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The spin-1/2 alternating Heisenberg chain system Na3Cu2SbO6 features two relevant exchange couplings:
J1a within the structural Cu2O6 dimers and J1b between the dimers. Motivated by the controversially discussed
nature of J1a , we perform extensive density-functional-theory (DFT) calculations, including DFT + U and
hybrid functionals. Fits to the experimental magnetic susceptibility using high-temperature series expansions
and quantum Monte Carlo simulations yield the optimal parameters J1a = −217 K and J1b = 174 K with the
alternation ratio α = J1a/J1b � −1.25. For the closely related system Na2Cu2TeO6, DFT yields substantially
enhanced J1b, but weaker J1a . The comparative analysis renders the buckling of the chains as the key parameter
altering the magnetic coupling regime. Numerical simulation of the dispersion relations of the alternating-chain
model clarify why both antiferromagnetic and ferromagnetic J1a can reproduce the experimental magnetic
susceptibility data.
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I. INTRODUCTION

The vibrant research on magnetic insulators keeps on deliv-
ering new examples of exotic magnetic behaviors and unusual
magnetic ground states (GSs) [1,2]. Two prominent examples
are the spin-liquid system herbertsmithite Cu3Zn(OH)6Cl2,
featuring a kagome lattice of S = 1/2 spins [3], or the
recently discovered Ba3CuSb2O9, where the magnetism is
likely entangled with the dynamical Jahn-Teller distortion [4].

Cuprates are a particularly promising playground to study
low-dimensional magnetism, since they often combine the
quantum spin S = 1/2 ensured by the Cu 3d9 electron config-
uration and the low dimensionality of the underlying magnetic
model. The latter is ensued by the unique variety of lattice
topologies realized in cuprates, which includes geometrically
frustrated lattices, where quantum fluctuations are additionally
enhanced by the competing magnetic interactions.

The simplest example of a quantum GS that lacks a classical
analog is the quantum-mechanical singlet. Such a GS is found
experimentally, e.g., in CsV2O5 (Ref. [5]), CuTe2O5 (Ref. [6]),
CaCuGe2O6 (Ref. [7]), and Cu2(PO3)2CH2 (Ref. [8]). All
these compounds feature pairs of strongly coupled spins
(magnetic dimers). An isolated dimer is an archetypical
two-level quantum system, which can be solved analytically.

Compounds with sizable couplings between the dimers can
exhibit diverse behaviors. For instance, the nonfrustrated [9]
spin lattice of the Han purple BaCuSi2O6 is favorable for
propagation of triplet excitations, promoting a Bose-Einstein
condensation of magnons, experimentally observed in the
magnetic field range between 23.5 and 49 T [10]. In contrast,
SrCu2(BO3)2 features strongly frustrated interdimer couplings
that give rise to a fascinating variety of magnetization plateaus
[11]. The remarkable difference between the behavior of
BaCuSi2O6 and SrCu2(BO3)2 is governed by the difference
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in the magnetic couplings that constitute the respective spin
model. Thus, the precise information on the underlying spin
model is crucial for understanding the magnetic properties.

An evaluation of the microscopic magnetic model can be
performed in different ways. The basic features of the spin
lattice can be often conceived by applying empirical rules, such
as the Goodenough-Kanamori rules [12]. Then, the resulting
qualitative model is parametrized by fitting its respective free
parameters to the experiment. The main challenge is the
limited amount of the available experimental data that may not
suffice for a unique and justified fitting of the model-specific
free parameters. Thus, such a phenomenological approach is
generally insecure against ambiguous solutions.

Microscopic modeling based on density-functional theory
(DFT) calculations is an alternative solution. Such calculations
require no experimental information beyond the crystal struc-
ture, and in contrast to the phenomenological method, provide
a microscopic insight. A straightforward application of the
DFT is impeded by the fact that cuprates are strongly correlated
materials. Hence the effective one-electron approach of DFT
generally fails to reproduce their insulating electronic GS [13].
This shortcoming can be mended in alternative calculational
schemes, such as DFT + U or hybrid functionals, yet these
methods are not parameter free. Often, these parameters
sensitively depend on the fine structural details of the system
under investigation.

The low-dimensional S = 1/2 Heisenberg compound
Na3Cu2SbO6 is an instructive example that demonstrates the
performance and the limitations of the phenomenological
as well as the microscopic approach. This compound was
initially described as a distorted honeycomb lattice, owing
to the hexagonal arrangement of the Cu atoms in the crystal
structure [14]. However, this purely geometrical analysis ne-
glects the key ingredients of the magnetic superexchange, such
as the orientation and the spatial extent of the magnetically
active orbitals. Indeed, as pointed out by the authors of
Ref. [14], the orientation of the Cu 3dx2−y2 orbitals readily
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FIG. 1. (Color online) Top: crystal structure of Na3Cu2SbO6.
The basic elements are CuO4 plaquettes and SbO6 octahedra.
Bottom: segments of the structural chains of Cu2O6 dimers for the
experimental distorted plaquette geometry (upper panel) and an ideal
planar arrangement of the Cu2O6 units in the fictitious structures
(lower panel).

accentuates the chains formed by structural dimers and hints
at two relevant magnetic couplings: J1a within the structural
dimers and J1b between the dimers (Fig. 1), leading to the
quasi-1D Heisenberg chain model with alternating nearest-
neighbor couplings.

