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Dynamical localization in a chain of hard core bosons under periodic driving
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We study the dynamics of a one-dimensional lattice model of hard core bosons which is initially in a superfluid
phase with a current being induced by applying a twist at the boundary. Subsequently, the twist is removed,
and the system is subjected to periodic δ-function kicks in the staggered on-site potential. We present analytical
expressions for the current and work done in the limit of an infinite number of kicks. Using these, we show that
the current (work done) exhibits a number of dips (peaks) as a function of the driving frequency and eventually
saturates to zero (a finite value) in the limit of large frequency. The vanishing of the current (and the saturation of
the work done) can be attributed to a dynamic localization of the hard core bosons occurring as a consequence of
the periodic driving. Remarkably, we show that for some specific values of the driving amplitude, the localization
occurs for any value of the driving frequency. Moreover, starting from a half-filled lattice of hard core bosons with
the particles localized in the central region, we show that the spreading of the particles occurs in a light-cone-like
region with a group velocity that vanishes when the system is dynamically localized.
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I. INTRODUCTION

Periodically driven closed quantum systems have been
studied extensively in recent years from the viewpoint of
quenching dynamics as well as quantum information theory.
Some of these systems show dynamical localization (DL)
where the energy of the system never exceeds a maxi-
mum bound. Systems showing the signature of DL include
driven two-level systems [1], classical and quantum kicked
rotors [2,3], and the Kapitza pendulum [4]. In parallel, there
have been several studies of many-body localization transition
which have indicated that disordered interacting systems can
behave nonergodically [5–7]. Given the recent interest in
quenching dynamics of quantum systems [8–10] driven across
a quantum critical point (QCP) [11,12], the dynamics of those
systems under a periodic modulation of the field has also been
investigated [13,14]; the connection between thermalization
and many-body localization has also been explored [15].
In particular, it has been observed that when a quantum
many-body system, specifically, an Ising chain in a transverse
magnetic field, is periodically driven across a QCP, there is a
synchronization to a “periodic” steady state [16].

In this work, we study the dynamics of a chain of hard core
bosons (HCBs) which is subjected to a periodic kick in the
staggered on-site potential. We address the issue of DL within
the framework of Floquet theory applicable to a time-periodic
Hamiltonian [17]. Low-dimensional bosonic systems have
been realized experimentally by trapping ultracold atoms in
optical lattices [18,19], and the quantum phase transition
from a superfluid (SF) to a Mott insulator (MI) phase has
been observed in three dimensions [20] as well as in one
dimension [21]. The HCB system has also been realized
experimentally in optical lattices [22,23]. Following these
experimental realizations, there have been numerous analytical
studies of these systems in recent years; for a review, see
Ref. [24]. The integrability of a HCB chain (and its continuum
version known as the Tonks-Girardeau gas [25]) has been
exploited extensively, for instance, to investigate the surviving

current when the HCB chain is quenched from the SF to the MI
phase [26], to study the quench dynamics when the system is
released from a trap [27], to analyze the origin of superfluidity
out of equilibrium [28], and to explore the DL of bosons in an
optical lattice [29].

This paper is organized as follows. In Sec. II, we introduce
the model, the initial state of the system (which carries
a nonzero current), and the periodic driving scheme. We
explicitly derive the Floquet operator and its eigenvalues for
a single δ-function kick of the staggered potential. In Sec. III,
we present analytical and numerical results for the current and
work done in the asymptotic limit of an infinite number of
kicks. We analyze these results to highlight the light-cone-like
propagation of the particles and the phenomenon of dynamical
localization which occurs for certain driving amplitudes and
for large driving frequencies. We make some concluding
remarks in Sec. IV.

