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Atomistic modeling of thermodynamic properties of Pu-Ga alloys based on the Invar mechanism
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We present an atomistic model that accounts for a range of anomalous thermodynamic properties of the fcc
δ phase of Pu-Ga alloys in terms of the Invar mechanism. Two modified embedded atom method potentials
are employed to represent competing electronic states in δ-Pu, each of which has an individual configuration
dependence as well as distinct interactions with gallium. Using classical Monte Carlo simulations, we compute
the temperature dependence of various thermodynamic properties for different dilute gallium concentrations.
The model reproduces the observed effects of excessive volume reduction along with a rapid shift in thermal
expansion from negative to positive values with increasing gallium concentration. It also predicts progressive
stiffening upon dilute-gallium alloying, while the calculated thermal softening is nearly independent of the gallium
concentration in agreement with resonant ultrasound spectroscopy measurements in the literature. Analysis of
the local structure predicted by the model indicates that the distribution of the gallium atoms is not completely
random in the δ phase due to the presence of short-range order associated with the Invar mechanism. This effect is
consistent with the nanoscale heterogeneity in local gallium concentration which is observed in recent extended
x-ray absorption fine structure spectroscopy experiments. Implications of the Invar effect for phase stability and
physical interpretations of the two states are also discussed.
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I. INTRODUCTION

The unusual properties of plutonium and its alloys have
been difficult to understand [1,2]. Among the six equilibrium
solid phases of elemental plutonium at atmospheric pressure,
the fcc δ phase possesses a variety of anomalous properties
over its narrow stability range of temperature from 593
to 736 K. These include an extraordinarily high elastic
anisotropy, the largest atomic volume (albeit the only close-
packed structure among the allotropes), negative thermal
expansion, and strong thermal softening. While the brittle
monoclinic α phase is the most stable state in its unalloyed
form at ambient temperature and pressure, the ductile δ phase
can be retained down to room temperature by the addition
of relatively small amounts of certain, typically trivalent,
elements, such as gallium or aluminum. The δ phase also
exhibits extreme sensitivity to the dilute alloying required for
its retention. With increasing gallium concentration, the sys-
tem undergoes excessive volume reductions while its thermal
expansion is driven towards positive values, yet exhibits strong
thermal softening virtually independently of the concentration.
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These macroscopic anomalies appear to be rather perplex-
ing from the conventional view of solids. Although many
suggestions have been put forward to understand the atomistic
mechanisms for negative thermal expansion of materials, those
that rely solely on large transverse vibrational amplitudes
are inadequate to account for the negative thermal expansion
of bulk closed-packed structures at high temperatures [3].
Besides, the strong thermal softening indicated in experiments
is seemingly contradictory to the negative thermal expansion
from the point of view of the standard Debye-Grüneisen
theory, in which growing lattice anharmonicity is always
associated with positive volume expansion. Moreover, the
lattice contraction of δ-Pu by the addition of gallium shows
excessive negative deviation from Vegard’s law for ideal
solutions. As yet, there is no proper understanding of the
retention mechanism and concomitant thermoelastic effects
that appear upon dilute alloying.

Knowledge of the local structure at the atomic level
is essential for obtaining a deeper understanding of the
mechanical properties and phase stability of a system. While
x-ray diffraction data [4] indicate that the gallium atoms form a
substitutional solid solution in δ-Pu, extended x-ray absorption
fine structure (EXAFS) spectroscopy studies [5–8] have shown
that the local structure around the gallium atoms in dilute alloys
is disordered by significant contraction of the Pu-Ga bonds,
∼3%–4% shorter than the Pu-Pu bonds in pure δ-Pu. It was
found that all twelve of the nearest neighbors of the gallium
atoms are plutonium, and the local environment around the
gallium atoms is nearly independent of the concentration.
Further examination of vibrational properties revealed that
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the Pu-Ga bonds are considerably more stable and stiffer
than the Pu-Pu bonds [9,10]. Conradson et al. [11] recently
observed that the gallium atoms in the δ phase are not
randomly distributed, but self-organize to form a quasi-
intermetallic of composition Pu25−30Ga. Although the gallium
atoms appear to avoid direct bonding and repel each other at the
nearest-neighbor distance, they act to attract each other by
clustering over several nanometers, resulting in nanoscale
heterogeneity in local composition.

The local contraction in the Pu-Ga bonds predicted from
a density-functional theory (DFT) calculation within the
local-density approximation [12] was found to be much
weaker than the EXAFS data. Sadigh and Wolfer [13] have
subsequently shown in their DFT study in the generalized
gradient approximation (GGA) with spin polarization that the
excessive reduction of the Pu-Ga bond cannot arise solely
from the size misfit and associated elastic strains, but rather
that its major contribution comes from the volume reduction
of the plutonium atoms surrounding the gallium solute atom
induced by electron delocalization. Moore et al. [14,15] further
discussed that the twelve nearest-neighbor bonds in the δ phase
of unalloyed plutonium are not equivalent, and thereby lead to
the reduction of the crystal symmetry into the monoclinic space
group and the unusually high elastic anisotropy of this phase.
They pointed out that the bond strengths around a gallium
atom in dilute-gallium alloys become less anisotropic, and this
mechanism is responsible for the retention of the fcc structure.
Furthermore, by employing the cluster variation method,
Robert et al. [16,17] demonstrated that chemical short-range
order in the δ-solid solution can have a strong influence on the
stability of this phase in the Pu-Ga phase diagram.

An analogy to the Invar alloys has shed light on the
understanding of the characteristic temperature variations of
the thermodynamic properties of δ-Pu and its alloys. Eriksson
et al. [18] described in their mixed-level model that the
transition from itinerant to localized electronic behavior in the
actinide series takes place progressively within plutonium, and
that multiple electronic configurations with varying degrees
of delocalization of distinct equilibrium volumes exist close
in energy for the δ phase. They anticipated that the unusual
thermal properties in δ-Pu result from the competing electronic
states in the fcc structure in a manner analogous to the Invar
alloys. Lawson et al. [19,20] indeed modeled the temperature
variation of the thermodynamic properties of the δ phase
of plutonium alloys by means of the two-state model of
Weiss [21], which was originally developed to explain the
anomalous properties of the iron-based Invar alloys. The
model postulates that the plutonium atoms in the fcc structure
can exist in two electronic configurations closely spaced in
energy, and describes the entropy associated with the thermal
excitations between those two states in terms of a Schottky
two-level statistical-mechanical treatment.

The recognition of the importance of the Invar effect in
δ-Pu has led to the development of an atomistic model utilizing
effective interatomic potentials that accounts for the negative
thermal expansion in its unalloyed form [22]. The Invar mech-
anism is built into the model in such a way that the plutonium
atoms in the fcc structure are effectively characterized by
two binding energies corresponding to differing electronic
states individually coupled to the atomic configuration with

respective equilibrium volumes. Employing two modified
embedded atom method (MEAM) potentials to represent
these two electronic states, the model incorporates thermal
excitation between these states using the classical Monte
Carlo (MC) method. The model provides an atomic-scale
description of how the thermal expansion is suppressed as
the plutonium atoms are excited to the small-volume state
at elevated temperature, and the excess entropy associated
with this excitation concurrently gives rise to a Schottky-like
anomaly in the heat capacity.

Due to the difficulties involved in its strong electron correla-
tions, there is no established first-principles method capable of
making reliable predictions of the electronic structure of pluto-
nium, even for the ground state of its elemental form, let alone
the complex effects introduced by temperature and chemical
alloying. Hence, an atomistic approach is a practically feasible
microscopic alternative to address these problems. In this
study, we extend the application of the two-state MEAM model
developed for unalloyed δ-Pu in Ref. [22] to the modeling
of δ Pu-Ga alloys. The goal of this study is to present an
atomistic model that reproduces a variety of characteristic ther-
modynamic properties of these alloys in a consistent manner.
The atomistic model developed in this study is conceptually
based on the earlier analyses in terms of the noninteracting
Weiss model [19,20]. We demonstrate how the introduction of
atomic interactions, constructed upon simple mechanisms in
energetics, can give rise to a detailed microscopic description
of the temperature and dilute-alloying effects in this system.