Thermodynamical measurements confirmed the quasi-1D
character of the spin model [14,15], yet no agreement was
found for the sign of the intradimer coupling J1a: Refs. [14] and
[15] vouch for a ferromagnetic (FM) and antiferromagnetic
(AFM) exchange, respectively. The sign of J1a basically
governs the magnetic GS: the AFM-AFM solution is a
disordered dimer state, while the GS of an FM-AFM chain is
adiabatically connected to the Haldane phase with nontrivial
topology and sizable string order parameter [16]. Therefore,
for the magnetic GS, the sign of J1a is of crucial importance.

Notably, even DFT studies do not concur with each other:
Ref. [15] reports AFM J1a, while an alternative DFT-based
method in Ref. [17] yields FM coupling. To resolve the
controversy on the sign of J1a, the authors of Ref. [18]
performed inelastic neutron scattering (INS) experiments on
single crystals of Na3Cu2SbO6. The resulting values for the
exchange couplings (J1a = −145 K and J1b = 161 K) clearly
indicate the FM-AFM chain scenario. Still, the origin of
ambiguous solutions in earlier experimental as well as in DFT
studies has not been sufficiently clarified.

In our combined experimental and theoretical study, we
evaluate the magnetic model for Na3Cu2SbO6 and its Te sibling
Na2Cu2TeO6 (Ref. [19]) using extensive DFT calculations
and investigate how the magnetic GS is affected by the
structural distortion within the chains. By comparing our
DFT results to the earlier studies, we explain the origin of
ambiguous parametrizations of DFT-based spin models in both
compounds. Simulations of the momentum-resolved spectrum
for our microscopic model reveal excellent agreement with
the INS experiments (Ref. [18]) and enlighten the ambiguity
of AFM-AFM and FM-AFM solutions inferred from the
thermodynamical measurements.

This paper is organized as follows. The used experi-
mental as well as computational methods are described in
Sec. II. The details of the crystal structures of Na3Cu2SbO6

and Na2Cu2TeO6 are discussed in Sec. III. In Sec. IV,
we present our magnetic susceptibility measurements and
extensive DFT calculations. Peculiarities of the excitation
spectrum of the Heisenberg chain model are discussed
Sec. V. Finally, a summary and a short outlook are given in
Sec. VI.

II. METHODS

Synthesis and sample characterization. Polycrystalline
samples of Na3Cu2SbO6 were prepared by solid-state reaction.
A stoichiometric amount of Na2CO3 (Chempur, 99.9 + %),
Sb2O5 (99.999%, Alfa Aesar), and CuCO3·Cu(OH)2

(Chempur) was thoroughly mixed. The homogeneous powder
was pressed into a platinum crucible and annealed at 1273 K
for two weeks in air. Finally the crucible was taken out of the
furnace at 1273 K and cooled down to room temperature in
air.

For magnetic measurements, the powder sample was
pressed into a pellet and heated again at 973 K in a
platinum boat for several days. The green powder was
identified and characterized by powder x-ray diffraction using
a high-resolution Guinier camera with Cu Kα radiation. The
determined lattice parameters a = 5.676 Å, b = 8.860 Å,
c = 5.833 Å, and β = 113.33◦ are in good agreement with
Ref. [20].

To control the oxygen content in the sample at different
stages of the thermal treatment, we performed coulometric
titration of the samples using a commercial OXYLYT device.
We found that the maximal oxygen content (close to the
stoichiometric Na3Cu2SbO6) is attained right after the thermal
treatment at 973 K (Fig. S3 in Ref. [21]). However, a
subsequent storage at room temperature and in air leads
to a reduction of the oxygen content. This effect can be
seen in the magnetic susceptibility by the increased amount
of Curie impurity (Fig. S4 in Ref. [21]). Therefore, for
thermodynamic measurements, we use “fresh” samples (i.e.,
we performed measurement right after the thermal treat-
ment) that feature smallest impurity contribution. Magnetic
susceptibility χ (T ) of Na3Cu2SbO6 was measured using
a superconducting quantum interference device (SQUID)
magnetometer (MPMS, Quantum Design) in a magnetic
field of 0.04 T.

DFT calculations. For the electronic structure calculations,
the full-potential local-orbital code FPLO (version FPLO8.50-32)
within the local (spin) density approximation [L(S)DA] was
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used [22]. In the scalar relativistic calculations the exchange
and correlation potential of Perdew and Wang has been applied
[23]. The accuracy with respect to the k-mesh has been
carefully checked.

The LDA band structure has been mapped onto an effective
one-orbital tight-binding (TB) model based on Cu-site cen-
tered Wannier functions (WFs). The strong Coulomb repulsion
of the Cu 3d orbitals was considered by mapping the TB
model onto a Hubbard model. In the strongly correlated limit
and at half filling, the lowest-lying (magnetic) excitations can
be described by a Heisenberg model with J AFM

ij = 4t2
ij /Ueff

for the antiferromagnetic part of the exchange. Spin-polarized
LSDA + U supercell calculations were performed using two
limiting cases for the double counting correction (DCC):
the around-mean-field (AMF) and the atomic limit (AL,
also called the fully localized limit). We varied the on-site
Coulomb repulsion U3d in the physically relevant range
(4–8 eV in AMF and 5–9 eV in AL), keeping the on-site
exchange J3d = 1 eV. The partial Na3−x occupancy and the
Sbx /Te1−x substitution were modeled using the virtual crystal
approximation (VCA) [24].