II. THE MODEL AND THE FLOQUET OPERATOR

The model we consider here is a chain of HCBs on a lattice
at half-filling described by the Hamiltonian

H = −w
∑

l

(b†l bl+1 + b
†
l+1bl) (1)

where bl’s are bosonic operators satisfying the commutation
relations [bl,b

†
l′ ] = δl,l′ and the hard core condition (bl)2 =

(b†l )2 = 0, and w (assumed to be positive) is the hopping
amplitude. Using the Jordan-Wigner transformation from
HCBs to spinless fermions [30], the Hamiltonian in (1) can
be mapped to a system of non-interacting fermions, which, in
momentum space, gets decoupled into 2 × 2 Hamiltonians in
terms of the momenta k and k + π , where −π/2 � k � π/2.
Using the basis vector |k〉 = (1 0)T and |k + π〉 = (0 1)T , one
can rewrite the 2 × 2 Hamiltonians as

Hk = −2w cos kσ z, (2)
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where σ ’s denote the Pauli matrices. At half filling, all the
k values from −π/2 to +π/2 are filled; the ground state for
every k mode is the pseudo-spin-up state of the operator σ z

denoted by (1 0)T .
When a staggered on-site potential (in real space) of the

form V
∑

l(−1)lb†l bl is added to the Hamiltonian in (1), a
coupling is generated between the modes with momenta k and
k + π . Consequently, an energy gap opens up at k = ±π/2;
hence, the system is in the Mott insulator phase for any finite
value of V . There is a quantum phase transition separating the
gapped MI phase from the gapless SF phase when V → 0.

We now consider a boosted Hamiltonian, Hν =
−w

∑
l(b

†
l bl+1e

−iν + b
†
l+1ble

iν), whose ground state has a
nonzero current. (We call ν a boost because it effectively shifts
the momentum from k to k − ν. Assuming periodic boundary
conditions, one can perform certain phase transformations on
the bl to remove ν from each of the terms in the Hamiltonian
except for the last term, which hops from site L to site
1; the phase of this hopping amplitude then becomes Lν,
where L is the number of sites. Hence, ν also describes a
twist in the boundary condition.) With the twist, the ground
state for the modes in the range −π/2 < k < −π/2 + ν

is given by (0 1)T (i.e., the k + π modes are occupied),
while for the modes in the range −π/2 + ν < k < π/2
the ground state is (1 0)T . We define the current opera-
tor ĵ = −(1/L)(∂Hν/∂ν)ν=0 = (iw/L)

∑
l(b

†
l+1bl − b

†
l bl+1),

which takes the form ĵk = (2w/L) sin kσ z in the space of
momenta (k,k + π ). In the limit L → ∞, we find the initial
current to be j = (2w/π ) sin ν. (We will set w = 1 below).

We will now remove the twist (at t = 0) and study what
happens to the initial current-carrying state when a periodic
perturbation is applied (that starts at t = T with a period T )
to the staggered potential. More specifically, we will focus
on the situation when the Hamiltonian in (1) is subjected to
a periodic staggered on-site potential of the form of a Dirac
δ-function kick of amplitude α, applied at regular intervals of
time denoted by T ,

V (t) = −α

∞∑
n=1

δ(t − nT ). (3)

The main question that we will address here is whether the
initial current generated by the twist survives in the asymptotic
limit (t → ∞) under these periodic perturbations even when
the HCB chain is always in the superfluid state (except for the
δ-function kicks at t = nT ). The interesting result we would
like to emphasize at the outset is that following an infinite
number of kicks (n → ∞), the current vanishes in the limit of
large driving frequency ω0 = 2π/T , while the excess energy
energy saturates to a nonzero finite value. As will be discussed
below, the vanishing of the current can be attributed to a DL
due to a decoherence which leads to a mixed density matrix at
large times; we will see that the probability of finding a boson
at any site becomes equal to 1/2 for ω0 → ∞, for all values
of α. At the same time, the work done Wd saturates to a finite
value. We will also show that for values of the kick amplitude
α for which cos α = 0, the current vanishes for n → ∞ for all
values of ω0.