The reminder of this paper is structured as follows. In
Sec. II, the computational methods and some details of the
model potentials are outlined. We then validate in Sec. III
the performance of the present model by computing various
response properties as a function of temperature and gallium
concentration, in close reference to experimental data available
in the literature. We further address the connection of those
properties with the energy-volume relationships, followed by
an investigation of the local structure. Some remarks and dis-
cussion concerning phase stability and physical interpretations
of the present atomistic model are provided in Sec. IV. Finally,
conclusions are given in Sec. V.

II. SIMULATION METHODS

A. Monte Carlo method

While the original Weiss model relies on the ideal Schottky
two-level system, its underlying concept has been adopted to
atomistic modeling with interatomic potentials for the Invar
iron alloys [23,24], manganese alloys [25], and elemental δ-
Pu [22]. In the two-state description, we assume that the atoms
in a certain crystal can exist in two nearly degenerate yet dis-
tinct electronic or magnetic states, hereafter referred to as states
1 and 2 for simplicity. The system in this description is similar
to a binary alloy if we interpret the atoms in each state as having
distinguishable “chemical identity” or “type,” in accord with
the notion of self-intermetallic [26]. In this case however, the
state of each atom can fluctuate under the influence of thermal
agitation, pressure, or chemical alloying. The number of atoms
in each state, N1 and N2, is thereby not held fixed but varies,
while the total number of atoms N is conserved. We wish to
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find the equilibrium volume and fraction of the atoms in each
state at a constant external pressure p and temperature T . It is
pertinent to implement atomistic MC simulations in the semi-
grand ensemble [27,28] at constant p and T , setting the relative
chemical potential between the two states, �μ, to zero [22].

Let us denote by {l} the configuration of states of N

atoms {l1,l2, . . . ,lN } at a configuration of atomic positions
{r} = {r1,r2, . . . ,rN }. Each component of {l} takes on either
state 1 or 2, independently of the spatial configuration {r}.
Suppose now that the ith atom alters its state from li to l′i ( �= li)
at temperature T . We describe this type of thermal excitation
in terms the Schottky statistics by performing a trial move
according to the Metropolis acceptance rule (at �μ = 0)

acc(li → l′i) = min

{
1,

gl′i

gli

exp(−β[U ({l′i}) − U ({li})])
}
, (1)

where β = (kBT )−1 with the Boltzmann constant kB, gl is the
degeneracy factor of state l, {li} indicates the {l} for which the
ith atom is in state li at a given {r}, and U is the potential energy
per cell including the interactions among the atoms in image
cells. The above type of trial moves taking place in the state
space {l} are implemented in conjunction with conventional
trial moves in the coordinate space {r}. The latter moves are in
practice sampled individually in the scaled coordinates {s} =
{s1,s2, . . . ,sN } and the volume scale V of the periodic cell,
where ri = V 1/3si , as though those degrees of freedom are
independent of each other [29].

We further employ the method of parallel temper-
ing [28,30,31] in order to enhance the sampling efficiency.
This method is implemented by simulating M replicas of the
constant-�μpTk ensembles (k = 1–M), each of which differs
in temperature Tk , and including another type of Metropolis
trial move that swaps the configurations belonging to two
replica ensembles at adjacent temperatures. Let us denote by
{k} the configuration ({r},{l}) that originally belongs to the
kth ensemble. The Metropolis acceptance rule for a trial move
exchanging the configurations of the kth and k′th ensembles
(at p = 0 and �μ = 0) is given by

acc(({k},βk),({k′},βk′) → ({k′},βk),({k},βk′))

= min{1, exp{(βk − βk′)[U ({k}) − U ({k′})]}}, (2)

where βk = (kBTk)−1.
Various response functions can be conveniently obtained

from mean-square fluctuations of state variables [32]. The
properties of interest are the isobaric heat capacity Cp,
the coefficient of thermal expansion α, and the isothermal
compressibility κT , all of which are directly comparable with
experimental data. These quantities are first derivatives of the
state variables, and are related to the complete set of second
derivatives of the Gibbs free energy G, such that

−Cp

T
= −

(
∂S

∂T

)
p

= ∂2G

∂T 2
, (3)

V α =
(

∂V

∂T

)
p

= ∂2G

∂T ∂p
, (4)

−V κT =
(

∂V

∂p

)
T

= ∂2G

∂p2
, (5)

where S is the entropy of the system. The above expressions
can be rewritten in terms of the fluctuations in potential energy
and volume, and their joint fluctuations, as

Cp/kB = (3N + 1)/2 + β2〈(U − 〈U 〉)2〉, (6)

〈V 〉α = kBβ2〈(U − 〈U 〉)(V − 〈V 〉)〉, (7)

〈V 〉κT = β〈(V − 〈V 〉)2〉, (8)

at p = 0, where the brackets indicate averages over the
constant-�μpT ensemble. The above formulas furnish an ef-
ficient method for systematic analysis of these thermodynamic
properties on a coherent basis.

B. Details of model potentials

As remarked earlier, accurate calculations of the electronic
structures of actinide materials have been hampered by the
challenge associated with a proper treatment of their strong
electron correlations, which cannot easily be described within
the DFT framework based on the traditional one-electron band-
structure approach. Although several innovative proposals
have been advanced to capture the elusive electronic nature
of plutonium (e.g., Refs. [33,34] and references therein),
such as DFT implemented with onsite-Coulomb corrections or
dynamical mean-field theory, there is as yet no first-principles
method that offers a reliable database of the ground-state
properties of this system. In addition, there has been no
direct observational evidence, as of now, for the existence
of the small-volume state in δ-Pu postulated in our two-state
description. As a result, there is a paucity of first-principles
information and experimental data pertaining to physical
properties which can be utilized to make an unambiguous
determination of the interatomic potentials for each element
and their cross interactions in the present model. Hence, in this
study we opt to determine the free parameters in the model so as
to reproduce known measured thermodynamic properties, such
as volume and thermal expansion, with respect to temperature
and gallium concentration, as described below in detail.

Plutonium is a highly covalent material due to the strong
directionality of the f-electron orbitals, and therefore we
employ the MEAM potential [35] as an interatomic-potential
model to incorporate the angular dependence of electron
densities. The parameters for the MEAM potentials used in
this study are given in Tables I(a) and I(b). For simplicity, the
state 1 and the state 2 of plutonium in the δ phase are henceforth
referred to as “Pu1” and “Pu2,” respectively. The type of
interactions for each parameter is specified by its indices;
Pu1, Pu2, and gallium are represented in each index by 1, 2,
and 3, respectively. The parameters have been modified from
previous works [22,36–40]. Details of the MEAM formalism
are described in the cited literature.

We adopt for Pu1 the MEAM parameters originally pro-
vided in Ref. [36], but with two modifications: t

(3)
1 = 0 and

δ1,1 = 0. The finite value of t
(3)
1 is generally correlated with

the inversion symmetry of a crystal, and its original negative
value (–0.8) was given to destabilize the δ phase over the
monoclinic α phase at low temperatures. Setting t

(3)
1 to zero

ensures that Pu1 is at least metastable in the fcc structure even
at low temperatures, though only weakly because of the small
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TABLE I(a). MEAM parameters suggested in this work. k and k′: indices specifying the type of interaction; Ec: cohesive energy (in eV);
re: equilibrium nearest-neighbor distance (in Å); α: exponential-decay factor for the universal energy function; δ: short-range correction factor;
A: scaling factor for the embedding energy; β (l) (l = 0–3): exponential-decay factor for the atomic densities; t (l) (l = 0–3): weighting factors
for the atomic densities; ρ0: density-scaling factor.

k,k′ Ec
k,k′ re

k,k′ αk,k′ δk,k′ Ak β
(0)
k β

(1)
k β

(2)
k β

(3)
k t

(1)
k t

(2)
k t

(3)
k ρ0

k

Pu1 1,1 3.800 3.281 3.310 0.000 1.05 2.39 1.00 6.00 9.00 1.00 4.14 0.00 1.0
Pu2 2,2 3.680 3.253 3.928 0.000 1.05 2.39 1.00 6.00 9.00 1.00 0.50 0.00 1.0
Ga 3,3 2.897 3.003 4.420 0.097 0.97 4.80 3.10 6.00 0.50 2.72 2.06 −4.00 0.7
Pu1-Pu2 1,2 3.765 3.267 3.465 0.000
Pu1-Ga 1,3 3.499 3.215 4.143 0.300
Pu2-Ga 2,3 3.964 3.187 6.675 0.500

value of its shear elastic constant C ′ (∼5 GPa). In this work,
we do not directly address the relative stability among phases,
but only briefly allude to its relation to the Invar mechanism in
Sec. IV. The null value of t

(3)
1 also eliminates the contribution

from the third-partial electron density. We do not speculate in
this study on its direct association with the f-electron density
(cf. Ref. [41]). Fitted values of elastic constants in the fcc
structure remain intact upon this modification, so that the
Pu1 potential still reproduces the correct elastic anisotropy,
A ≡ C44/C ′ ∼ 6.7 at 0 K, which is in close agreement with
experiment (∼7.1 [42]). The original value of δ1,1 (0.46) in
Ref. [36] was determined from the experimental pressure
derivative of the bulk modulus of the α phase. We do not
adopt this value in the present analysis of the δ phase, as we
are not concerned with the α phase.