HSE06 (Ref. [25]) hybrid functional calculations were
performed using the pseudopotential code VASP-5.2 [26],
employing the basis set of projector-augmented waves. The
default admixture of the Fock exchange (25%) was adopted.
We used the primitive unit cell with two Cu atoms and a 6×6×6
k-mesh with the NKRED = 3 flag.

Simulations and fits to the experiment. We used the high-
temperature series expansion (HTSE) to a Heisenberg chain
with alternating nearest-neighbor couplings J1a and J1b. For
the case of AFM couplings, the parametrization is given in
α ≡ |J1a|/J1b in Table II of Ref. [27]; the parameters for the
case of FM J1a are provided in Ref. [28]. Quantum Monte Carlo
simulations were performed using the LOOP algorithm [29]
from the ALPS package [30]. To evaluate the reduced magnetic
susceptibility, we used 50 000 loops for thermalization and
500 000 loops after thermalization for chains of N = 120
spins S = 1/2 using periodic boundary conditions. Exact
(Lanczos) diagonalization of the Heisenberg Hamiltonians
was performed using SPINPACK [31]. The lowest-lying Sz = 0,
Sz = 1, and Sz = 2 excitations were computed for N = 32
sites chains of S = 1/2 using periodic boundary conditions.

III. CRYSTAL STRUCTURE

The monoclinic (space group C2/c) crystal structure of
Na3Cu2SbO6 (Ref. [20]) features pairs of slightly distorted,
edge-shared CuO4 plaquettes forming structural dimers with
the Cu-O-Cu bonding angle of 95◦. The dimers are connected
by the equatorial plane of SbO6 octahedra and form chains
running along the b axis (Fig. 1, bottom). The apical O atoms
of the SbO6 octahedra mediate connections to the next Cu2O6

dimer chain. In this way, the magnetic layers, separated by Na
atoms, are formed (Fig. 1, top).

The crystal structure of Na2Cu2TeO6 (Ref. [19]) features a
similar motif, with the reduced number of Na atoms between
the layers, to keep the charge balance. In addition, the smaller
size of Te6+ compared to Sb5+ gives rise to a stronger distortion
of the Cu2O6 dimer chains in Na2Cu2TeO6. To investigate
the influence of this distortion, we also computed fictitious

structures with idealized planar arrangements of the Cu2O6

units (Fig. 1 bottom, lower panel).

IV. RESULTS

A. Magnetic susceptibility

Above 200 K, the magnetic susceptibility of Na3Cu2SbO6

fits reasonably to the Curie-Weiss law with C =
0.442 emu K(mol Cu)−1 and the antiferromagnetic Weiss
temperature θCW = 60 ± 10 K. The effective magnetic mo-
ment amounts to μeff � 1.88μB, slightly exceeding the spin-
only value for S = 1/2 (1.73μB). The resulting value of the
Lande factor g = 2.17 is typical for Cu2+ compounds. At
lower temperatures, antiferromagnetic correlations give rise
to a broad maximum in the magnetic susceptibility around
Tmax = 96 K. The low-temperature upturn below 17 K is likely
caused by defects, typical for powder samples of quasi-one-
dimensional magnets [e.g., Sr2Cu(PO4)2 from Ref. [32] or
(NO)Cu(NO3)3 from Ref. [33]], since already a single defect
terminates the spin chain.

We briefly compare our susceptibility measurements with
the published data. The Curie-Weiss fit from Ref. [15] yields a
similar θCW = 55 K, but their g = 2.33 exceeds our estimate.
This discrepancy likely originates from the difference in the
magnetic field (0.1 T vs 0.04 T in our work) as well as different
temperature ranges used for the fitting. Unfortunately, the
authors of Ref. [14] do not provide the values of θCW and g, but
a Curie-Weiss fit to their data yields θCW � 49 K and g � 2.10,
in good agreement with our findings. A bare comparison of the
absolute values of χ (Tmax) (Table I) reveals sizable deviations
of the χ (T ) data from Ref. [15] compared to the other two data
sets.

For a more elaborate analysis, we adopt the AHC model
and search for solutions that agree with the experimental
χ (T ) curve. To this end, we perform HTSE considering the
physically different scenarios: both J1a and J1b couplings
are AFM (“AFM-AFM”) and J1a is FM (“FM-AFM”). The
corresponding HTSE coefficients for the two cases can be
found in Refs. [27] and [28], respectively. In both cases, we
obtain a solution (first row of Table II) which conforms to the
experimental data.

Our solution for the FM-AFM case (Table II, first
row) nearly coincides with the corresponding solution from
Ref. [14] (Table II, second row), yielding α ≡ J1a/J1b �
−1.25 and a considerably smaller g factor of about 2
compared to the value from the Curie-Weiss fits (2.17). For
the AFM-AFM case, we obtain α � 0.4 which deviates from
the result of Ref. [14], but closely resembles the solution from

TABLE I. Na3Cu2SbO6: the Curie-Weiss temperature θCW (in K)
and the g factor evaluated using the Curie-Weiss fit for T � 200 K,
as well as the experimental position Tmax (in K) of the susceptibility
maximum and its absolute value χ (Tmax) [in emu (mol Cu)−1].

