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Topological properties of the mesoscopic graphene plaquette: Quantum spin Hall effect
due to spin imbalance
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We study the electronic properties of the confined honeycomb lattice in the presence of the intrinsic spin-orbit
(ISO) interaction and perpendicular magnetic field, and report on uncommon aspects of the quantum spin Hall
conductance corroborated by peculiar properties of the edge states. The ISO interaction induces two specific
gaps in the Hofstadter spectrum, namely the “weak” topological gap defined by Beugeling et al. [Phys. Rev.
B 86, 075118 (2012)], and spin-imbalanced gaps in the relativistic range of the energy spectrum. We analyze
the evolution of the helical states with the magnetic field and with increasing Anderson disorder. The “edge”
localization of the spin-dependent states and its dependence on the disorder strength is shown. The quantum
transport, treated in the Landauer-Büttiker formalism, reveals interesting new plateaus of the quantum spin Hall
effect (QSHE), and also of the integer quantum Hall effect (IQHE), in the energy ranges corresponding to the
spin-imbalanced gaps. The properties of the spin-dependent transmittance matrix that determine the symmetries
with respect to the spin, energy, and magnetic field of the longitudinal and transverse resistance are shown.
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I. INTRODUCTION

Significant conceptual interest in the properties of graphene
was motivated first by the relativistic-like effects in the
honeycomb structure and by the opportunity to investigate the
high-temperature relativistic integer quantum Hall effect [1].
Next, interest was also stimulated by the topological insulating
properties, based on the helical edge states of graphene, that
support the quantum spin Hall effect (QSHE). The topological
phase of graphene, predicted by Kane and Mele [2], is induced
by the intrinsic spin-orbit (ISO) coupling, which opens a
topological gap between the Dirac cones located at the points
K and K ′ in the Brillouin zone. The gap is filled with helical
states stretching along the edges, which appear in pairs and
carry opposite spins in opposite directions. Recall that the
helical states are protected against disorder by the time-reversal
symmetry of the Hamiltonian, but they are not protected
against the spin-flip processes involved by the Rashba-type
coupling or against a staggered sublattice potential [3]; a
phase diagram can be theoretically obtained in the space
of the coupling parameters corresponding to the different
interactions [4].

Because of the very small spin-orbit coupling, the QSHE
could not be proved experimentally in graphene. The ex-
perimental endeavor moved toward other two-dimensional
(2D) systems which show topological properties, such as
CdTe/HgTe/CdTe [5–7] or AlSb/InAs/GaSb/AlSb [8,9] quan-
tum wells, and toward the 3D topological insulators [10,11].
The honeycomb lattice remains, however, under investigation,
as optical and synthetic examples of such lattices (where
the magnetic flux and the spin-orbit coupling strength can
be artificially tuned) have been obtained [12,13]. Another
line of investigation consists in finding techniques for the en-
hancement of the spin-orbit coupling by introducing adatoms
in graphene [14,15] or using other 2D materials such as
silicene [16,17].

When discussing different topological systems, attention
should be paid to the existence and behavior of the different

types of edge states (helical or chiral), which depend on various
factors such as the lattice structure, geometry of the sample,
spin-orbit interaction, and presence of a magnetic field. Recall,
for instance, that even for vanishing spin-orbit interaction,
edge states are supported by the zigzag graphene ribbon, but
not by the armchair ribbon. This can be proved by solving the
Dirac equation with proper boundary conditions [18] or by
calculating the Zak invariant [19]. The edge band dispersion
under the effect of a staggered sublattice potential and the
topological origin of these states were discussed in [20].
However, when the intrinsic spin-orbit coupling is considered,
the edge states, which become now spin-polarized and helical,
are present both in the zigzag [2] and armchair [21] ribbons.
The relevance of the sample geometry can be noticed also
by unfolding the ribbon and imposing everywhere vanishing
boundary conditions. For the finite-size plaquette, we find
that the helical edge states extend all around the perimeter,
showing, however, different localizations along the zigzag and
armchair margins, respectively (see Fig. 2).

