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Energy bands in graphene: Comparison between the tight-binding model and ab initio calculations
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We compare the classification of the electron bands in graphene, obtained by group theory algebra in the
framework of a tight-binding model (TBM), with that calculated in a density-functional-theory (DFT) framework.
Identification in the DFT band structure of all eight energy bands (four valence and four conduction bands)
corresponding to the TBM-derived energy bands is performed and the corresponding analysis is presented. The
four occupied (three σ -like and one π -like) and three unoccupied (two σ -like and one π -like) bands given by
the DFT closely correspond to those predicted by the TBM, both by their symmetry and their dispersion law.
However, the two lowest lying at the �-point unoccupied bands (one of them of a σ -like type and the other of a
π -like one), are not of the TBM type. According to both their symmetry and the electron density these bands are
plane waves orthogonal to the TBM valence bands; dispersion of these states can be determined unambiguously
up to the Brillouin zone borders. On the other hand, the fourth unoccupied band given by the TBM can be
identified among those given by the DFT band calculations; it is situated rather high with respect to energy. The
interaction of this band with the free-electron states is so strong that it exists only in part of the k space.

DOI: 10.1103/PhysRevB.89.165430 PACS number(s): 73.22.Pr

I. INTRODUCTION

In the course of the study of graphite and a graphite
monolayer, called graphene, understanding of the symmetries
of the electron dispersion law in graphene was of crucial
importance. Actually, the symmetry classification of the
energy bands in graphene (or “two-dimensional graphite”)
was presented nearly 60 years ago by Lomer in his seminal
paper [1]. Later the subject was analyzed by Slonczewski and
Weiss [2], Dresselhaus and Dresselhaus [3], and Bassani and
Parravicini [4]. Some recent approaches to the problem are
presented in Refs. [5–9].

In the vast majority of papers studying the symmetry of
bands, a tight-binding model (TBM) is used. In particular this
was done in Ref. [8], where the symmetry classification was
done by identifying the bands, obtained in the framework of
density-functional-theory (DFT) band-structure calculations
[7], with those obtained by applying the group theory algebra
to the TBM. However, the band calculations give not only the
dispersion law, which was used previously, but also the wave
functions. Moreover, in the DFT band structure of a graphene
sheet additional information about the nearby environment
is contained. Thus in such calculations two free-electron-like
lowest-energy conduction bands located at energies below the
vacuum level with wave functions spatially largely spread
into the vacuum are observed [10–12]. Among these states
the lowest-energy band observed experimentally in graphene
[13–15] is sharing a common origin with an image-potential
state in graphite [11,16,17], a so-called interlayer band in
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graphite [16,18,19] and intercalated graphite [10,20], image
states in nanotubes [21–24], and superatom states in fullerenes
[25–27]. Recently these two states were interpreted as being
the DFT analogs of two lowest-energy members of a double-
Rydberg series of graphene [28].

In the present work, by comparing the results of the TBM
and the DFT approaches to the symmetry labeling of the energy
bands, we identify the eight bands (four valence and four
conducting bands) corresponding to all TBM-derived σ - and
π -like energy bands. The identified conduction bands are all
lying, completely or partially, inside the vacuum continuum
in the vicinity of the Brillouin zone (BZ) center. However,
upon approaching the zone boundaries, these bands experience
strong hybridization with the free-electron-like states and
dramatically change their spatial localization.

II. TIGHT-BINDING MODEL

Partial symmetry analysis of the energy bands in graphene
based on group theory algebra in the framework of the TBM
was presented in our previous publications [7,8]. This is why
in the present work, while briefly mentioning the previously
obtained results, we concentrate on the symmetry analysis at
point M and lines K-M and �-M lacking in our previous
publications.

Our TBM space includes four atomic orbitals: |s,p〉.
(Notice that we assume only symmetry of the basis functions
with respect to rotations and reflections; the question of how
these functions are connected with the atomic functions of the
isolated carbon atom is irrelevant.) We look for the solution
of the Schrödinger equation as a linear combination of the
functions

ψ
j

β;k =
∑

Rj

ψβ(r − Rj )eik·Rj , (1)
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TABLE I. Character table for irreducible representations of the Cs and Ci point groups and the C6v , D6, and D3h point groups.