Data source θCW g Tmax χ (Tmax)

This study 60 2.17 96 2.2 × 10−3

Data from Ref. [14] 49 2.10 95 2.3 × 10−3

Ref. [15] 55 2.33 90 1.7 × 10−3
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TABLE II. High-temperature series expansion (HTSE) and quan-
tum Monte Carlo (QMC) fits to the experimental χ (T ) data for
Na3Cu2SbO6. Results of different studies implying a ferromagnetic
and an antiferromagnetic coupling (FM-AFM, upper lines) or two
inequivalent antiferromagnetic couplings (AFM-AFM, lower lines)
are shown: exchange couplings J1a and J1b (in K), g factors,
temperature-independent terms χ0[in emu/(mol Cu)−1], and Curie-
Weiss impurity contributions C imp [in K emu (mol Cu)−1] and θ

imp
CW

(in K). “−” stands for a fitted quantity, which numerical value is not
provided in the respective reference.

J1a J1b g χ0 C imp θ
imp
CW

HTSE
This study −207 171 2.01 3 × 10−5 4.7 × 10−3

155 66 2.20 3 × 10−6 6.1 × 10−3 1.1

Ref. [14] −209 165 2.01 − − −
143 39 2.13 − − −

Ref. [15] 160 62 1.97 2.2 × 10−4 2.3

QMC
This study −217 174 2.02 9 × 10−6 6 × 10−3 1

153 61 2.19 3 × 10−6 6 × 10−3 1.2

Ref. [15] (Table II, third row). The discrepancy can originate
from different parametrizations used for the HTSE fitting. In
particular, the AFM-AFM solutions in Refs. [14] and [15] are
obtained using the parametrization from Ref. [34]. In contrast,
we adopt the coefficients from a more recent and extensive
study [27], valid in the whole temperature range measured.

To account for the full temperature range measured, we turn
to QMC simulations. Thus, we adopt the ratios α = −1.25 and
α = 0.40 from our HTSE fitting, and calculate the reduced
magnetic susceptibility χ∗(T/kBJ ), which can be fitted to the
experimental curve using the expression

χ (T ) = NAg2μ2
B

kBJ
χ∗

(
T

kBJ

)
+ C imp

T + θ
imp
CW

+ χ0, (1)

where NA and kB are the Avogadro and Boltzmann constants,
respectively, μB is the Bohr magneton, C imp and θ

imp
CW ac-

count for impurity/defect contributions, χ0 is a temperature-
independent term, and J = max{|J1a|,J 1b}. Using a least-
squares fitting, we obtain the solutions listed in Table II (last
row) and shown in Fig. 2.

The AFM-AFM solution shows sizable deviations at high
temperatures and in the vicinity of the low-temperature upturn
(Fig. 2, inset), while the FM-AFM solution yields an excellent
fit to the experimental χ (T ) in the whole temperature range,
making the latter solution more favorable. Still, the choice is
impeded by the following issues. First, the AHC model is a
minimal model for Na3Cu2SbO6, which completely neglects
interchain couplings and anisotropies. Second, the g factor of
the FM-AFM solution deviates significantly from the estimate
based on the Curie-Weiss fit, while its counterpart from the
AFM-AFM solution shows a better agreement with the Curie-
Weiss fit. Finally, the shape of the χ (T ) curve is affected
by oxygen deficiency in the sample [21], which is difficult
to control during the synthesis process. Therefore, the AFM-
AFM solution cannot be ruled out using the χ (T ) data, only.
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FIG. 2. (Color online) Experimental (expt.) magnetic suscepti-
bility of Na3Cu2SbO6 (circles) and the quantum Monte Carlo (QMC)
fits for the FM-AFM and the AFM-AFM solution of the alternating
Heisenberg chain (AHC) model. Inset: difference curves emphasize
the excellence of the FM-AFM solution.

B. Electronic structure and magnetic model

To resolve the ambiguity between the FM-AFM and AFM-
AFM solutions, we perform microscopic magnetic modeling
of Na3Cu2SbO6 and its Te sibling Na2Cu2TeO6 using DFT
calculations. The valence bands feature similar bandwidth and
are similarly structured in the two compounds, as revealed
by the LDA densities of states (DOS) in Fig. 3. The DOS is
dominated by Cu and O states down to −5.5 and −6 eV for
Na3Cu2SbO6 and Na2Cu2TeO6, respectively. Contributions
from Na, Sb, and Te are marginal in this energy range. Only
at the lower edge of the valence band do we find a sizable
hybridization of Sb states for Na3Cu2SbO6 centered around
−6 eV. A similar admixture of Te states is observed for
Na2Cu2TeO6, where the additional valence electron of Te
compared to Sb shifts the Cu-O-Te density down by about
1 eV.
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FIG. 3. (Color online) Total and atom-resolved LDA density
of states for Na3Cu2SbO6 (top) and Na2Cu2TeO6 (bottom). The
contribution of Na states is negligible on this scale (not shown).
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FIG. 4. (Color online) Orbital-resolved LDA density of states for
Na3Cu2SbO6. In the local coordinate system of a CuO4 plaquette, the
x axis runs along one of the Cu-O bonds, while the z axis is per-
pendicular to the plaquette plane (for the ideal planar coordination).
The states in the vicinity of the Fermi energy are dominated by the
in-plane Cu 3d and O 2p states.