When the system is subject to a magnetic field, which
breaks the time-reversal symmetry, we expect interesting
peculiarities of the edge states under the mixed effect of
the magnetic field and spin-orbit (SO) interaction. Even for
the torus geometry (i.e., with periodic boundary conditions
along both directions), when the edge states are missing, the
Hofstadter energy spectrum exhibits relevant aspects in the
simultaneous presence of the intrinsic SO coupling, Rashba-
type SO interaction, and perpendicular magnetic field [22]. It
turns out that the topological gap opened around E = 0 [23]
closes with increasing magnetic flux, and it is weak in the
sense that it is annihilated by the Rashba coupling. It was also
found in the graphene ribbon subjected to a magnetic field that
an additional Zeeman term induces spin imbalanced regions
in the spectrum, where the numbers of spin-up and spin-down
states are different [22]. For the confined graphene system, a
spin imbalance will be attributed in this paper to the splitting
induced by the ISO coupling, and interesting consequences for
the charge and spin transport will be put forward.
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FIG. 1. (Color online) A sketch of the honeycomb lattice plaque-
tte with horizontal zigzag and vertical armchair edges. The two type
of atoms in the unit cell are A (blue) and B (red); (n,m) are the cell
indices. The green lines connect an atom A to the six next-nearest
neighbors, while the nearest neighbors are connected by black lines;
the units cells are drawn with dashed lines. The number of lattice
sites is 11 × 4.

In this paper we study the confined honeycomb lattice
obtained by imposing vanishing boundary conditions all along
the perimeter. This approach simulates the mesoscopic case,
provides some specific new properties, and allows for the
calculation of the transport properties and disorder effects.
The plaquette exhibits both zigzag and armchair boundaries
as in Fig. 1, and the first question concerns the fate of the
helical states familiar from the cylinder (ribbon) geometry. The
combined effect of the intrinsic SO coupling and perpendicular
magnetic field on the spectral properties of the honeycomb
lattice plaquette are discussed in the next section. Some
specific spectral properties anticipate new aspects of the charge
and spin transport, which are presented in Sec. III. The
robustness of the spectral properties against the Anderson
disorder is analyzed in a subsection. The disordered spectrum
corresponding to helical states exhibits a tulip-like picture
due to existence in the graphene spectrum of some highly
degenerated energies (corresponding to the saddle points in
the infinite model). In Sec. III we show how the symmetry
properties of the spin-dependent electron transmittance give
rise to particular features of the charge and spin currents, which
are calculated in the Landauer-Büttiker formalism for a four-
lead device. Both the spin and charge Hall conductance exhibit
supplementary plateaus corresponding to gaps characterized
by the imbalance between the edge states with opposite spins.
The conclusions are summarized in the last section.

II. SPECTRAL PROPERTIES OF THE TOPOLOGICAL
INSULATING GRAPHENE PLAQUETTE

IN MAGNETIC FIELD

In this section we reveal new spectral properties of topo-
logical graphene in a perpendicular magnetic field, focusing
on the features of the different types of edge states that
result by imposing vanishing boundary conditions all around
the perimeter of the plaquette. The localization of the wave
function and the robustness against disorder are discussed.

Recall that the Hofstadter spectrum of the graphene sheet
in the absence of the spin-orbit coupling looks like a double
butterfly [24,25], and exhibits both relativistic Dirac-Landau
bands in the middle and conventional Bloch-Landau bands at
the extremities of the spectrum [26], separated by well defined
gaps. In the case of the finite plaquette, the vanishing boundary
conditions and the perpendicular magnetic field generate chiral
edge states that fill the gaps. The sign of chirality is determined
by the direction of the magnetic field, and the relativistic and
conventional edge states show opposite chirality. A second
class of edge states in the system are the helical ones, which
appear in the presence of the ISO coupling, and are located in
the topological gap opened by this interaction.

Our aim in this section is (i) to note the evolution of the
helical states with the magnetic field, (ii) to evaluate the degree
of localization along the edges of the helical and chiral states,
(iii) to identify domains of imbalance between the densities of
spin-up and spin-down edge states (where the charge and spin
currents should become anomalous), and (iv) to see the effect
of the Anderson disorder on the energy spectrum and on the
“edge” localization of helical states.

Adopting the tight-binding representation, as the 2D hon-
eycomb lattice contains two atoms A and B per unit cell, we
define corresponding creation and annihilation operators a

†
σ,nm,

b
†
σ,nm, aσ,nm, bσ,nm, where σ = ±1 is the spin index and {n,m}

are the cell indices (see Fig. 1). The Hamiltonian defined on
the honeycomb lattice can be written as

H =
∑

σ

Hσ
0 +

∑

σ

Hσ
SO, (1)

where the first term describes the tunneling between the nearest
neighbors, while the second one represents the intrinsic spin-
orbit interaction. In the presence of a perpendicular magnetic
field, described by the vector potential �A = (−By,0,0), the
first term reads

Hσ
0 =

∑

nm

Eaa
†
σ,nmaσ,nm + Ebb

†
σ,nmbσ,nm + t(eiφ(m)a†

σ,nmbσ,nm

+ eiφ(m)b
†
σ,n+1,maσ,nm + b

†
σ,n,m+1aσ,nm + H.c.). (2)

Ea,b are the atomic energies, t is the hopping integral between
the sites A and B, and the Peierls phase due to the magnetic
field equals φ(m) = π (m + 1

6 )�, where the magnetic flux
through the unit cell � is expressed in quantum flux units
�0 = h/e.

