377
http://dx.doi.org/10.1103/PhysRevLett.86.5377
http://dx.doi.org/10.1103/PhysRevB.66.180404
http://dx.doi.org/10.1103/PhysRevB.66.180404
http://dx.doi.org/10.1103/PhysRevB.66.180404
http://dx.doi.org/10.1103/PhysRevB.66.180404
http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1080/14786439808206568
http://dx.doi.org/10.1080/14786439808206568
http://dx.doi.org/10.1080/14786439808206568
http://dx.doi.org/10.1080/14786439808206568
http://dx.doi.org/10.1103/PhysRevB.50.3108
http://dx.doi.org/10.1103/PhysRevB.50.3108
http://dx.doi.org/10.1103/PhysRevB.50.3108
http://dx.doi.org/10.1103/PhysRevB.50.3108
http://dx.doi.org/10.1088/0953-8984/11/14/012
http://dx.doi.org/10.1088/0953-8984/11/14/012
http://dx.doi.org/10.1088/0953-8984/11/14/012
http://dx.doi.org/10.1088/0953-8984/11/14/012
http://dx.doi.org/10.1103/PhysRevB.60.2987
http://dx.doi.org/10.1103/PhysRevB.60.2987
http://dx.doi.org/10.1103/PhysRevB.60.2987
http://dx.doi.org/10.1103/PhysRevB.60.2987
http://dx.doi.org/10.1103/PhysRevB.87.014415
http://dx.doi.org/10.1103/PhysRevB.87.014415
http://dx.doi.org/10.1103/PhysRevB.87.014415
http://dx.doi.org/10.1103/PhysRevB.87.014415
http://dx.doi.org/10.1103/PhysRevB.59.14367
http://dx.doi.org/10.1103/PhysRevB.59.14367
http://dx.doi.org/10.1103/PhysRevB.59.14367
http://dx.doi.org/10.1103/PhysRevB.59.14367
http://dx.doi.org/10.1103/PhysRevB.79.174405
http://dx.doi.org/10.1103/PhysRevB.79.174405
http://dx.doi.org/10.1103/PhysRevB.79.174405
http://dx.doi.org/10.1103/PhysRevB.79.174405
http://dx.doi.org/10.1088/0953-8984/13/22/311
http://dx.doi.org/10.1088/0953-8984/13/22/311
http://dx.doi.org/10.1088/0953-8984/13/22/311
http://dx.doi.org/10.1088/0953-8984/13/22/311
http://dx.doi.org/10.1103/PhysRevB.74.014408
http://dx.doi.org/10.1103/PhysRevB.74.014408
http://dx.doi.org/10.1103/PhysRevB.74.014408
http://dx.doi.org/10.1103/PhysRevB.74.014408
http://dx.doi.org/10.1103/PhysRevB.80.012404
http://dx.doi.org/10.1103/PhysRevB.80.012404
http://dx.doi.org/10.1103/PhysRevB.80.012404
http://dx.doi.org/10.1103/PhysRevB.80.012404
http://dx.doi.org/10.1103/PhysRevLett.94.047004
http://dx.doi.org/10.1103/PhysRevLett.94.047004
http://dx.doi.org/10.1103/PhysRevLett.94.047004
http://dx.doi.org/10.1103/PhysRevLett.94.047004
http://dx.doi.org/10.1103/PhysRevLett.94.067005
http://dx.doi.org/10.1103/PhysRevLett.94.067005
http://dx.doi.org/10.1103/PhysRevLett.94.067005
http://dx.doi.org/10.1103/PhysRevLett.94.067005
http://dx.doi.org/10.1143/JPSJ.76.053705
http://dx.doi.org/10.1143/JPSJ.76.053705
http://dx.doi.org/10.1143/JPSJ.76.053705
http://dx.doi.org/10.1143/JPSJ.76.053705
http://dx.doi.org/10.1103/PhysRevB.83.024402
http://dx.doi.org/10.1103/PhysRevB.83.024402
http://dx.doi.org/10.1103/PhysRevB.83.024402
http://dx.doi.org/10.1103/PhysRevB.83.024402
http://dx.doi.org/10.1103/PhysRevLett.106.056405
http://dx.doi.org/10.1103/PhysRevLett.106.056405
http://dx.doi.org/10.1103/PhysRevLett.106.056405
http://dx.doi.org/10.1103/PhysRevLett.106.056405
http://dx.doi.org/10.1103/PhysRevLett.98.077205
http://dx.doi.org/10.1103/PhysRevLett.98.077205
http://dx.doi.org/10.1103/PhysRevLett.98.077205
http://dx.doi.org/10.1103/PhysRevLett.98.077205
http://dx.doi.org/10.1103/PhysRevB.74.012407
http://dx.doi.org/10.1103/PhysRevB.74.012407
http://dx.doi.org/10.1103/PhysRevB.74.012407
http://dx.doi.org/10.1103/PhysRevB.74.012407
http://dx.doi.org/10.1103/PhysRevB.84.245130