The LDA band structures for both compounds feature a
well-separated density of Cu and O states centered around the
Fermi energy. In the local coordinate system of a CuO4 plaque-
tte, this density is formed by the antibonding σ combination of
Cu 3dx2−y2 and O 2pσ states (dpσ ∗ combination). The orbital-
resolved density of states for Na3Cu2SbO6 is shown in Fig. 4.
Two aspects should be pointed out. First, the metallic solution
(nonzero DOS at the Fermi energy) observed in Na3Cu2SbO6,
is in contrast with the green color of the compound, indicative
of the insulating behavior. Similar, the calculated LDA band
gap of 0.06 eV for Na2Cu2TeO6 (see Fig. 3) is far too small to
account for the green color of the powder and originates from
dimerization effects. This drastic underestimation of the band
gap is a well-known shortcoming of the LDA, which does not
account for the strong Coulomb repulsion in the Cu 3d orbitals.
The missing part of correlation energy will be accounted for by
resorting to a Hubbard model, as well as using DFT + U and
hybrid-functional calculations. Second, the orbital resolved
density of states (see Fig. 4) shows small hybridization with
the out-of-plane Cu-O states due to the distortion of the dimer
chains. Since these contributions are small compared to the
pure antibonding dpσ ∗ states, the restriction to an effective
TB model is still justified.

To verify the structural input, we relaxed the crystal
structures within LDA. For Na3Cu2SbO6, the relaxation results
in a rather small energy gain of 33 meV per formula unit
(f.u.), and the respective changes in the crystal structure are
negligible. In contrast, a relaxation of the atomic coordinates
in Na2Cu2TeO6 lowers the energy by 130 meV per f.u. and
alters mainly the chain buckling. Since the relaxation of
Na2Cu2TeO6 affects the magnetically relevant dpσ ∗ states,
we evaluated the magnetic properties for both the experimental
and the relaxed crystal structure.

The transfer integrals tij (the hopping matrix elements) are
evaluated by a least-squares fit of an effective one-orbital TB
model to the two LDA dpσ ∗ bands. Using ten inequivalent tij
terms (see the bottom panel of Fig. 5, Table III, and Ref. [21])
we obtain excellent agreement between the TB model and the
LDA band structure. The respective fit for Na3Cu2SbO6 is
shown in Fig. 5 (top).

In both systems, the leading coupling is t1b, which con-
nects two neighboring structural dimers: t1b = 127 meV for
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FIG. 5. (Color online) Top: LDA band structure of Na3Cu2SbO6

and the fit using the effective one-orbital TB model with ten in-
equivalent transfer integrals tij . Bottom: the superexchange pathways
corresponding to the relevant tij terms.

Na3Cu2SbO6 and t1b = 162 meV for Na2Cu2TeO6, respec-
tively. The coupling within the structural Cu2O6 dimers (t1a =
60 meV for Na3Cu2SbO6 and t1a = 16 meV for Na2Cu2TeO6)

TABLE III. Relevant (>10 meV) transfer integrals tij (in meV)
evaluated by fitting the LSDA band structures for the different
structural models: experimental (expt), LSDA-relaxed (relaxed) and
fictitious planar (planar). For the notation of tij , see Fig. 5 (bottom).

Na3Cu2SbO6

ti/meV t1a t1b t2 t ic
1a t ic

1b td
0 ta

0

Expt. 60.6 127 18.2 −27.8 17.0 21.8 17.4
Relaxed 68.2 134 18.1 −32.3 20.6 20.9 19.2
Planar expt. 45.3 119 22.4 −7.8 9.4 30.1 −
Planar relax. 55.6 125 23.8 −9.2 10.7 29.2 −

Na2Cu2TeO6

ti/meV t1a t1b t2 t ic
1a t ic

1b td
0 ta

0

Expt. 15.6 162 16.4 −38.5 24.7 13.7 25.5
Relaxed 42.5 152 17.3 −42.4 26.3 14.5 23.1
Planar expt. 27.3 152 29.3 −12.6 12.4 25.6 1.3
Planar relax. 45.2 148 30.0 −12.8 12.7 26.0 −
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are significantly smaller. Besides, several long-range couplings
that connect different chains are comparable to t1a (Table III
and Ref. [21]). Subsequent mapping of the TB model onto
a Hubbard model (adopting Ueff = 4 eV) and a Heisenberg
model yield the following AFM contributions: J AFM

1b = 188 K
and J AFM

1a = 43 K for Na3Cu2SbO6 and J AFM
1b = 305 K and

J AFM
1a = 2 K for Na2Cu2TeO6, respectively.

The resulting minimal model is incomplete, since it disre-
gards the FM contribution to the exchange integrals, which
are expected to be especially large for the J1a coupling within
the structural dimers. To estimate the total exchange inte-
grals, comprising AFM and FM contributions, we performed
LSDA + U calculations of magnetic supercells. Mapping
the total energies of different collinear spin arrangements
onto a classical Heisenberg model yields J1a = −135 ± 20
K for Na3Cu2SbO6 and J1a = −120 ± 20 K for Na2Cu2TeO6,
respectively. For the exchange between the structural dimers,
we find J1b = 150 ± 50 K for Na3Cu2SbO6 and J1b = 232 ±
70 K for Na2Cu2TeO6 (U3d = 6 ∓ 1 eV). All further exchange
integrals between different chains and layers are smaller than
10 K, and thus can be neglected in the minimal model.