The intrinsic spin-orbit Hamiltonian [2] conserves the
electron spin Sz, and invokes the hopping to the six next-nearest
neighbors, keeping also in mind the chirality of the trajectory
between the two sites. In the presence of the magnetic field,
the hopping terms acquire a supplementary phase, and the
Hamiltonian can be written in a compact form as [21]

Hσ
SO = iλSO

1

2
σ

∑

〈〈nm,n′m′〉〉
νnmeiφa

nma
†
σ,n′m′aσ,nm

+ (a → b) + H.c., (3)

where λSO is the spin-orbit coupling constant, νnm = ±1
expresses the clockwise or anticlockwise chirality of the
trajectory between the next-nearest neighbors, and the phases
φa

nm,φb
nm should be calculated by the integration of the vector
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potential along each trajectory. The Hamiltonian (3) contains many terms and, for the reader’s sake, we write it in detail, and
show also the illustrative Fig. 1:

H
↑
SO = iλSO

1

2

∑

nm

eiφa
1 (m)a

†
↑,n,m+1a↑,n,m + eiφa

2 (m)a
†
↑,n+1,m−1a↑,n,m + eiφa

3 (m)a
†
↑,n−1,ma↑,n,m

+ eiφb
1 (m)b

†
↑,n+1,mb↑,n,m + eiφb

2 (m)b
†
↑,n−1,m+1b↑,n,m + eiφb

3 (m)b
†
↑,n,m−1b↑,n,m + H.c.,

H
↓
SO = −iλSO

1

2

∑

nm

e−iφa
1 (m)a

†
↓,n−1,m+1a↓,n,m + e−iφa

2 (m)a
†
↓,n,m−1a↓,n,m + e−iφa

3 (m)a
†
↓,n+1,ma↓,n,m

+ e−iφb
1 (m)b

†
↓,n−1,mb↓,n,m + e−iφb

2 (m)b
†
↓,n+1,m−1b↓,n,m + e−iφb

3 (m)b
†
↓,n,m+1b↓,n,m + H.c. (4)

The phases in the above equation are the following:

φa
1 (m) = π

(
m + 5

6

)
�, φa

2 (m) = π
(
m − 1

6

)
�, φa

3 (m) = −2π
(
m + 1

3

)
�,

(5)
φb

1 (m) = 2πm�, φb
2 (m) = −π

(
m + 1

2

)
�, φb

3 (m) = −π
(
m − 1

2

)
�.

It is worth to noting some symmetry properties of the energy
spectrum. Since the Hamiltonian (1) commutes with Sz, its
spectrum is the union of the spin-up and spin-down eigenvalues
{Ei} = {E↑

n } ∪ {E↓
n }, where n = 1, . . . ,N (N being the total

number of sites on the finite lattice). Let n = 1 be the index of
the lowest eigenvalue for both spin-up and spin-down subsets.
With this notation, the symmetry of the Hamiltonian (1)
generates the property E

↑
n (�) = −E

↓
N+1−n(�). In other words,

this means that if the energy E belongs to the spin-up subset of
the spectrum, the energy −E exists also in the spectrum, but
belongs to the spin-down subset. Note that the usual periodicity
with the magnetic flux Ei(�) = Ei(� + �0), which is valid
at λSO = 0, is replaced by Ei(�) = Ei(� + 6�0) in the case
of nonvanishing spin-orbit coupling [22].

An eigenfunction of the Hamiltonian (1) with � = 0
corresponding to a helical edge state is shown in Fig. 2. The
state stretches along the whole perimeter of the plaquette;
however, the localization is more pronounced along the zigzag
edges than along the armchair ones.

A. Edge states in the “weak” topological gap

For vanishing SO coupling, the low flux range of the
Hofstadter butterfly of the finite-size graphene plaquette shows

Zig-zag
Arm-chair

FIG. 2. (Color online) |�(r)|2 for a helical edge state on the
honeycomb plaquette at � = 0 and λSO = 0.2; a different degree
of localization along the two different edges (zigzag and armchair)
can be noticed. The number of lattice sites is 19 × 10.

a thin, quasidegenerate band at E = 0 as can be noticed in
Fig. 3 (left). These states correspond to the Landau band
indexed by n = 0 in the periodic geometry, and their number
depends on the dimension of the plaquette. The significant
changes that appear when the ISO coupling is introduced
are only partially studied in the presence of the magnetic
field. We know that the topological gap existing at � = 0
persists at low flux, but closes with increasing �. This gap is
called “weak” in [22], and we keep the terminology. However,
the origin and properties of the edge states filling the weak
topological gap of the mesoscopic grahene plaquette have not
been studied yet. They result from the simultaneous presence
of the magnetic field and ISO interaction, and have to justify
the survival of the QSHE at nonvanishing magnetic field
(see Fig. 13).