In the two-state description of the Invar mechanism, Pu2 is
assumed to be higher in energy by �E but lower in volume
by �V than Pu1 in equilibrium. The magnitude of �E is
comparable to the thermal energy. We adopt the value of �E =
0.12 eV (∼1400 K) from the previous analyses based on the
Weiss model conducted in Refs. [19,20]. In the original Weiss
model, it is only the �E that controls the thermal accessibility
between the two states. In the present atomistic description,
in contrast, the accessibility depends upon the details of the
interatomic potentials.

We determine the value of �V in conformity with a DFT
analysis previously conducted by Sadigh and Wolfer [13],
according to which the plutonium atoms surrounding a gallium
impurity atom in the δ phase undergo a volume reduction due to
electron delocalization. The core idea underlying the present
atomistic model is to identify these plutonium atoms of a
reduced volume with the Pu2 state, in line with the mechanism
conjectured by Lawson et al. [20]. In this way, the crystal
structure of impurity-stabilized δ-Pu can have a structure
similar to that of temperature-stabilized δ-Pu, as hinted by
x-ray diffraction measurements [4]. The Pu2-Pu2 bond length
is made only marginally shorter than the Pu1-Pu1 bond length
by 0.85%, in close agreement with the prediction made in

Ref. [13] (0.7%). This choice results in �V = 0.63 Å
3
. Note

that this value is considerably smaller than the value selected
in the previous study [22], which was taken to be the volume

difference between the δ and α phases (∼4.96 Å
3
). In this

study, we do not assume a direct connection between the Pu2
state and the electronic ground state of α-Pu. Although there
are a number of combinations among free parameters that
would fit the temperature variation of the volume of unalloyed
δ-Pu, we attempt to reproduce the gallium-concentration
dependence of thermodynamic properties in a cooperative
manner with a smaller value of �V than in the previous
study.

Relative stiffness between the Pu1 and Pu2 states is another
parameter that has a major influence on the thermal acces-
sibility between these states. A previous electronic-structure
analysis of δ-Pu within the GGA+U framework [43] has
shown that a state with less localized electrons is generally
characterized by a larger bulk modulus than a state with
localized electrons. In the present model, Pu2 is made stiffer
than Pu1 by approximately 40%, according to the interpreta-
tion of the two electronic states given above. This value of
the relative stiffness was empirically chosen to optimize the
thermal accessibility between the two states for the values
of �E and �V stated above, such that the negative thermal
expansion of unalloyed δ-Pu is correctly reproduced in its
stability range at high temperatures. In addition, we made
Pu2 less elastically anisotropic (A ∼ 2.3) than Pu1 as much
as possible, such that the former is relatively more stable in
the fcc structure than the latter, qualitatively in line with the
discussions in Refs. [14,15]. The other MEAM parameters for
Pu2 that are uncorrelated with the aforementioned properties
are assumed to be identical to those for Pu1.

To obtain the unlike-pair potential between Pu1 and Pu2
atoms, we define the cohesive energy Ec

1,2 of a hypothetical
L12 reference structure of the Pu13Pu2 alloy as

Ec
1,2 = 3Ec

1,1 + Ec
2,2

4
− �1,2, (9)

TABLE I(b). Angular screening parameters for the MEAM potentials. “Pu” stands for either Pu1 or Pu2.

Pu-Pu-Pu Pu-Ga-Pu Pu-Pu-Ga Pu-Ga-Ga Ga-Pu-Ga Ga-Ga-Ga

Cmax 2.8 2.8 2.8 2.8 2.8 2.8
Cmin 2.0 1.4 2.0 1.4 1.4 1.4
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where Ec
1,1 and Ec

2,2 are the cohesive energies of Pu1 and
Pu2, respectively, and �1,2 is the mixing energy between
these two components. Our preliminary study [22] demon-
strated that the onset temperature at which the average Pu2
occupancy becomes substantial depends sensitively on the
balance between the values of �E and �1,2, which in turn
governs the temperature profile of thermodynamic properties.
As described above, the value of �E in this study is adopted
from the previous analysis based on the noninteracting Weiss
model [19,20], and this choice is largely correlated with the
relatively small value of �1,2 (=+5 meV) in the present model.
We note that this small but positive mixing energy appears to
give rise to anomalies in thermodynamic properties at low
temperatures around 200 K, well below the eutectoid point on
the experimental Pu-Ga phase diagram (at 373 K, below which
the δ phase is no longer the equilibrium phase but separates
into the mixture of α-Pu and Pu3Ga [44]). As a simplistic
convention, the lattice parameter of the reference structure is
determined by a geometric mean, and the exponential-decay
factor for the universal binding-energy function is defined by a
composition-weighted average similar to the first term on the
right-hand side of Eq. (9).

The ratio between the degeneracy factors of the Pu1 and
Pu2 states also impacts the thermal accessibility between these
states. Owing to the current lack of detailed information of the
electronic structure of δ-Pu, a nominal value of g1/g2 = 1 is
taken in this study, as in the previous analysis in terms of the
Weiss model [19]. This choice would not be too far off from its
actual value, however. Our simulations indicate that the system
cannot generate a sufficient number of Pu2 atoms to drive the
negative thermal expansion at high temperatures in unalloyed
δ-Pu when g1/g2 is much greater than unity, while it tends
to undergo an undesired, discontinuous isostructural transition
when g1/g2 is much less than unity, being qualitatively similar
to the observation previously made in the analysis of a two-
level interacting model [45].

The parameters for gallium are taken directly from
Ref. [46]. The cross-pair potentials for the Pu1-Ga and Pu2-Ga
interactions are constructed at the L12 reference structures of
the Pu13Ga and Pu23Ga alloys, respectively. The cohesive
energies of these compounds, Ec

1,3 and Ec
2,3, are defined

in a fashion similar to Eq. (9), in terms of the cohesive
energies of individual components and the mixing energies
between these components. We attempt to characterize these
interactions on the basis of the aforementioned mechanism
of Lawson et al. [20] and the GGA analysis of Ref. [13].
This mechanism ensures that, in the fcc structure, gallium
impurities induce electron delocalization in their neighboring
plutonium atoms, so as to transition to the electronic states
of these plutonium atoms from Pu1 to Pu2, so that Pu2-Ga
bonds are energetically preferred to Pu1-Ga bonds. Gallium
atoms are subsidiarily assumed to be immiscible in the Pu1
fcc crystal, so that the Pu13Ga compound is neither stable in
the L12 reference structure nor in solid solution. The values
of re

1,3, �1,3, and α1,3 are determined from the atomic volume,
formation energy, and bulk modulus of the random fcc-solid
solution of the same composition (25 at.% gallium) obtained
from the density-functional calculations in Ref. [47]. The
value of δ1,3 is found to have only a minor effect on thermal
expansion of dilute-gallium alloys in the present model. Hence

we maintain its original value for the Pu-Ga interaction from
Ref. [37].