Unlike the related compounds featuring edge-shared chains
[35,36] or Cu2O6 dimers [8], Na3Cu2SbO6 and Na2Cu2TeO6

exhibit a sizable influence of the Coulomb repulsion U3d on
the exchange integrals (see Fig. 6). However, the variation
of U3d within the physically relevant range (Sec. II) does
not affect the FM nature of J1a . Thus, Na3Cu2SbO6 features
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FIG. 6. (Color online) Calculated exchange integrals J1b and J1a ,
as well as frustration ratios J1a/J1b = α as a function of the
Coulomb repulsion U3d for different structural models of the two
compounds.

TABLE IV. Leading exchange integrals J1a and J1b (in K) and
the alternation ratio α ≡ J1a/J1b for Na3Cu2SbO6 and Na2Cu2TeO6,
evaluated using different methods. HTSE and QMC estimates are
made based on the experimental data from the respective reference
(first column). Theoretical estimates, LSDA + U , HSE06, and ex-
tended Hückel tight-binding (EHTB) results are based on calculations
for the experimental crystal structures.

Data source Method J1a J1b α = J1a/J1b

Na3Cu2SbO6

This study LSDA + U −135 150 −0.90
HSE06 −205 163 −1.26
HTSE −207 171 −1.21
QMC −217 174 −1.25

Ref. [17] EHTB −165 345 −0.48
Ref. [14] HTSE −165 209 −0.79
Ref. [15] HTSE 22 169 0.13

Na2Cu2TeO6

This study LSDA + U −120 232 −0.52
HSE06 −165 291 −0.57

Ref. [17] EHTB −158 516 −0.30
Ref. [14] HTSE −272 215 −1.27
Ref. [19] HTSE 13 127 0.1

alternating chains with the exchange integrals of nearly
the same magnitude but different sign (FM J1a and AFM
J1b), while for Na2Cu2TeO6, the AFM exchange between
the structural dimers is dominant. The evaluated exchange
integrals are listed in Table IV.

For an independent computational method, we use hybrid
functional (HF) total energy calculations. The absence of
the double counting problem and minimal number of free
parameters makes HF calculations an appealing alternative
to the DFT + U methods [37]. Here, we employ the HSE06
functional to evaluate the leading couplings J1a and J1b in both
compounds. In accord with DFT + U , we obtain FM J1a and
AFM J1b. For Na3Cu2SbO6, the resulting exchange integrals
are in excellent agreement with the HTSE estimates (Table IV).
Similar to DFT + U , Na2Cu2TeO6 features a weaker J1a and
stronger J1b, thus the α value is substantially reduced.

We are now in position to compare our results with the
previous DFT-based studies. Derakhshan et al. (Ref. [15]) eval-
uated the relevant transfer integrals using N th-order muffin-
tin-orbital downfolding of the LDA band structure. Although
this computational method (Ref. [38]) as well as the code
[39] used for the calculations differ from our approach, the
difference in the resulting tij values does not exceed 25% [40].
Hence, the estimated AFM contributions to the exchanges J1a

and J1b generally agree with our values. However, in contrast
to the present study, the authors of Ref. [15] did not perform
DFT + U calculations and therefore completely disregarded
the FM contributions, which are especially relevant for the
short-range coupling J1a . Thus, their AFM-AFM solution
originates from a severe incompleteness of the computational
scheme and the respective mapping onto the spin Hamiltonian.

In contrast to Ref. [17], Koo and Whangbo performed
DFT + U calculations using VASP, and recovered FM J1a

and AFM J1b, in qualitative agreement with the experiment.
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However, the absolute values of the leading couplings are
considerably overestimated. We believe that this overestima-
tion stems from the choice of the on-site Coulomb repulsion
parameter Ud . It is well known that the parameters of the
DFT + U calculations are not universal [41], in particular
basis dependent, and should be carefully chosen based on the
nature of the magnetic atom and the code used. The Ud range
studied in Ref. [17] (4–7 eV) is too narrow, and larger Ud is
likely required to reproduce the correct magnetic energy scale
in Na3Cu2SbO6 and Na2Cu2TeO6.

C. Influence of chain geometry

Next, we study the influence of the structural parameters
onto the alternation ratio α = J1a/J1b for Na3Cu2SbO6 and
Na2Cu2TeO6. The two compounds differ not only by the
nonmagnetic ions (Sb and Te) located between the structural
dimers, but also by details of their chain geometry. These subtle
differences can have a substantial impact on the magnetic
properties. In particular, the substitution of Sb by Te and
the corresponding change of the Na content modulates the
crystal field. Furthermore, the substitution of Sb by Te has a
sizable impact on the buckling of the dimer chains, which
is determined by the deviation of O atoms from an ideal
planar arrangement. Finally, the interatomic distances in the
two compounds are different. To separate these effects out, we
introduce fictitious compounds containing ideal planar dimer
chains (see Fig. 1), evaluate their electronic structure, and
compare them with real compounds.