We now recall the Floquet theory for a generic time-periodic
Hamiltonian, H (t) = H (t + T ). One can construct a Floquet

operator F = T e−i
∫ T

0 H (t)dt , where T denotes time ordering.
The solution of the Schrödinger equation for the j th state
in the Floquet basis [|	j (t)〉, which are eigenstates of F]
can be written in the form |
j (t)〉 = e−iμj t |	j (t)〉. The states
|	j (t)〉 are time periodic [|	j (t)〉 = |	j (t + T )〉], and e−iμj T

are the corresponding eigenvalues of F ; μj are called Floquet
quasienergies. To study the dynamics of the Hamiltonian in (1)
under the periodic kicks, we note that the Floquet operator in
momentum space is given by

Fk = exp(−iPk) exp(−iHkT ), (4)

where Pk = −ασx and Hk = −2 cos kσ z. The first term in (4)
represents time evolution due to the δ-function kick at time
t = T , while the second term denotes the time evolution of
the system dictated by the Hamiltonian in (2) for an interval
of time T . Looking at the form of the Floquet operator, one
immediately finds some specific values of α given by α = mπ ,
where m = 0,1,2, . . . , for which the δ-function kicks do not
affect the temporal evolution of the HCB chain; the ground
state remains frozen in its initial state.

The expression for the Floquet operator for a single kick
can be obtained exactly [31]:

Fk =
[

a b

−b∗ a∗

]
, (5)

where a = cos α cos(2T cos k) + i cos α sin(2T cos k), b =
sin α sin(2T cos k) + i sin α cos(2T cos k). The eigenvalues of
the operator in (5) are eiμ±

k T , where

μ±
k T = ± arccos[cos α cos(2T cos k)] (6)

lie in the range [−π,π ]. The Floquet quasistates |	±
k 〉 are

given by the eigenstates of Fk . It is clear from the structure
of (5) that it is sufficient to consider values of α lying in the
range [0,π ]. Further, Fk for α = 0 and α = π only differ by a
minus sign; hence all the physical properties of the system are
the same at these two values of α, as we will show below.

Under the periodic driving, the time-evolved state at time
t = nT can be obtained by n applications of the Floquet oper-
ator, namely, |
k(nT )〉 = c+

k e−iμ+
k nT |	+

k 〉 + c−
k e−iμ−

k nT |	−
k 〉,

where c±
k = 〈	±

k |
k(0)〉, with |
k(0)〉 being the ground
state of the Hamiltonian in (2). We can then compute the
current J (nT ) = ∑

k Jk(nT ) ≡ ∑
k〈
k(nT )|ĵk|
k(nT )〉 and

the work done Wd = (1/L)
∑

k Wk ≡ (1/L)
∑

k[ek(nT ) −
ek(0)], where ek(nT ) is the energy of the kth
mode measured after n kicks, given by ek(nT ) =
〈
k(nT )|Hk|
k(nT )〉 = −2〈
k(nT )|σ z|
k(nT )〉 cos k, and
ek(0) = −2〈
k(0)|σ z|
k(0)〉 cos k is the initial ground-state
energy.

III. THE n → ∞ LIMIT: RESULTS AND IMPLICATIONS

We now consider the limit n → ∞ when 〈
k(nT )|
σ z|
k(nT )〉 = ∑

m=± |cm
k |2〈	m

k |σ z|	m
k 〉, where we have

dropped rapidly oscillating cross terms (with coefficients
c+∗
k c−

k and c−∗
k c+

k ) which decay to zero in the limit
t → ∞ when integrated over a large number of mo-
menta modes. Given the initial ground state with a twist,
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we find that∑
m=±

∣∣cm
k

∣∣2〈
	m

k

∣∣σ z
∣∣	m

k

〉

= −f (k) for − π/2 � k � −π/2 + ν,
(7)

= f (k) for − π/2 + ν � k � π/2,

f (k) = cos2 α sin2(2T cos k)

sin2 α + cos2 α sin2(2T cos k)
.

These expressions imply that the properties of the system will
remain the same if we change α → α + π or π − α.