Experimentally the Pu3Ga alloy forms a stable L12 com-
pound [4]. For simplicity, we neglect the subtlety associated
with the tetragonal distortion of this compound in its low-
temperature phase. Given that the plutonium atoms always
have gallium first-nearest neighbors in this structure, the plu-
tonium atoms in this compound are considered to all be in the
Pu2 state at 0 K, according to the mechanism mentioned above.
Hence, we adopt for the Pu2-Ga interaction in the present
model the parameters for the Pu-Ga interaction previously
given in Ref. [37] which were fitted to the experimental data
of the L12 Pu3Ga compound. In response to Ec

2,2 being smaller
than Ec

1,1, the latter of which was originally viewed in Ref. [37]
as the cohesive energy of plutonium in the stable L12 Pu3Ga
compound, the value of α2,3 in the present model is marginally
modified so as to reproduce the same bulk modulus as that in
the reference. The value of δ2,3 has been slightly increased from
the original value from Ref. [37], such that the experimental
thermal expansion of the 2 at.%–gallium alloy is reproduced.
We confirmed that the L12 phase of the Pu23Ga alloy is stable
up to 800–900 K, above which the long-range order disappears,
while the short-range order remains relatively high.

In defining the average electron density from the partial
electron densities [35], the square-root functional form is
adopted for all types of interactions. Pair potentials and
electron densities are smoothly truncated by the angular
screening procedure to limit the range of interactions [48].
The angular screening parameters are taken from Ref. [37]
and are shown in Table I(b). We assume that the Pu1 and Pu2
atoms do not differ in their angular screening behavior. The
cutoff radius and the cutoff region are taken to be 5.0 Å and
0.5 Å, respectively.

At this point, we wish to highlight two important features
of the model energetics described above. First, in the fcc
structure, the Pu2 state is energetically higher but lower
in volume in equilibrium than the Pu1 state. The energy
separation between these states is within the thermal energy
range. Second, the Pu2-Ga bond is substantially stronger,
shorter, and stiffer than the Pu1-Ga bond, conforming with
the EXAFS analyses provided in Refs. [9,10]. The former is
responsible for the anomalous effects of the thermal properties
of δ-Pu, and the latter plays an essential role in the drastic
change of these properties in response to dilute-gallium
alloying, as will be discussed in detail in Sec. III.

C. Computational details

We demonstrate the performance of the atomistic model
described above by computing various equilibrium properties
as a function of temperature. Classical MC simulations are
conducted in parallel using M = 64 replicas of a semigrand
ensemble all with �μ = 0 and p = 0. Each of replica differs
in temperature, ranging from Tmin =250 K to Tmax =1000 K.
Temperature Tk at the kth replica (1 < k � M) is determined
according to a geometric progression defined by

Tk = (Tmin/Tmax)(1−k)/(M−1)Tmin, (10)

in order to optimize the acceptance ratios for parallel tempering
at all temperatures [49]. A periodic cell containing N = 500
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atoms is simulated at each temperature under the dynamic
boundary conditions. All simulation cells initially are a perfect
fcc crystal with the lattice parameter of experimental δ-Pu, and
all the plutonium atoms are in the Pu1 state. The variation of
dilute-alloying effects is examined for four values of gallium
concentration: 0, 2, 4, and 6 at.%.

The sampling strategy taken in this study is similar to that
in Refs. [22,50]. Within each replica ensemble, the following
four types of configuration changes are made: (i) a random
displacement in the scaled coordinates of an arbitrarily selected
atom, (ii) a random change in the volume scale of the periodic
cell, (iii) an identity switch between the Pu1 and Pu2 states
for a randomly selected plutonium atom, and (iv) an exchange
in position between gallium and either Pu1 or Pu2 atoms in
cases for which the gallium concentration is finite. The last
type of move is essential to account for the mixing entropy
associated with the interdiffusion process in the Pu-Ga alloys.
One of the above four types of trials is randomly attempted at
each MC move according to certain probability ratios, which
are empirically selected to optimize the convergence rate. The
choice of the ratios affects the speed of convergence, but the
results are independent of the particular choices, provided that
simulations are sufficiently converged.

In addition, we perform parallel tempering with a fixed
schedule of every 100 moves, where atomic configurations are
exchanged between adjacent replicas at both lower and higher
temperatures in succession [51]. Uncorrelated sequences of
random numbers are generated simultaneously at these replica
ensembles by utilizing the scalable parallel random number
generator [52]. We note that in the present MC scheme,
parallel tempering is a vital sampling technique at low or
moderate temperatures, since the acceptance rates for the last
two kinds of the aforementioned trial moves are considerably
low because of insignificant lattice vibrations.

Statistical averages are obtained with the block averaging
method, where each block consists of a half million trial
moves. Data were collected from 100 blocks following the
discarding of the first few blocks. Quoted statistical errors
in the figures presented below indicate one standard deviation,
but the error bars are smaller than the symbol size of the data in
most cases.

III. SIMULATION RESULTS

A. Relative occupation of Pu2 state

Figure 1 shows the temperature dependence of the relative
occupation of Pu2 atoms, N2/N , for the four selected gallium
concentrations. Here, N = N1 + N2 + N3, and the number of
gallium atoms N3 is fixed for a given gallium concentration.
The temperature profile of the Pu2 occupancy is similar
to that obtained from the simple Schottky statistics in the
Weiss model, but the curves calculated from the present
model exhibit more complicated dependencies on the details
of the interatomic potentials which are absent in the Weiss
model [22]. For bulk unalloyed δ-Pu, virtually all plutonium
atoms remain in the Pu1 state at low temperatures, while they
can be excited to the Pu2 state only by thermal agitation (at
zero external pressure). The Pu2 atoms come into the system
even at 0 K in the presence of gallium impurity atoms, each
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FIG. 1. (Color online) Calculated temperature dependence of the
relative occupation of Pu2 atoms for varying gallium concentration.

of which energetically promotes the states of its neighboring
plutonium atoms from Pu1 to Pu2.

A particular significance in this setting lies in the fact that
the gallium atoms tend to share neighboring Pu2 atoms with
other gallium atoms, forming a domain consisting of Pu2 and
gallium atoms, which is separated from the other domain of
Pu1 atoms in the simulation cell. As a result, the Pu2 occupancy
for a given gallium concentration at low temperatures is about
a half or less than what is expected from naively conceiving
that the gallium atoms, surrounded by twelve first-nearest
neighbor Pu2 atoms, are well isolated from each other. As
will be discussed in Sec. III F in more detail (and as was
previously suggested, in essence, in Ref. [40]), the presence
of short-range order in the gallium local structure is closely
related to the nanoscale heterogeneity in the δ phase observed
in EXAFS experiments [11].

The temperature variation of the Pu2 occupancies for finite
gallium concentrations resembles that for zero gallium concen-
tration, because the Pu2 atoms arise in the Pu1 domain at finite
temperature in a similar fashion to the case of unalloyed δ-Pu.
A curve for greater gallium concentration, however, shows
progressively weaker temperature dependence, as the Pu1
domain is smaller in the system. As will become increasingly
evident below, the profile of the Pu2 occupancy observed above
is the key to understanding the characteristic variation of the
thermodynamic properties of the Pu-Ga alloys with respect to
temperature and gallium concentration.

B. Heat capacity

Shown in Fig. 2 is the calculated isobaric heat capacity
Cp per atom (scaled by kB, thus dimensionless) plotted as
a function of temperature for the four gallium concentrations.
The experimental data measured with adiabatic calorimetry for
unalloyed δ-Pu from Ref. [53] and for 3.3 at.% gallium from
Ref. [54] are also included in the figure for reference. We note
that there also exist previous high-temperature heat capacity
data measured with adiabatic calorimetry [55] as well as data
obtained indirectly from enthalpy measurements using drop
calorimetry [56,57]. These data do not appear to agree well
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FIG. 2. (Color online) Calculated temperature dependence of the
heat capacity per atom, scaled with the Boltzmann constant, for vary-
ing gallium concentration. The experimental data from Refs. [53,54]
for unalloyed δ-Pu and 3.3 at.%–gallium alloys, respectively, are also
included for reference.

with those from Refs. [53,54], the latter of which considered
more reliable. Figure 2 also includes the heat capacity data
in the case of 0 at.% gallium calculated with a conventional
simulation with only Pu1 atoms, i.e., without the two-state
mechanism (labeled as “1-state model” in the figure). The
same data obtained from a simulation with the two-state
mechanism exhibit a marked increment amounting to 1.19NkB

at its peak. This heat capacity increment manifests the excess
entropy contribution from the thermal excitation between the
two states, similarly to the Schottky anomaly in the Weiss
model. The magnitude of the heat capacity increment obtained
from the present model is comparable to the value estimated
from experiment for pure δ-Pu in Ref. [53] [∼(1.18–1.30)R at
600–700 K, where R is the gas constant].