Cs E σ C6v E C2 2C3 2C6 3σv 3σ ′
v

Ci E I D6 E C2 2C3 2C6 3U2 3U ′
2

D3h E σ 2C3 2S3 3U2 3σv

A′ Ag 1 1 A1 A1 A′
1 1 1 1 1 1 1

A′′ Au 1 −1 A2 A2 A′
2 1 1 1 1 −1 −1

B2 B1 A′′
1 1 −1 1 −1 1 −1

B1 B2 A′′
2 1 −1 1 −1 −1 1

E2 E2 E′ 2 2 −1 −1 0 0
E1 E1 E′′ 2 −2 −1 1 0 0

where ψβ are atomic orbitals, j = A,B labels the sublattices,
and Rj is the radius vector of an atom in the sublattice j .
A symmetry transformation of the functions ψ

j

β;k is a direct
product of two transformations: the transformation of the
sublattice functions φ

A,B
k , where

φ
j

k =
∑

Rj

eik·Rj , (2)

and the transformation of the orbitals ψβ . Thus the represen-
tations realized by the functions (1) will be the direct product
of two representations.

The Hamiltonian of graphene being symmetric with respect
to reflection in the graphene plane, the bands built from the |z〉
orbitals decouple from those built from the |s,x,y〉 orbitals.
The former are odd with respect to reflection; the latter are
even. In other words, the former form π bands, and the latter
form σ bands.

In symmetry analysis it is natural to start from the most
symmetrical point �. The group of wave vector k at the � point
is D6h. We have to admit that in our previous publications [7,8]
we made mistakes while connecting representations of group
D6h with those of group C6v . This is why this time we present
this transition with maximum details in the Appendix. There
it is shown that at point �, |z〉 orbitals realize the A2u + B2g

representation, |s〉 orbitals realize the A1g + B1u representa-
tion, and |x,y〉 orbitals realize the E1u + E2g representation of
group D6h.

The group of wave vector k at the K point is D3h. In Ref. [8]
it was found that at this point the orbitals |z〉 realize the E′′
representation, the orbitals |s〉 realize the E′ representation,
and the orbitals |x,y〉 realize the A′

1 + A′
2 + E′ representation

of group D3h.
The group of wave vector k at each of the lines constituting

triangle �-K-M is C2v [29]. Representations realized at the
� and K points determine unambiguously representations
realized at the lines of the triangle.

At the line �-K the symmetry operations for group C2v

correspond respectively to the symmetry operations for group
D3h: C2-U2, σv-σ , σ ′

v-σv; and correspond respectively to
the symmetry operations for group D6h: C2-U ′

2, σv-C2I , σ ′
v-

U2I . This correspondence allows one to obtain compatibility
between the one-dimensional representations of group D6h

(D3h) and the representations of group C2v by inspection.
To obtain the decomposition of the two-dimensional

representations of group D6h (D3h) with respect to the
representations of group C2v at line �-K , it is convenient to

use the following equation,

aα = 1

g

∑

G

χ (G)χ∗
α (G), (3)

which shows how many times a given irreducible represen-
tation α is contained in a reducible one [30]. In Eq. (3) g is
the number of elements in the group, χα(G) is the character
of an operator G in the irreducible representation α, and
χ (G) is the character of the operator G in the representation
being decomposed. Using Tables I and II we obtain the
decomposition of the two-dimensional representations of
group D6h in the following forms,

E1u = A1 + B1,
(4)

E2g = A1 + B1,

and we obtain the decomposition of the two-dimensional
representations of group D3h in the following forms,

E′ = A1 + B1,
(5)

E′′ = A2 + B2.

At the line �-M the symmetry operations for group C2v

correspond, respectively, to the symmetry operations for group
D6h: C2-U2, σv-C2I , σ ′

v-U ′
2I . This correspondence allows

one to obtain compatibility between the one-dimensional
representations of group D6h and the representations of
group C2v by inspection. Using Eq. (3) we again obtain
the decomposition of the two-dimensional representations of
group D6h given by Eq. (4).