We will eventually be interested in the thermodynamic
limit L → ∞, where we replace (2π/L)

∑
k → ∫

dk. We then
obtain the following expressions for the current and work as
n,L → ∞:

J (∞) = 1

π

∫ π/2

−π/2
dk

∑
m=±

∣∣cm
k

∣∣2〈
	m

k

∣∣σ z
∣∣	m

k

〉
sin k

= − 2

π

∫ −π/2+ν

−π/2
dkf (k) sin k,

Wd (∞) = 2

π
cos ν − 1

π

∫ π/2

−π/2
dk

∑
m=±

∣∣cm
k

∣∣2〈
	m

k

∣∣σ z
∣∣	m

k

〉
cos k

= 2

π
cos ν − 1

π

∫ π/2+ν

−π/2+ν

dkf (k) cos k, (8)

where the first term in the last two equations comes from
−(1/2π )

∫ π/2
−π/2 dk〈
k(0)|σ z|
k(0)〉 cos k = (2/π ) cos ν. We

will denote J (∞) and Wd (∞) by J and Wd below.
The expressions in (7) vanish in two cases: (i) T → 0, i.e.,

the driving frequency ω0 → ∞, while α may take any value,
and (ii) cos α = 0, i.e., α = (m + 1/2)π , while T may take
any value. In these two cases, we obtain J = 0 and Wd =
(2/π ) cos ν.

The neglect of the cross terms in the limit n → ∞ as
discussed earlier implies that we have a decohered density
matrix. The special feature of the two cases ω0 → ∞ (and
any α) and cos α = 0 (and any ω0) is that |c+

k |2 = |c−
k |2 = 1/2

for all k; namely, the density matrix is given by 1/2 times
the identity matrix in the space of momenta (k,k + π ) for all
k. Since the density matrix is proportional to the identity, it
is invariant under all unitary transformations. In particular,
we can transform to the position basis and conclude that the
system is described by a mixed density matrix in which the
probability of finding a boson at any site is equal to 1/2.
This corresponds to a completely localized state; this is like a
classical state in which the bosons have a probability of 1/2 of
being at each site. This explains the vanishing of the current
and the saturation of the work done in these two cases.

Using Eq. (7), we can evaluate the leading-order behaviors
of the quantities in (8) in various limits. In the limit ω0 =
2π/T → ∞, we find that

J → 32π

3

cot2 α sin3 ν

ω2
0

, Wd → 2

π
cos ν. (9)

Two other limits are of interest. For ω0 → 0, we find
that J → (2/π ) sin ν(1 − | sin α|), while for ν → 0, we find

0.0
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FIG. 1. (Color online) Plots of (a) current J and (b) work done
Wd as functions of ω0 for small values of ω0 and several values of α,
with L = 100 and ν = 0.2. Wd has peaks at some specific values of ω0

given by 4/n, where n is an integer, which are the quasidegeneracy
points of the Floquet spectrum. The positions of the dips in J are
different from the peak positions in Wd as explained in the text.

J → (32π/3)ν3 cot2 α/ω2
0. The latter behavior has been called

the ν3 law in Ref. [26].
Next, we investigate the current J and work done Wd as

functions of ω0 for a wide range of ω0, with different values
of α. An examination of Figs. 1 and 2 shows three distinct
regions where the current and work done show three different
behaviors. (i) For smaller values of ω0, J shows dips at some
specific values of ω0, while Wd exhibits peaks at ω0 which are
different from the positions of the dips in the current. (ii) In an
intermediate region of frequency, J decreases monotonically
with increasing α up to α < π/2, while Wd increases in a
similar fashion. (iii) Both quantities saturate asymptotically at
some specific values in the large frequency limit.

We now discuss the positions of the peaks in Wd and
dips in J in the small ω0 regime, as shown in Figs. 1(a)
and 1(b), obtained through numerical studies of Eq. (7). We
will argue that the positions of the peaks in Wd are related to
the quasidegeneracy of the Floquet spectrum near k = 0. Since
Wk is proportional to cos k, Wd receives its largest contribution
from the region near k = 0. For small values of α, the positions
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FIG. 2. (Color online) Plots of (a) current J and (b) work done
Wd as functions of ω0 for large values of ω0 and several values of α,
with L = 100 and ν = 0.2. J (Wd ) stays at a higher (lower) value
for small values of α. J and Wd asymptotically saturate to zero and
a finite value, respectively. For the special value α = π , J sticks to
the initial value as ω0 is varied, while for α = π/2, J always stays at
zero.