In the original Weiss model, the temperature variation of the
excess heat capacity is directly related to the occupancy of the
higher energy state, and the temperature at which a Schottky
peak arises depends solely on the magnitude of �E for a
given value of the degeneracy ratio. The peak in the Weiss
model occurs around the inflection point in the occupation
number, which is approximately 0.4 times �E/kB in the case
of g1 = g2 [58]. The heat capacity data obtained from the
present model also indicate close correlation with the relative
Pu2 occupation data in Fig. 1, but the position of the anomalous
peak depends on the details of the interatomic potentials, and it
is located at a much higher temperature in this parametrization
than what is predicted by the Weiss model.

The calculated heat capacity data in Fig. 2 show an
increasing trend with growing gallium content. Considering
that it is the thermal excitation between the two plutonium
states that generates excess entropy, one might well anticipate
that a system with lower gallium concentration, which includes
more Pu1 atoms at low temperatures, would yield a higher heat
capacity peak. It is important to note however that in the present
model, the above effect is overridden by the contribution from
the mixing entropy associated with the interdiffusion between
gallium and plutonium, which is enhanced with increasing

gallium concentration. We indeed observed that simulations
performed with fixed positions of gallium atoms display
a reverse trend, i.e., a decreasing heat capacity peak with
increasing gallium concentration. The balance between these
opposing effects is rather subtle, however, and the heat capacity
profile also depends sensitively on fine details of the atomic
interactions. Given the scatter of the data available in the scarce
experimental literature, it is difficult to establish a definitive
trend regarding gallium concentration, but the calculated heat
capacity data are qualitatively consistent with the adiabatic
calorimetry measurements in Refs. [53,54].

There are at least two apparent reasons for the calculated
heat capacity being lower than the experimental data at all
temperatures. First, the temperature profile of the heat capacity
data obtained from the original MEAM potential for plutonium
adopted from Ref. [36] (i.e., the Pu1 state in the present model)
shows a mildly concave downward curve (as seen in the data
referred to as “1-state model”), leading to substantial reduction
from the classical value, ∼3NkB. This effect results in the
overall reduction of the calculated heat capacity, rendering it
lower than experimental data at all temperatures, even when
it is incremented by the Invar contribution. Such an effect
of reduction in the heat capacity however is not an intrinsic
nature of the MEAM potential but most likely is a mere artifact
in this particular parametrization of the potential. Second,
although the present model accounts for the contribution of the
mixing between the two electronic states, none of these states
described by the MEAM potential incorporates any effect of
electronic thermal excitation, just like any other conventional
interatomic-potential model. Experimentally the electronic
contribution to the heat capacity was found to be substantial
in δ-Pu already at cryogenic temperature [59,60]. Classical
simulations are incapable of capturing these electronic effects.

C. Atomic volume and thermal expansion

The temperature dependence of the calculated atomic
volume Va and the linear coefficient of thermal expansion α/3
are respectively shown in Figs. 3 and 4 for the four gallium
concentrations. The calculated data of atomic volume are
directly compared with neutron diffraction data from Ref. [19]
for the same gallium concentrations [61]. These experimental
volume data are too sparse to allow us to directly evaluate
the experimental thermal expansion coefficient. Instead, for
the purpose of reference, we include in Fig. 4 the thermal
expansion data obtained by differentiating the fit to the
experimental-volume data that is made by means of the
Weiss model. (It should be borne in mind that, due to the
sparse data points for the experimental volume, the details
of these curves are sensitive to the model, and so subject to
relatively high uncertainty. Thus, the comparisons are only
meant to be qualitative.) The present model reproduces the
variation in the atomic volume with respect to both temperature
and gallium concentration observed in experiments. Figure 3
shows that the calculated atomic volume undergoes excessive
reductions at low temperatures upon gallium addition in
close agreement with the experimental data. At the same
time, the calculated thermal expansion coefficient displays a
gradual shift from negative to positive values with increasing
gallium content similarly to the reference data (Fig. 4). The
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FIG. 3. (Color online) Calculated temperature dependence of the
atomic volume for varying gallium concentration. The experimental
data from Ref. [19] are also included for comparison.

transition from negative to positive values in the calculated
thermal expansion coefficient takes place between 2 and
4 at.%, in accordance with the reference curves as well as the
experimental observation made in Ref. [62] (at approximately
3 at.% gallium around 600 K). Notice that each of these effects
occurs in concert with the significant gain in the number of Pu2
atoms at low temperatures and its gradual saturation at high
temperatures with increasing gallium concentration, indicated
in Fig. 1.

The calculated atomic volume data appear to be rather
higher than the experimental data at low temperatures. One
plausible explanation for the apparent discrepancy could be
based upon the two-state mechanism. The calculated data
from the present MC simulations represent the equilibrium
at all temperatures, provided that the simulations are well
converged. The periodic cell used in these simulations is
not sufficiently large to account for phase decomposition,
but the system is constrained to simulate the δ phase at
low temperatures. The experimental measurements below the
eutectoid temperature of 373 K, on the other hand, must have
been made on metastable samples of δ Pu-Ga alloys, quenched
from a certain higher temperature at which the δ phase is the
most stable state. Below the eutectoid point, these quenched
samples should contain greater amounts of Pu2 atoms with
lower short-range order than the calculated data shown in
Fig. 1; hence the volumes of these samples must necessarily
be smaller than the calculated data.

D. Bulk modulus

It is the isothermal compressibility κT that is directly
obtained from isobaric-isothermal simulations using Eq. (8),
but in order to enable comparisons with available experimental
data, we compute the adiabatic bulk modulus BS through the
thermodynamic relation: 1/BS = 1/BT − α2V T/Cp, where
BT is the inverse of κT or the isothermal bulk modulus.
The calculated BS is shown in Fig. 5 as a function of
temperature for the four gallium concentrations. For reference,
the figure also includes the ultrasonic data for 3.3 at.% gallium
of a single crystal at ambient temperature [42] and of a
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FIG. 4. (Color online) Calculated temperature dependence of the
linear coefficient of thermal expansion for varying gallium con-
centration. The curves obtained by differentiating the fit to the
experimental volume data using the Weiss model are also included
for reference. Note that these reference curves are subject to relatively
high uncertainty due to the sparse data points for the experimental
volume.

polycrystal at high temperatures [63]. It should be noted that
the bulk modulus of the original MEAM potential in Ref. [36]
adopted as the Pu1 state in the present model is fitted at 0 K
to reproduce the room-temperature bulk modulus data for a
dilute-gallium alloy [42].

The present model predicts growing stiffness with increas-
ing gallium concentration, being consistent with the GGA
predictions made in Ref. [64], as well as the trend of the
liquidus curve on the Pu-Ga phase diagram. The relative
increase in bulk modulus with respect to unalloyed δ-Pu, 1.07,
1.20, and 1.31 for 2, 4, and 6 at.% gallium, respectively, all at
300 K, is close to the same data from the aforementioned
GGA predictions, 1.04, 1.09, and 1.15, at 0 K. It is also
comparable with the experimental data for the polycrystalline
samples provided in Ref. [65], which indicate a 13% increase
at 300 K for the gallium concentration around 6 at.%. We
also note that the resonant ultrasound spectroscopy data for
the gallium concentrations of 2.36–4.64 at.% measured near
room temperature [64,66] lie more or less between the data
for 2 and 4 at.% gallium obtained from the present model.
The progressive increase of the bulk modulus upon gallium
addition predicted from our model appears inconsistent with
the irregular gallium concentration dependence reported in
Ref. [64]. It should be noted, however, that at least the sample
with 2.36 at.% gallium used in their measurements does
not seem to have a single-phase δ structure around ambient
temperature due to the weak stability of the δ phase at such a
low gallium concentration at that temperature [66].