At the line K-M the symmetry operations for group C2v

correspond, respectively, to the symmetry operations for group
D3h: C2-U2, σv-σ , σ ′

v-σv . This correspondence allows one to
obtain compatibility between the one-dimensional representa-
tions of group D3h and the representations of group C2v by

TABLE II. Character table for irreducible representations of the
C2v and D2 point groups.

C2v E C2 σv σ ′
v

D2 E Cz
2 C

y

2 Cx
2

A1; z A 1 1 1 1
B2; y B3; x 1 −1 −1 1
A2 B1; z 1 1 −1 −1
B1; x B2; y 1 −1 1 −1
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TABLE III. Correlation table of the representations of D2h, which
is the point-group symmetry at M , with the representations of C2v ,
which is the point-group symmetry at the lines of the triangle �-K-M .

M Ag B1g B2g B3g Au B1u B2u B3u

�-M A1 B1 B2 A2 A2 B2 B1 A1

�-(K)-M A1 B1 A2 B2 A2 B2 A1 B1

inspection. Using Eq. (3) we again obtain the decomposition
of the two-dimensional representations of group D3h given by
Eq. (5).

Now consider the M point. The group of wave vector k
at this point is D2h. The symmetry analysis of the bands at
point M based on the symmetry of the atomic orbitals in the
TBM is presented in the Appendix. There it is shown that
at point M , |z〉 orbitals realize the B1u + B2g representation,
|s〉 orbitals realize the Ag + B3u representation, |x〉 orbitals
realize the Ag + B3u representation, and |y〉 orbitals realize
the B2u + B1g representation of group D6h.

However, there is another way to find representations
realized at point M , based on the compatibility relations. Of
course, the two methods are in agreement with each other.
Two groups C2v , one at line �-M and another at line K-M ,
being combined, contain all the symmetry operations of group
D2h at point M . Hence representations at lines �-M and
K-M being taken together unambiguously determine irre-
ducible representations realized at point M . Such correspon-
dence is presented in Table III [29].

In Fig. 1 we present the results of the band-structure
calculations with symmetry labeling of the valence and
the lowest-lying conduction bands. Additional mathematical
details of the bands’ symmetry analysis are given in the
Appendix. When looking at Fig. 1 (and at Table III) it is
important to clearly understand the choice of the Cartesian
coordinate systems (which we chose following Ref. [29]). In
particular, the principal axis at M is the same as the one
at �; that is, the z axis is normal to the plane and the x
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FIG. 1. (Color online) Graphene band structure evaluated with
use of the FP-LAPW method and the code ELK [31]. The dashed line
shows the Fermi energy.

axis is in the direction of point M . The Cartesian coordinate
system along the �-K and the �-M lines differs from the
one at the high-symmetry points [29]. Thus the z axis at the
�-M line is chosen along the �-M direction. This explains
why, for example, the band which at the �-M line realizes
representation A1 and at the K-M line realizes representation
B1, realizes at point M representation B3u.

Now consider the correspondence between the symmetry of
the bands given by the TBM and the DFT. The TBM which uses
the basis consisting of four orbitals per atom with the given
symmetry (plus the given symmetry of the lattice) strongly
restricts the possible symmetry of the electron bands. The
symmetry of all the bonding (valence) bands and the symmetry
of the bands, which realize at the � point representations E1u,
B2g , and B1u obtained from the DFT (see the next section),
correspond to the predictions of the TBM.

Note that it has recently been shown [32] that parts of
the bands inside the vacuum continuum (gray background
in Fig. 1) turn from true bound-state bands into scattering
resonances, by acquiring a finite lifetime due to the coupling
of the in-plane and the perpendicular motions. Nevertheless,
the current DFT calculation allows us to trace these bands over
large portions of the BZ.