http://dx.doi.org/10.1103/PhysRevB.84.245130
http://dx.doi.org/10.1103/PhysRevB.84.245130
http://dx.doi.org/10.1103/PhysRevB.84.245130
http://dx.doi.org/10.1103/PhysRevB.79.205112
http://dx.doi.org/10.1103/PhysRevB.79.205112
http://dx.doi.org/10.1103/PhysRevB.79.205112
http://dx.doi.org/10.1103/PhysRevB.79.205112
http://dx.doi.org/10.1103/PhysRevLett.106.157202
http://dx.doi.org/10.1103/PhysRevLett.106.157202
http://dx.doi.org/10.1103/PhysRevLett.106.157202
http://dx.doi.org/10.1103/PhysRevLett.106.157202
http://dx.doi.org/10.1088/1367-2630/13/7/075017
http://dx.doi.org/10.1088/1367-2630/13/7/075017
http://dx.doi.org/10.1088/1367-2630/13/7/075017
http://dx.doi.org/10.1088/1367-2630/13/7/075017
http://dx.doi.org/10.1088/0953-8984/22/27/272201
http://dx.doi.org/10.1088/0953-8984/22/27/272201
http://dx.doi.org/10.1088/0953-8984/22/27/272201
http://dx.doi.org/10.1088/0953-8984/22/27/272201
http://arxiv.org/abs/arXiv:1402.3463
http://dx.doi.org/10.1103/PhysRevB.85.144420
http://dx.doi.org/10.1103/PhysRevB.85.144420
http://dx.doi.org/10.1103/PhysRevB.85.144420
http://dx.doi.org/10.1103/PhysRevB.85.144420
http://dx.doi.org/10.1051/jphys:01977003804038500
http://dx.doi.org/10.1051/jphys:01977003804038500
http://dx.doi.org/10.1051/jphys:01977003804038500
http://dx.doi.org/10.1051/jphys:01977003804038500
http://dx.doi.org/10.1051/jphys:0198000410110126300
http://dx.doi.org/10.1051/jphys:0198000410110126300
http://dx.doi.org/10.1051/jphys:0198000410110126300
http://dx.doi.org/10.1051/jphys:0198000410110126300
http://dx.doi.org/10.1103/PhysRevLett.64.88
http://dx.doi.org/10.1103/PhysRevLett.64.88
http://dx.doi.org/10.1103/PhysRevLett.64.88
http://dx.doi.org/10.1103/PhysRevLett.64.88
http://dx.doi.org/10.1088/0953-8984/2/39/008
http://dx.doi.org/10.1088/0953-8984/2/39/008
http://dx.doi.org/10.1088/0953-8984/2/39/008
http://dx.doi.org/10.1088/0953-8984/2/39/008
http://dx.doi.org/10.1103/PhysRevB.46.11137
http://dx.doi.org/10.1103/PhysRevB.46.11137
http://dx.doi.org/10.1103/PhysRevB.46.11137
http://dx.doi.org/10.1103/PhysRevB.46.11137
http://dx.doi.org/10.1143/JPSJ.61.983
http://dx.doi.org/10.1143/JPSJ.61.983
http://dx.doi.org/10.1143/JPSJ.61.983
http://dx.doi.org/10.1143/JPSJ.61.983
http://dx.doi.org/10.1103/PhysRevLett.68.1766
http://dx.doi.org/10.1103/PhysRevLett.68.1766
http://dx.doi.org/10.1103/PhysRevLett.68.1766
http://dx.doi.org/10.1103/PhysRevLett.68.1766
http://dx.doi.org/10.1088/0953-8984/4/11/020
http://dx.doi.org/10.1088/0953-8984/4/11/020
http://dx.doi.org/10.1088/0953-8984/4/11/020
http://dx.doi.org/10.1088/0953-8984/4/11/020
http://dx.doi.org/10.1103/PhysRevB.73.235107
http://dx.doi.org/10.1103/PhysRevB.73.235107
http://dx.doi.org/10.1103/PhysRevB.73.235107
http://dx.doi.org/10.1103/PhysRevB.73.235107
http://dx.doi.org/10.1103/PhysRevB.79.195108
http://dx.doi.org/10.1103/PhysRevB.79.195108
http://dx.doi.org/10.1103/PhysRevB.79.195108
http://dx.doi.org/10.1103/PhysRevB.79.195108
http://dx.doi.org/10.1063/1.3080543
http://dx.doi.org/10.1063/1.3080543
http://dx.doi.org/10.1063/1.3080543
http://dx.doi.org/10.1063/1.3080543
http://dx.doi.org/10.1103/PhysRevB.80.205107
http://dx.doi.org/10.1103/PhysRevB.80.205107
http://dx.doi.org/10.1103/PhysRevB.80.205107
http://dx.doi.org/10.1103/PhysRevB.80.205107
http://dx.doi.org/10.1038/nature11732
http://dx.doi.org/10.1038/nature11732
http://dx.doi.org/10.1038/nature11732
http://dx.doi.org/10.1038/nature11732