The model predicts the rate of thermal softening to be
nearly independent of gallium concentration, which is also
in accordance with experimental observations [63,64,66,67].
The observed gallium-concentration independence of the rate
of thermal softening is somewhat nontrivial. It may seem that
a system with a higher gallium concentration should generate
weaker thermal softening, since the excess softening is induced
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FIG. 5. (Color online) Calculated temperature dependence of the
adiabatic bulk modulus for varying gallium concentration. The ex-
perimental data for monocrystalline [42] and for polycrystalline [63]
3.3 at.%–gallium alloys are also included for reference.

by the thermal excitation between the two plutonium states.
However, the slope of the bulk moduli was found to strike a
subtle balance between the decrease in Invar entropy and the
increase in the mixing entropy with respect to gallium addition.
The calculated temperature slope of the bulk modulus, on the
other hand, is less steep than the experimental data from the
references quoted above, near or below ambient temperature.
Essentially the same argument for the disagreement in low-
temperature volume in the foregoing discussion would apply to
the cause of the discrepancy in stiffness. The quenched δ-phase
samples below the eutectoid temperature should contain more
Pu2 atoms, which form stiffer bonds with gallium atoms than
Pu1 atoms do; thus the bulk moduli measured for these samples
would be larger than the calculated data.

E. Change in the energy-volume relationship
with gallium concentration and its connection

with thermodynamic properties

It is illuminating to reinterpret the simulation results
described above in the light of the energy-volume rela-
tionship of the system. Shown in Fig. 6 is the variation
of the binding energy curves of the Pu1 and Pu2 states
with gallium concentration. In calculating these energies,
the distribution of the gallium atoms is determined from
the lowest-temperature configuration obtained from an MC
simulation individually performed for the Pu1-Ga or Pu2-Ga
system at each concentration. The volume of the periodic
cell is isotropically varied while maintaining a perfect fcc
lattice. The gallium distribution and relaxation effect were
both found to have virtually no effect on the appearance of
Fig. 6, however. The energy-volume relationship in pure δ-Pu
is indicative of the Invar behavior, where the energetically
higher-lying Pu2 state is lower in volume in equilibrium
than the Pu1 state. As gallium is added, the Pu1 state is
elevated in energy while the Pu2 state is lowered, reflecting
the difference between the Pu1-Ga and Pu2-Ga interactions.
As a consequence, a reversal in the relative stability between
the two plutonium states takes place at about 5 at.% gallium

3.8

3.7

3.6

3.5

3.4

3.3

3.2

3.1

3.0

15.0 20.0 25.0 30.0 35.0 40.0 45.0

B
in

di
ng

 e
ne

rg
y 

(e
V

/a
to

m
)

Va (Å3)

Pu1 0 at.% Ga
Pu1 2 at.% Ga
Pu1 4 at.% Ga
Pu1 6 at.% Ga

Pu2 0 at.% Ga
Pu2 2 at.% Ga
Pu2 4 at.% Ga
Pu2 6 at.% Ga

FIG. 6. (Color online) Binding energies of the Pu1-Ga and Pu2-
Ga systems plotted as a function of atomic volume for varying gallium
concentration.

in the present model. Above this gallium concentration, the
system displays an energy-volume relationship characteristic
of anti-Invar systems, in which the Pu2 state is energetically
lower than the Pu1 state in equilibrium. This transition from
Invar to anti-Invar upon alloying is analogous to the iron-based
Invar alloys [23,58,68,69]. (But in the opposite sense. For
instance, introduction of nickel into γ -Fe promotes a transition
from anti-Invar to Invar.) The above discussion is based on
the binding energy per atom without taking into account
the interactions between Pu1 and Pu2 atoms, but the actual
relative composition between the Pu1 and Pu2 states and their
distribution at a given gallium concentration are determined
such that the total energy of the system is minimized. With the
addition of gallium, which favors forming short and stiff bonds
with Pu2 atoms, the system accommodates a greater number
of the Pu2 atoms. Accordingly, the equilibrium volume of the
total energy shifts toward a smaller value, and the bulk modulus
becomes higher.

In understanding the characteristic temperature behavior
of the system and its sensitivity to dilute-gallium alloying,
it is useful to take a closer look at the fluctuation formulas,
Eqs. (6)–(8), in view of the change of the energy-volume
relationship with respect to gallium concentration shown in
Fig. 6. Let us first see how strong thermal softening can be
compatible with negative thermal expansion in the case of
unalloyed δ-Pu. Cp and κT are respectively expressed in terms
of the variances of energy and volume, while α is related to the
covariance of those variables. At low temperatures, for which
the plutonium atoms predominantly occupy the Pu1 state, both
of the deviations in energy and volume from their average
values, U − 〈U 〉 and V − 〈V 〉, respectively, are negative, so
that the three quantities, Cp, α, and κT , are all positive, owing to
the asymmetry of the binding-energy curve with respect to the
equilibrium volume. The thermal softening is accompanied by
positive thermal expansion in this case, as in ordinary metals.
Recall now that, in unalloyed δ-Pu, the Pu2 state lies higher
in energy but lower in equilibrium volume than the Pu1 state,
as shown in Fig. 6. At intermediate temperatures, the average
volume can gradually shift toward a smaller value, as the Pu2
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state becomes thermally populated. When a sufficient number
of the plutonium atoms begin to occupy the Pu2 state, V − 〈V 〉
can become increasingly positive. Consequently, α can be
progressively driven to a negative value if the above volume
contraction effect outweighs the usual volume expansion due
to lattice anharmonicity. At the same time, U − 〈U 〉 remains
negative but its magnitude can grow significantly as a greater
number of microstates becomes accessible to the system.
Both Cp and κT experience a marked increase at elevated
temperature, giving rise to the Schottky-like peak and the
strong thermal softening, respectively. The Pu2 occupancy
is saturated at higher temperatures for which the substantial
lattice anharmonicity leads to an increase in the average
volume, so that α recovers a positive value.

When the system is doped with a few at.% gallium
(2–4 at.%), an appreciable fraction of the plutonium atoms
is energetically promoted to the Pu2 state at low temperatures.
In this case, the energies of the two plutonium states come
closer to each other, as illustrated in Fig. 6. The fluctuation in
the total energy, or Cp, accordingly becomes smaller than in
the case of unalloyed δ-Pu at the temperatures for which the
thermal excitation between the two states takes place. (Yet the
above effect can be overridden by the enhanced contribution
from the mixing entropy, so that the overall heat capacity
undergoes an increase with gallium addition, as discussed in
Sec. III B.) Although the energy-volume relationship at these
gallium concentrations indicates that the thermal excitation
between the two states still acts to suppress the average volume,
the positive expansion due to lattice anharmonicity begins to
counteract the volume contraction effect with a significant
weight by driving V − 〈V 〉 from positive to negative (thus
α from negative to positive). Upon further alloying (above
6 at.%), a considerable fraction of the plutonium atoms
occupies the Pu2 state at low temperatures. The Pu2 state with
a small equilibrium volume lies lower in energy than the Pu1
state in this case (Fig. 6). The thermal excitation between these
two states now shifts V − 〈V 〉 toward an increasingly negative
value, which in turn enhances positive volume expansion in
tandem with lattice anharmonicity.

F. Local structure

We investigate the local atomic structure by computing
partial radial-distribution functions for each type of elemental
pair. Shown in Fig. 7 are the data for 4 at.% gallium calculated
at 300 K and 700 K, as examples. These data display peaks at
the positions whose ratios are characteristic of the fcc lattice at
all temperatures examined in this study. The data obtained at
300 K are shown in Figs. 7(a) and 7(b) for the like and unlike
pairs, respectively. These data indicate the presence of an
L12-like short-range order in the domain composed of the Pu2
and gallium atoms (gallium-rich domain), which is segregated
from the other domain of the Pu1 atoms (gallium-depleted
domain). The Ga-Ga pair distribution shows a vanishingly
low peak at the first-nearest neighbor distance and a relatively
low peak at the third-nearest neighbor distance, along with
an eminently high peak at the second- and fourth-nearest
neighbor distances. In contrast, the Pu2-Ga pair distribution
shows virtually no peak at the second- and fourth-nearest
neighbor distances, while it shows a relatively high peak at

the first-nearest neighbor distance and a rather high peak at
the third-nearest neighbor distance. It should be noted that
the profile of the first-nearest neighbor peak of the Pu2-Ga
pair as well as that of the Pu1-Pu2 pair would be highly
subject to the fraction of the interfaces of the two types
of domains mentioned above. These domains are almost
completely separated in the small periodic cell used in this
study, but the actual morphology of these domains depends
largely on the microstructure, which we can only address by
the use of a sufficiently large periodic cell. The peaks of the
Pu1-Ga pair distribution are rather low at short distances in
the calculated data, but they are also dependent on the confor-
mation of the two domains. Greater broadening of the peaks
is generally observed at long distances, reflecting the ap-
preciable departure from the perfect fcc lattice mainly due
to the variation in the bond lengths associated with distinct
elemental pairs. We found that a system with a higher gallium
concentration exhibits greater lattice disorder in qualitative
agreement with EXAFS observations [6,7].