III. DFT BAND STRUCTURE

In this section we concentrate first on the two lowest-
energy conduction bands, which are not TBM bands. The
lowest-energy conduction band has A1g symmetry at the �

point and A1 symmetry along the �-K line; i.e., it resembles
a bonding σ -state A1g as confirmed by its charge-density
distribution in the vicinity of the carbon ions presented in
Fig. 3 of Ref. [28]. As seen in Fig. 1, this band maintains
an almost free-electron-like character over the entire BZ. The
next conduction band labeled A2u at the � point, B2 along
the �-K line, A′′

2 at the K point, and B1u at the M point,
looks like a π band. Its charge-density distribution around
the carbon ions presented at the � point in Fig. 3 of Ref. [28]
confirms this assignment. This band around the � point also has
a free-electron-like dispersion in accordance with the location
of the majority of its charge on the vacuum side [28]. However,
in variance with the lowest-energy conduction band, upon
approaching the K point, its dispersion is strongly affected
by the interaction with other bands. Thus, charge-density
distribution in the A′′

2 state is strongly attracted to the graphene
sheet with the maximum located at z ≈ 1.5 a.u. instead of its
location at z ≈ 6 a.u. at the � point [11,28]. Moreover, any
presence of the π component in the vicinity of the carbon ions
is washed out in the A′′

2 state. Upon approaching the M point
along the K-M line, the wave function of the states in this band
(classified as a B1u state at the M point) re-establishes its large
diffusion into the vacuum as seen in Fig. 4(c) and the π -like
character around the carbon ions, which is a characteristic of
this band at the � point. The fact that its symmetry is different
from that of the three lowest conduction bands can be realized
just by looking at the band structure: this band crosses all of
them.

Regarding the other unoccupied energy bands, the most
simple situation is with the antibonding π band, which is
easily identified and disperses upward from the Fermi level up
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FIG. 2. (Color online) Charge-density distribution (in arbitrary
units) in the y = 0 plane for (a) E1u and (b) B1u states at the �

point. Solid dots show the carbon ion positions.

to an energy of +11.4 eV. On the other hand, the upper-energy
band predicted by the TBM has symmetry B1u at the � point
and symmetry B1 along the �-K line. The corresponding band
can be identified in Fig. 1 as that having an energy of +13 eV
at �. The charge-density distribution in this and one of the
E1u states is shown in Fig. 2 where its TBM-like localized
character can be easily appreciated.

One of the bands emerging from the double-degenerated
E1u state can be traced throughout the whole BZ. Thus in
Fig. 1 it is connected to the E′ and Ag states at the K and
M points, respectively. As one can note in Fig. 3(b), its wave
function is distorted from its TBM shape with the significant
part located on the vacuum side. On the other hand, this state
at the M point still maintains its atomiclike character as seen
in Fig. 4(a).

The fate of the second band emanating from the E1u state at
finite wave vectors is completely different. Dispersing along
the �-K line it reaches the K point as an A′

1 state with its
charge-density distribution presented in Fig. 3(c). Here one can

FIG. 3. (Color online) Charge-density distribution (in arbitrary
units) in the y = 0 plane for (a) A′′

2, (b) E′, and (c) A′
1 states at

the K point. Solid dots show the carbon ion positions.
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FIG. 4. (Color online) Charge-density distribution (in arbitrary
units) in the y = 0 plane for (a) lowest-energy unoccupied Ag , (b)
B3u, and (c) upper-energy B1u states at the M point. Solid dots show
the carbon ion positions.

see that its wave function is even stronger shifted to the vacuum
side in comparison with the E′ state one. Starting from the �

point along the �-M line this band strongly disperses upward
and disappears in the free-electron-like state continuum at
energies above ∼17 eV.