165425-3



TANAY NAG, STHITADHI ROY, AMIT DUTTA, AND DIPTIMAN SEN PHYSICAL REVIEW B 89, 165425 (2014)

FIG. 3. (Color online) Pictures showing the density of particles in a 200-site system as a function of the stroboscopic time t = nT (on the
x axis) and the location l (on the y axis) for various values of T and α. See text for details.

of the maxima in Wd are therefore determined by the condition
2T (cos k)|k=0 = mπ , i.e., ω0 = 4/m, where m is an integer.
Indeed, we see that Wd has peaks around ω0 = 4,2,1.3, . . .

in Fig. 1(b). We now turn to the dips in J . For small values
of ν, we see from Eq. (8) that the integral expression for
J goes over a small range from −π/2 to −π/2 + ν. The
integrand f (k) sin k vanishes at the lower limit k = −π/2;
it also vanishes at the upper limit if 2T cos(−π/2 + ν) =
(4π/ω0) sin ν = mπ , where m is an integer. We therefore
expect that the entire integral will show a dip as a function
of ω0 if ω0 = (4 sin ν)/m. For ν = 0.2, we expect J to show
dips around ω0 = 0.8,0.4,0.26, . . . , as shown in Fig. 1(a). For
large ω0, J (Wd ) asymptotically saturate to zero [(2/π ) cos ν];
see Figs. 2(a) and 2(b), where we show the variation of J and
W for the entire range of ω0. We also see that J approaches zero
for smaller values of ω0 as α increases; this is in accordance
with Eq. (9) since cot α decreases as α increases from zero
to π/2.

Finally, we summarize our observations on the dependences
of J and Wd on α. (i) J and Wd remain at the constant values
(2/π ) sin ν and zero for all ω0 for the special values α =
mπ . (ii) J (Wd ) remains at zero [(2/π ) cos ν] for any ω0 for
α = (m + 1/2)π . In this case, the Floquet quasistates |	±

k 〉
have zero expectation values for the matrix σ z appearing in
the expression for the current. (iii) The magnitude of J (Wd )
decreases (increases) as α increases from zero to π/2.

The DL which occurs in either of the limits T → 0 or
α = π/2 is illustrated in Fig. 3. The panels show the density
of particles in a 200-site system as a function of the time
t = nT (along the x axis) and the location l (along the y

axis) for various values of T and α. The initial state at
t = 0 is one in which sites 51 to 150 have one particle
each (shown by dark regions) and the remaining sites are
empty (shown by light regions). As t increases, the particles
spread out with group velocities given by v±

k = dμ±
k /dk.

The spreading occurs in light-cone-like regions whose slopes
dl/dt = (1/T )dl/dn are given by the maximum value of |v±

k |
as a function of k; these are shown by the black dashed lines.
It can be shown from Eq. (6) that the maximum velocity
goes to zero as either T → 0 or α → π/2. [For instance, if
α = π/2, we find that μ±

k = ±π/(2T ), so that v±
k = 0 for all

k.] This clearly demonstrates the DL. While light-cone-like
effects have been studied following a quantum quench both
theoretically [32] and experimentally [33], our work appears
to be the first to study this in the context of periodic driving.
(We remark that the ripples appearing in Fig. 3 in the panel for
α = π/2,T = 10.0 are finite-size effects).

IV. CONCLUSIONS

To summarize, we have explored the consequences of
applying periodic δ-function kicks in the staggered on-site
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potential on the current-carrying ground state of a HCB chain.
In the long-time limit (n → ∞), there is an onset of DL if
either the frequency of driving is large or the driving amplitude
takes some particular values. We conclude with the remark
that the DL occurring as a result of the periodic driving is
not special to the one-dimensional model of hard core bosons
discussed here; it can also be shown to occur in models of
noninteracting fermions on a variety of higher-dimensional
lattices (such as square and cubic lattices) with a periodic
driving of a staggered on-site potential. In the future it may be

interesting to study the effect of interactions between fermions
on DL.
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