The direct comparison of the antibonding dpσ ∗ bands for
the experimentally observed crystal structures of Na3Cu2SbO6

and Na2Cu2TeO6 (Fig. 7, upper panel) reveals that these
bands differ mainly by their width. In contrast, comparing
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FIG. 7. (Color online) Top: LDA band structures showing the
magnetically active antibonding dpσ ∗ states for Na3Cu2SbO6 and
Na2Cu2TeO6. Bottom: comparison of the LDA band structures
calculated for different structural models of Na3Cu2SbO6.

the antibonding dpσ ∗ bands of Na3Cu2SbO6 within the
experimental crystal structure (distorted plaquettes) with the
fictitious crystal structure (planar plaquettes) reveals similar
bandwidths, but substantially different dispersions (compare
X-� or X-Z in Fig. 7). The same trend is also observed for
Na2Cu2TeO6.

(i) To separate out the effect of the Sb↔Te substitution,
we perform VCA calculations for the same structural model.
In particular, a certain fraction x of Sb atoms is replaced by
Te, with a concomitant change in the Na content, in order
to keep the charge balance. The band structures calculated
for different Te concentrations exhibit similar dispersions and
similar bandwidth, evidencing the minor relevance of the pure
substitutional effect for the magnetic exchange couplings [21].

To estimate the impact of the chain distortion and in-
teratomic distances onto the magnetism in more detail, we
evaluated the magnetic model also for two fictitious crystal
structures of Na3Cu2SbO6 and Na2Cu2TeO6 (featuring planar
dimer chains) [21]. The obtained hopping terms and exchange
integrals are given in Tables III and V. LSDA + U calculations
(U3d = 6 ± 1 eV) yield J1a=−230 ± 50 K and J1b = 126 ±
35 K for the fictitious Na3Cu2SbO6 and J1a = −312 ± 80 K
and J1b = 212 ± 45 K for the fictitious Na2Cu2TeO6, re-
spectively. The dependence of the exchange integrals on the
Coulomb repulsion U3d is depicted in Fig. 6. Analysis of the
resulting exchange couplings suggests that the two structural
parameters act differently: the distortion of the dimer chains
mainly influences the coupling strength of J1a and the coupling
regime between the dimer chains (tic and til), whereas the
interdimer exchange J1b is rather insensitive to this parameter
(Table V), since the respective superexchange path does not
involve O(2) atoms that rule the distortion.

(ii) Comparing the total exchange integrals for
Na3Cu2SbO6 for the experimental crystal structure with the
planar system discloses an increase of the nearest-neighbor
(NN) coupling J1a by nearly a factor of 2, whereas J1b is
decreased by less than 20%. This observation is in line with
the intuitive picture derived from geometrical considerations
comparing the experimental distorted crystal structure to the

TABLE V. DFT estimates for the magnetic exchange integrals
in Na3Cu2SbO6 and Na2Cu2TeO6. The AFM part of the exchange
integral J AFM

1b (in K) evaluated using the effective one-orbital model
(with Ueff = 4 eV) and total exchange integrals J1b and J1a (in K)
from LSDA + U total energy calculations (using U3d = 6.0 eV), for
the experimental (expt.), the LDA-relaxed (relaxed), and the fictitious
(planar) crystal structures.

Structure J1a J1b (J AFM
1b )

Na3Cu2SbO6

Expt. −135 150 (188)
Relaxed −125 162 (209)
Planar (expt.) −230 126 (165)
Planar (relax.) −227 142 (182)

Na2Cu2TeO6

Expt. −120 232 (305)
Relaxed −122 197 (269)
Planar (expt.) −312 212 (269)
Planar (relax.) −305 200 (255)
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fictitious system containing ideal planar chains (compare
Fig. 1, lower panel). Locking the O atoms within the chain
plane directly alters the exchange path of J1a along Cu-O-
Cu, by a change of the Cu-O-Cu bridging angle and the
orientation of the magnetically active orbitals. In contrast,
the superexchange path of J1b (Cu-O-O-Cu) is altered only
indirectly by changes of the crystal field due to the distortion
of the Sb/TeO6 octahedra (compare Fig. 1, lower panel).

(iii) The modulation of interatomic distances influences J1a

and J1b in a similar way. The crucial impact of the interatomic
distances on J1b manifests itself in the coupling strength of the
planar model structures for Na3Cu2SbO6 and Na2Cu2TeO6

(see Table V) with the corresponding next-nearest-neighbor
(NNN) Cu-Cu interdimer distance. The about 0.1 Å shorter
NNN Cu-Cu distance in the fictitious planar Na2Cu2TeO6

structure compared to the fictitious planar Na3Cu2SbO6

increases the coupling strength by about 60%. However,
comparing the experimental distorted crystal structure with
the planar model structure of Na2Cu2TeO6 the difference in
the NNN Cu-Cu distance is only half as large (about 0.05 Å)
as between the two planar structures and result in about a 1/4
smaller increase of J1b. Thus, J1b follows a simple distance
relation and scales according to r2. The same relation holds for
J1a (compare J1a for the two planar structures with the change
of the NN Cu-Cu distance).

Based on the above considerations, we can conclude that the
crucial parameter, determining the alteration ratio α = J1a/J1b

for Na3Cu2SbO6 and Na2Cu2TeO6, is the distortion of the
chains. Thus, a directed modification of the chain buckling
by the appropriate substitution of ions should allow us to
tune the magnetism of these systems. Furthermore, the chain
distortion also influences the interchain coupling regime. In
the experimental structure the long-range exchanges mostly
operate within the magnetic layers (in the ab plane), whereas in
the planar system the coupling between the layers is enhanced
(tij ’s in Table III).