The upper atomiclike antibonding state suffers an even
stronger hybridization with the vacuum state continuum. The
DFT calculation places this band at the � point at an energy
of 13 eV (a B1u state). As seen in Fig. 2(b), the corresponding
charge density has an s-like symmetry in accordance with
the TBM prediction [4]. Even being located well-inside the
vacuum state continuum this state preserves its atomiclike
character in the �-point vicinity. In the �-M direction this
band disperses up to energies of about 16 eV from where its
dispersion sharply drops down due to hybridization with the
free-electron-like states. The band has at the M point rep-
resentation B3u characterized by charge-density distribution
reported in Fig. 4(b). Its wave function has a strong component
on the vacuum side. The dilution of this band within the
continuum finds itself in perfect agreement with the theory
of scattering resonances in 2D crystals [32], whereas 2D states
above the vacuum level decay due to the coupling between the
in-plane and the perpendicular motions.

IV. DISCUSSION

One of the aims of the present work was to answer the
question: How good is the tight-binding model for graphene?
Group theory algebra shows that the assumption that electron
wave function can be expanded as a linear combination of
four orbitals per atom with the given symmetry, together with
the given symmetry of the lattice, unequivocally determines
possible representations realized at the symmetry points �,
K , and M without any additional assumptions about the
Hamiltonian. The question is whether these predictions agree
with the results of the DFT band calculations. The answer is
that they agree partially. More specifically, all four valence
bands and three out of the five lowest-lying conduction bands
obtained by DFT band calculations correspond to the TBM
paradigm.

However, the two lowest-lying (at the � point) conduction
bands given by the DFT band calculation (one of the σ type and
another of the π type) cannot be interpreted in the framework
of the TBM. Judging by their symmetry, these bands can
be interpreted as plane waves (we mean the wave-function
dependence upon the x,y coordinates) orthogonal to the
bonding bands. In fact, the lowest energy states built from
plane waves will have the maximum symmetry in the plane xy,
that is, they will have the same symmetry as the lowest bonding
bands in the TBM. Orthogonality of these plane waves to the
bonding bands does not change this fact. This is particularly
obvious for the non-TBM π∗ band, because the plane waves
have to be orthogonal to the band of maximum symmetry. The
non-TBM σ ∗ band has to be orthogonal to all three σ valence
bands, which, taken together, also have maximum symmetry in
the xy plane. And this symmetry is what we see in Fig. 1. The
orthogonal plane wave interpretation of the non-TBM bands is
supported also by their dispersion law and density distribution
(see Figs. 3 and 4).
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In our previous publications treating this subject [7,8], we
started from the dispersion law given by the DFT calculations
and essentially equivalent to that presented on Fig. 1. However,
no wave function analysis was performed in the framework
of the DFT calculations, and in the symmetry analysis we
relied on the group theory exclusively. Thus the assignment
of irreducible representations was a delicate process involving
compatibility relations and some guesswork.

Now we have to admit that in our previous publications [7,8]
there were mistakes in labeling the bands. First, we messed up
with the group algebra and wrongly connected representations
of group D6h with those of group C6v . This is why this time
we present this transition with maximum detail.

Second, it is natural to expect that at point � the valence
bands are symmetrical with respect to rotation in the plane of
graphene by an angle π about the center of the line connecting
the two atoms. Such a symmetrical combination is said to be
bonding [33]. The conduction bands are antisymmetrical with
respect to the rotation (antibonding). If we take into account
the symmetry of the |s,x,y〉 orbitals and the antisymmetry
of the |z〉 orbitals with respect to reflection in the plane, we
come to the conclusion that valence σ bands at point � should
correspond to even representations (index g), and the valence
π band should correspond to odd representations (index
u) [4]. In our previous publications [7,8] we have ignored
this fact while assigning representations to the |x,y〉 bands at
point �.

A quantitative argument supporting the correct assignment
was communicated to us by an anonymous referee. In the TBM
with the nearest neighbor coupling at the � point neglecting
overlaps we get

E(E2g) − E(E1u) = −3[Hppσ + Hppπ ] (6)

(see Ref. [34] for notation). Using the values for the couplings
[34,35] Hppσ = 5.1 eV and Hppπ = −3.1 eV, we obtain

E(E2g) − E(E1u) = −6 eV, (7)

which means that the E2g representation characterizes the va-
lence band at point � and the E1u representation characterizes
the conduction band. Of course, this assignment is proven by
analysis of the wave function obtained in the framework of the
DFT, which we did.