The same data calculated at 700 K are shown in Figs. 7(c)
and 7(d). The data peaks are in general wider and shallower
than their counterparts at 300 K because of larger atomic
vibrations. The position of each peak, however, shows little
change from that at 300 K, particularly at short distances. The
characteristics of the L12-like short-range order observed at
low temperatures are much less pronounced, on account of a
larger mixing entropy as well as a higher Pu2 occupancy at this
temperature. The Ga-Ga pair distribution exhibits relatively
high peaks at short distances, indicating that the gallium atoms
are still fairly well clustering even at this temperature.

The Pu2-Ga bond length computed at 300 K is about
3.22 Å [for 4 at.% gallium; Fig. 7(b)], which is shorter than the
Pu1-Pu1 bond by about 1.9%. The Pu2-Ga bond is larger than
the Pu-Ga bond measured in EXAFS for similar dilute gallium
concentrations, indicating contractions by 3%–4% [5,6,9].
The discordance can be attributed to the discrepancy in the
atomic volumes below the eutectoid temperature, discussed
in Sec. III C. Alternatively, it can be related to the fact that
the Pu2-Ga bond length in the present model was fitted to the
experimental Pu-Ga bond length in the L12 Pu3Ga compound
at room temperature, 3.187 Å [4], as described in Sec. II B.
It would be reasonable to envisage that the short-range order
observed in our simulations at dilute gallium concentrations is
connected to the L12 long-range order in the Pu3Ga reference
alloy. Given that a system with a high gallium concentration
has a propensity for anti-Invar behavior, it is expected that
the reference alloy would have significantly large, positive
thermal expansion. If the Pu2-Ga bond length had been fitted
to the low-temperature EXAFS data of the Pu-Ga bond length
in dilute alloys, it could have provided a superior description
of the local structure of δ Pu-Ga alloys over a broader range
of concentrations.

The calculated Pu2-Pu2 bond length is about 3.23 Å at
300 K [Fig. 7(a)]. This value also indicates inward contraction
from its fitted value at 0 K, 3.253 Å, because of the tendency
of the gallium atoms to form cuboctahedra with their twelve
nearest-neighbor Pu2 atoms. Note that, at finite temperature,
there are some Pu2 atoms not participating in the formation
of the cuboctahedra but which are there merely because
of thermal agitation, so that the average Pu2-Pu2 bond is
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FIG. 7. (Color online) Calculated partial radial-distribution functions for 4 at.% gallium. (a) Like-pair distributions at 300 K. (b) Unlike-pair
distributions at 300 K. (c) Like-pair distributions at 700 K. (d) Unlike-pair distributions at 700 K.

slightly longer than Pu2-Ga bonds at the same temperature.
We indeed observed that the mismatch between the average
Pu2-Ga and Pu2-Pu2 bond distances is more pronounced at
higher temperatures. The Pu1-Pu1 bond length, about 3.27 Å
at 300 K, also reduced from its fitted value at 0 K, 3.281 Å,
induced by the overall volume contraction at the finite gallium
concentration. All bonds are found to show inward contraction
in the proximity of gallium atoms, but the effect is insignificant
beyond first-nearest neighbor shells, where the contraction
becomes less than 1%. The model predicts that, while the local
structure is essentially independent of gallium concentration,
each bond undergoes weak but progressive contraction with
increasing gallium content, in qualitative agreement with a
recent EXAFS study [8].

Experimentally, the gallium-replete domains are not found
to be L12 Pu3Ga [11]. But one may observe that these
experiments were conducted at the temperatures below the
eutectoid point, below which the δ phase is not the lowest free-
energy state. Thus the samples used in these measurements
should be in some metastable states quenched from a certain
high temperature, thus hindering detailed comparison with the
above simulation results.

IV. REMARKS AND DISCUSSION

The presence of the Invar effect in the δ phase seems to
suggest an important implication for the stability mechanism of
this phase, which is a matter of great interest in practice. Given
the appreciable difference between the Debye temperatures of
the α and δ phases [26], it is not clear whether or not the Invar
effect plays a decisive role in the qualitative appearance of
the δ phase at finite temperature. Yet, the Invar entropy in the
δ phase, along with the mixing entropy, should contribute to
the lowering of the free energy of this phase with respect to
competing phases, and to have a nonnegligible influence on
the occurrence of the eutectoid reaction at the relatively low
temperature indicated on the phase diagram.

The entropy associated with the transformation from
the δ to α′ phases is found to be considerably large
(1.3–1.4 kB/atom [59,70–72]). The authors of Refs. [71,72]
demonstrated that the vibrational contribution accounts for
only about a quarter or less of the total transformation
entropy, while the contributions for a major portion of the
entropy remain unexplained. It was further pointed out that
the Invar entropy estimated by means of the Weiss model
for δ-Pu of Ref. [20] would necessarily give rise to less than
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0.1 kB/atom [72]; hence it does not account for the large
entropy. This indeed turns out to be the case for the present
interacting atomistic model, which is likely because this
particular parametrization for the cross-interaction between
Pu1 and Pu2 was developed to be qualitatively similar to
the noninteracting Weiss model of Ref. [20], as described in
Sec. II B. However, a different choice of interaction parameters
or the inclusion of additional participating states (which may
involve large magnetic moments) could conceivably generate
an entropic contribution much larger than that obtained from
the present model.

The analysis given in this study is based on the use of
a relatively small periodic cell, and is focused on the local
atomic environment within the bulk fcc structure. Although
some types of the trial moves (such as exchanges between the
positions of different elements as well as parallel tempering)
exploited in the present MC simulations are convenient to
circumvent the sampling difficulty attendant on high interface
free energies, the use of such a small supercell does not
accommodate long-range relaxations, and is incapable of
addressing the microstructural aspects relevant to phase
transformations. Detailed analysis of relative phase stability
by way of an atomistic model requires simulations with a
sufficiently large periodic cell, in addition to explicit free
energy computations [16,17,37,73]. Investigation of these
issues goes beyond the scope of this paper and is left to future
work.

The relationship between the present two-state model and
an electronic-level understanding is unclear, in part due to the
ongoing attempts to provide a consistent electronic-structure
description of this system. One possible interpretation is to
think of the two binding-energy curves in the present model
as the total energies of the 5f 6 and 5f 5 configurations.
Correspondingly, we interpret the plutonium atoms in the
Pu1 and Pu2 states, respectively, as Pu2+ and Pu3+ ions,
being distinct species. The relative stability between these
configurations may be sensitive to dilute alloying with gallium,
as discussed in Sec. III E. In the dynamical mean-field theory
picture, the ground state of δ-Pu dynamically fluctuates
between these two configurations, leading to Kondo screening
of the magnetic moment, up to a characteristic temperature of
the order of 800 K [74]. This mixed-valance nature has recently
been supported by resonant x-ray emission spectroscopy and
x-ray absorption near-edge structure spectroscopy experi-
ments [75]. The relative time the electron spends in one of these
configurations determines the intermediate valence, resulting
in a noninteger value for the average f -electron occupancy
(∼5.2–5.3) [76]. In the classical description suggested in the
present study, in contrast, the transition between these two
atomic-valence states is thermally induced according to the
Schottky statistics. Clearly, such a classical view in terms of
the static valence states is not equivalent to the aforementioned
quantum-mechanical description. Note, however, that if the
valence fluctuation reaches a high-temperature regime, then
it would couple to the vibrational modes, thereby giving
rise to nontrivial thermal properties including anomalous
thermal expansion. Such an effect has been observed in some
rare-earth compounds [77,78]. It would not be absolutely
unreasonable to envision that the long-time average properties
obtained from an effective classical model describing the

dynamics of the valence fluctuations would be addressed by
the equilibrium properties obtained from a stochastic classical
model, presumably with the Schottky statistics, at least at high
temperatures.