V. ENERGY SPECTRUM

As already mentioned, the FM-AFM and AFM-AFM
solutions correspond to different magnetic GSs. In the former
case, the GS is similar to the Haldane chain and features sizable
string order parameter Os = 0.36, indicative of a topological
order, while in the latter case the string order is suppressed
(Os = 0.16) [42]. It is thus tempting to find an observable
quantity that would be substantially different in the two phases.
Theoretical studies of the S = 1/2 AHC model suggest that
this requirement is fulfilled for the momentum position of
the spin gap. Indeed, the Q = 0 gap is characteristic for
AFM-AFM chains, except for the narrow parameter range α =
0.79–1.00, where the gap shifts to small finite Q � 0.02/π

[27]. In contrast, the spin gap in the FM-AFM chains is
located at Q = π [43]. Therefore, by measuring momentum
resolved excitation spectra, the sign of J1a can be reliably
determined.

To resolve the ambiguity between the FM-AFM and
AFM-AFM cases ultimately, we calculate the low-energy
excitations for α = −1.25 as well as α = 0.4 using Lanczos
diagonalization of the respective Heisenberg Hamiltonian. The
resulting E(Q) dependence is plotted in Fig. 8. Although
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FIG. 8. (Color online) Low-energy excitation spectra for the al-
ternating Heisenberg chains of N = 32 spins, corresponding to the
QMC solutions (FM-AFM and AFM-AFM) from Table II. Note
the difference in the behavior of the low-lying branch for the two
solutions. Experimental data from Ref. [18] are shown with filled
circles (the gray line is guide to the eye).

the two solutions yield similar estimates for the spin gap,
its Q position is very different: Q = π and Q = 0, for
the FM-AFM and AFM-AFM solution, respectively. Another
distinct feature of the excitation spectra is the well-separated
branch of lowest-energy excitations (Fig. 8). For the FM-AFM
solution, this branch resembles the behavior of cos(Q), while
the AFM-AFM solution yields a sin(Q)-like behavior.

To compare with the experimental dispersion from
Ref. [18], we scale the two spectra using the values of
the exchange couplings from our QMC fits to the magnetic
susceptibility (Table II, last row). This way, we find that the
FM-AFM solution agrees very well with the experimental data
(Fig. 8), while the AFM-AFM solution can be safely ruled out.

Figure 8 also provides an answer to an intriguing question,
why both α = −1.25 and α = 0.4 provide good fits to the
susceptibility data. At finite temperature, magnetic susceptibil-
ity reflects the thermal-averaged magnetic spectrum integrated
over the whole momentum space. Thus, at low temperatures,
χ (T ) is largely affected by the value of the spin gap, but is
insensitive to its Q position. Since the values of the spin gap
for the two solutions are very similar (around 100 K), the
similarity of the low-temperature χ (T ) is also not surprising.
Moreover, the shape of the low-energy branch is similar (but
reflected around Q = π/2), thus the Q-integrated spectrum is
nearly the same in both cases. Only at elevated temperatures,
the contribution of high-lying states gives rise to the difference
in χ (T ). This is in excellent agreement with the enhanced
deviation of the AFM-AFM solution at high temperatures
(Fig. 2, inset).
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VI. SUMMARY

Since the first report on the magnetism of the low-
dimensional S = 1/2 systems Na3Cu2SbO6 and Na2Cu2TeO6,
their spin models were controversially debated in the literature.
The main conundrum was the sign of the exchange coupling
J1a operating within the structural Cu2O6 dimers. To resolve
the conflicting reports, we applied a series of different
computational methods, including density functional theory
(DFT) band structure, virtual crystal approximation, DFT +U ,
and hybrid functional calculations, as well as high-temperature
series expansions, quantum Monte Carlo simulations, and
exact diagonalization.

Our calculations evidence that the magnetism of both
compounds can be described by the alternating Heisenberg
chain model with two relevant couplings: ferromagnetic
J1a within the structural dimers, and antiferromagnetic J1b

between the dimers. The alternation parameter α = J1a/J1b

amounts to about −1.25 and −0.55 in Na3Cu2SbO6 and
Na2Cu2TeO6, respectively. This parameter regime corresponds
to the Haldane phase, characterized by the gapped excitation
spectrum and a topological string order.

Using extensive calculations for different structural models,
we find that the physically relevant ratio α = J1a/J1b is
primarily ruled by the distortion of the structural chains, while
the Sb ↔ Te substitution and the change in the Cu-Cu distance
play a minor role. A comparison of the simulated dispersion

E(Q) with the experimental inelastic neutron-scattering data
(Ref. [18]) yields an unequivocal evidence for the FM nature of
J1a in Na3Cu2SbO6. These spectra facilitate the understanding
of the similarity between the magnetic susceptibility curves
for mutually exclusive solutions that involve ferromagnetic
and antiferromagnetic J1a.

It is important to note that the problem of ambiguous
solutions appears in the empirical modeling, only. In contrast,
the microscopic modeling based on DFT calculations readily
yields a quasi-one-dimensional model with the ferromagnetic
J1a. This clearly indicates that present-day DFT calculations
are a reliable tool to disclose even rather complicated cases
and deliver a reliable microscopic magnetic model. Since the
correctness of the magnetic model is of crucial importance for
its refinement and extension, DFT calculations should be an
indispensable ingredient of real-material studies.
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