By analyzing the band structure we have discovered
empirically an unexpected topological classification of the
bands. There are bands for which the energy returns to itself
when the wave vector changes continuously along the closed
curve �-K-M-�. There are also bands where, to return to
the same value of energy, the wave vector has to traverse the
curve two or even three times (see Fig. 1). The more detailed
analysis of this classification will be the subject of a separate
publication.

Finally, we would like to emphasize that the present paper
corrects and extends previous work by some of its authors
[7,8]. The main new contributions are the following.

(i) The symmetry classification of energy bands is ex-
tended to include the M point and the adjoining lines K-M
and �-M (Fig. 1).

(ii) Some previous assignments of irreducible representa-
tions are corrected, including those of the two lowest-energy
conduction bands (Fig. 1 and Sec. III).

(iii) The charge-density distributions of some states are
presented and discussed (Sec. III and Figs. 2–4).
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APPENDIX

Consider the symmetry analysis at the � point. The group
of the wave vector is D6h. In Ref. [8] representations of group
D6h were obtained on the basis of the identity

D6h = C6v × Cs. (A1)

It was found that the functions ψ
j

z;0 realize the

(A1 + B2) × A′′ (A2)

representation, the functions ψ
j

s;0 realize the

(A1 + B2) × A′ (A3)

representation, and the functions ψ
j

x,y;0 realize the

(E1 + E2) × A′ (A4)

representation of group D6h. In Eqs. (A2)–(A4) the first
multiplier refers to the irreducible representations of group
C6v , and the second multiplier refers to the irreducible
representations of group Cs (the character tables are presented
in Table IV).

However, the irreducible representations of group D6h are
traditionally labeled not on the basis of the identity (A1), but
on the basis of the alternative identity

D6h = D6 × Ci. (A5)

Thus each representation of group D6, say A1, begets two
representations: even A1g and odd A1u.

To decompose the product of representations (A2)–(A4)
with respect to the irreducible representations of group D6h

we need to express the products of the symmetry operations
of groups C6v and Cs through the products of the symmetry
operations of groups D6 and Ci . Using elementary algebra

TABLE IV. Correspondence between the products of the symme-
try operations of groups D6 and Ci and the products of the symmetry
operations of groups C6v and Cs .

E C2 C3 C6 U2 U ′
2 I C2I C3I C6I U2I U ′

2I

E C2 C3 C6 σvσ σ ′
vσ C2σ σ C6σ C3σ σ ′

v σv
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we obtain

A1 × A′ = A1g,

B2 × A′ = B1u,

A1 × A′′ = A2u,

B2 × A′′ = B2g,

E1 × A′ = E1u,

E2 × A′ = E2g.

(A6)

All the representations in the right-hand side of Eq. (A6) are
realized at point �.

Now consider point M . The group of wave vector k at the
point is D2h. Irreducible representations of point group D2h

are obtained on the basis of identity:

D2h = D2 × Ci. (A7)

As is obvious from Table II, the |z〉 orbitals realize the B1u

representation, the |s〉 orbitals realize the Ag representation,
the |x〉 orbitals realize the B3u representation, and the |y〉

orbitals realize the B2u representation of group D2h [We are
considering M = ( 2π

3a
,0)]. For the basis φ

j

M, we get χ (E) =
χ (ICz) = χ (Cx) = χ (ICy) = 2. The characters correspond-
ing to other transformations are equal to zero. Hence the
functions φ

j

M realize the Ag + B3u representation of group
D2h. Using elementary algebra we obtain

B1u × Ag = B1u,

B1u × B3u = B2g,

Ag × Ag = Ag,

Ag × B3u = B3u,

B3u × Ag = B3u,

B3u × B3u = Ag,

B2u × Ag = B2u,

B2u × B3u = B1g.

(A8)

All the representations in the right-hand side of Eq. (A8)
but one are realized at point M . The missing B1g represen-
tation would certainly correspond to the highest TBM band
(see Table III) were we are able to follow the band to point M .
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