Another interpretation would be to view the binding-energy
curve for the Pu1 state as an effective representation of the
energy-volume relationship of the electronic ground state
of δ-Pu, perhaps characterized in its entirety by a mixed
valence. Then the binding curve for the Pu2 state defines
the energy-volume relationship of an electronic excited state,
most likely with a valence or magnetic state distinct from
that of the ground state. The energy separation between
those states that is comparable with the thermal energy
may be associated with some combination of the effective
band-splitting that occurs due to spin-orbit coupling and the
crystal field. In this case, and as before, we may envisage that
the high-temperature equilibrium properties of the system can
be well approximated by the classical model proposed in this
study.

V. CONCLUSIONS

We have developed an atomistic model that captures a range
of anomalous features of the δ phase of the Pu-Ga alloys in
a coherent manner. The model is structured on the following
two fundamental mechanisms:

(1) The plutonium atoms in the fcc structure are character-
ized by two distinct electronic states, Pu1 and Pu2. The Pu2
state lies higher in energy but lower in volume in equilibrium
than the Pu1 state. The energy separation between these two
states is comparable with the thermal energy, such that they
are thermally accessible to one another.

(2) The plutonium atoms in the Pu2 state form energeti-
cally more stable, shorter, and stiffer bonds with gallium than
those in the Pu1 state do.

The first mechanism ensures that unalloyed δ-Pu is an Invar
system. Addition of gallium impurities leads to a reversal in
the relative stability between the Pu1 and Pu2 states at a dilute
concentration on account of the second mechanism, so that the
system undergoes a transition toward anti-Invar behavior.

In summary, the model accounts for the following experi-
mental observations:

(a) Negative thermal expansion and strong thermal soften-
ing in unalloyed δ-Pu are naturally reconciled. Owing to the
first mechanism, the average volume becomes suppressed as
a growing fraction of the small Pu2 state becomes populated
with increasing temperature. Negative thermal expansion takes
place when this volume contraction effect outweighs the usual
lattice anharmonicity. The same effect of volume contraction
concomitantly gives rise to pronounced thermal softening,
which would have been incompatible with negative thermal
expansion if the Invar mechanism were absent.

(b) The model provides a consistent description of both
excessive volume reduction and a rapid change in thermal
expansion upon dilute-gallium alloying. Presence of gallium
impurities induces substantial gains at low temperatures in
the number of Pu2 atoms, which form short bonds with the
gallium atoms according to the second mechanism. The same
mechanism results in an overall depletion of Pu1 atoms, which
in turn suppresses the thermal contraction effect due to the
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presence of two plutonium states in the first mechanism. The
thermal-expansion coefficient thereby shifts toward a positive
value as gallium concentration is raised. The reproduction
of the temperature dependence of the atomic volume is
excellent for all the gallium concentrations examined in this
study.

(c) The predicted bulk modulus exhibits progressive over-
all stiffening with increasing gallium concentration, in accor-
dance with a recent GGA prediction. This effect is linked
to the growing number of stiff Pu2-Pu2 and Pu2-Ga bonds
with increasing gallium concentration as a consequence of
the second mechanism. The calculated temperature variation
of the bulk modulus is, in contrast, nearly concentration
independent as observed in resonant ultrasound spectroscopy
experiments. This independence is the outcome of a subtle
balance between the diminished contribution from the Invar
effect and the enhanced contribution from interdiffusion with
respect to gallium concentration.

(d) The model offers a cogent explanation for the nanoscale
heterogeneity observed in dilute-gallium alloys from EXAFS
experiments. Gallium impurity atoms exhibit a propensity
to form cuboctahedra with their twelve Pu2 neighbors by
virtue of the second mechanism, inducing inward contraction
in their vicinity. At sufficiently low temperatures, these
cuboctahedra cluster together to form gallium-rich domains
with short-range order, which are segregated from gallium-
depleted domains comprised of Pu1 atoms. The gallium
atoms increasingly spread over wider regions of the sys-
tem at elevated temperature, as Pu2 atoms are thermally
populated due to the first mechanism. As a result, the
fcc lattice is increasingly disordered with growing gal-
lium concentration. The distribution of these gallium atoms
does not become completely random because of the short-
range order persisting up to high temperatures, resulting in
nanoscale heterogeneity, as would be observed for quenched
samples. Apart from minor but progressive contraction in
each bond length with increasing gallium concentration,
the local structure remains largely uninfluenced by the
concentration.

Note that it is only the foregoing two mechanisms that
govern this variety of characteristic macroscopic properties.
The ostensible incompatibility among properties in the con-
ventional single-state atomistic description has been resolved
in a clear-cut way, and the diverse phenomenologies have been
integrated into a comprehensive view in terms of the two-state
model.

While the idea behind this study is inspired by the earlier
work based on the noninteracting Weiss model [19,20], the
quantitative introduction of effective atomic interactions in the
present atomistic model adds significant value in providing a
more detailed microscopic description of the system. It should
be noted, in particular, that the dilute-alloying mechanism
hypothesized in Ref. [20] can only be built into an interacting
model, as in the second mechanism above. In principle, the
MC approach employed in this study enables us to calculate
the entropy for a given interatomic-potential model in an exact
manner. The major strength of the approach lies in its capability
of making a direct connection between the local atomic
structure and the full equation of state of a solid, including its

sensitivity to shear deformations. (An analysis of shear elastic
constants would require a more extensive fitting database for
interatomic potentials than used in this study, however.) Such
an approach is essential for a description of crystalline defects,
which is one of the key issues concerning radiation damage
effects and long-term stability [34,38–40,79–84]. The present
atomistic scheme offers an analytical basis for investigating
the influence of the Invar effect on the equilibrium properties
of δ Pu-Ga alloys that include, for example, point defects or
interfaces. At the same time, the implementation of the two-
state model into molecular dynamics is a separate, nontrivial
question, which will most likely involve a nonadiabatic
treatment [85–87].

Owing to the scarcity of experimental inputs as well as
the lack of certainty in modern first-principles calculations
for this system, the present model retains a fair degree
of empiricism, particularly in the characterization of fine
details of the interatomic potentials. To provide a more
satisfactory description, the free parameters in the interatomic
potentials would have to be determined on the basis of
accurate electronic-structure calculations. As noted earlier, the
two-state description in the present atomistic model is a simple
phenomenology based on an analogy to the Weiss model, and
it does not address the electronic origin of the two states or
the underlying physics of the transition mechanism between
them. It is possible that δ-Pu encompasses a variety of complex
electronic configurations within a narrow energy range, and
that the conception in terms of only two electronic states
turns out to be an oversimplification. Nevertheless, the present
model provides highly consistent, although unconventional,
explanations at the atomic scale for multiple macroscopic
anomalies with respect to temperature and dilute alloying
that were previously deemed intractable. This success is
rather remarkable, particularly in view of the fact that the
mechanisms underlying the model energetics are strikingly
simple ones. Whether or not the quantitative descriptions given
in this study are correct in all details, it seems that the general
picture we have put forward would remain unaltered. The
challenge we now wish to be addressed is whether we can find
any specific evidence, either theoretical or experimental, for
or against the actual validity of the Invar description of δ-Pu
and its alloys.
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[64] P. Söderlind, A. Landa, J. E. Klepeis, Y. Suzuki, and A. Migliori,

Phys. Rev. B 81, 224110 (2010).
[65] J. C. Taylor, P. F. T. Linford, and D. J. Dean, J. Inst. Metals 96,

178 (1968).
[66] A. Migliori, H. Ledbetter, A. C. Lawson, A. P. Ramirez, D. A.

Miller, J. B. Betts, M. Ramos, and J. C. Lashley, Phys. Rev. B
73, 052101 (2006).

[67] A. Migliori, F. Freibert, J. C. Lashley, A. C. Lawson, J. P.
Baiardo, and D. A. Miller, J. Superconductivity 15, 499 (2002).

[68] V. L. Moruzzi, P. M. Marcus, and J. Kübler, Phys. Rev. B 39,
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