The analysis of the edge states located in the topological
gap will be done by inspection of Fig. 3 (right) and Fig. 4. One
may identify a first class of states resulting from the splitting in
magnetic field of the doubly-degenerate helical states existing
at � = 0. These states are drawn in Fig. 3 (right) with thicker
lines. Notice that at low flux the splitting that separates the
spin-up and the spin-down levels increases linearly with �;
however, at some higher magnetic flux, all these states merge
into bands that border the weak topological gap (colored in
red for spin-up and blue for spin-down). Since dE↑/d� and
dE↓/d� show opposite signs, the states of opposite spins
continue to carry opposite spin currents. Besides, the weak
topological gap accommodates also a second category of edge
states, which are chiral states stemming from the adjacent
relativistic gaps. We can see, for instance, that spin-down states
(in blue) coming from the relativistic gap below cross the red
band (composed of spin-up states), enter the weak topological
gap, and eventually merge with the blue band that border the
topological gap from above (and similarly for the spin-up red
lines entering the topological gap from above).

Both types of edge states filling the weak topological gap
at � 
= 0, although of different provenance (helical or chiral),
show opposite currents for opposite spins, so that the QSHE
survives at any magnetic field as far as the gap remains open.

In what follows we examine the degree of localization
of different edge states. The information regarding the edge
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FIG. 3. (Color online) (Left) The Hofstadter spectrum of the finite honeycomb lattice in the absence of the SO coupling; due to confinement,

the gaps are filled with edge states. (Right) The central part of the energy spectrum showing the weak topological gap and two adjacent relativistic
gaps in the presence of the ISO coupling. The spin-up eigenvalues are colored in red, and the spin-down in blue. The energy is measured in
units of hopping integral t , the magnetic flux in flux quanta �0, and λSO = 0.05. The number of lattice sites is 21 × 20.

localization can be obtained from the quantity

P Edge
n,σ =

∑

i∈Edge

|�n,σ (i)|2, (6)

where the sum is taken over all sites i that belong to the
plaquette perimeter [27]. The data in Fig. 4, calculated at
� = 0.03, indicate that the states that are close to E = 0 are
strongly localized along the edges. This is expected, but it is
less expected that the helical states that converge toward the
bands confining the weak topological gap at E ≈ ±0.25 are
pushed away from edges, such that P edge eventually vanishes at
the respective energies. This denotes that, while evolving into
the two bands, the helical states lose their localized character
and become more similar to bulk states.

The same Fig. 4 shows that, outside the topological gap,
in the relativistic gaps where all states are of chiral type, the
edge localization depends significantly on the spin orientation.
At the same time, from Fig. 3 (right) one can see that the

derivative dEσ
n /d� is also spin dependent. At E > 0.25, for

instance, both the edge localization and the magnetic moment
of the spin-up states are higher then for the opposite spin. In
order to check the edge localization properties, we calculated
delocalization by summing up the contribution of the sites
belonging to the perimeter [panel (a)], but also by adding the
contribution of the second row of sites near the edge [panel
(b)] . The results are similar.

B. Spin-orbit effects on the properties of the relativistic gaps

A small spin-orbit coupling (meaning λSO  t) affects
visibly only the center of the spectrum occupied by the topo-
logical gap and relativistic bands and gaps. The extremities
of the spectrum, corresponding to the conventional Landau
bands/gaps, are less sensitive to the spin-orbit coupling. This
statement is proved by Fig. 5, which shows eigenvalues
E

↑
n ,E

↓
n and their corresponding index n, at a given flux. The

 0

 0.2

 0.4
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E
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(b)

Energy
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FIG. 4. (Color online) Edge localization of the spin-dependent eigenenergies in the range of topological and relativistic gaps. (a) P
Edge
n,σ is

calculated from Eq. (6). (b) P
Edge12
n,σ includes also the contribution of the second row of sites close to the edge. The wave function localization

looks similar in the two panels. (� = 0.03�0, λSO = 0.05, and the number of lattice sites is 35 × 20.)
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FIG. 5. (Color online) The eigenvalue spectrum {Eσ
n } of the

Hamiltonian (1) with � = 0.03�0 and λSO = 0.05 for the finite hon-
eycomb lattice with 105 × 40 sites. The spin-up energies are shown
in red, the others in blue. The black arrows indicate the presence of
the spin imbalanced gaps.

(quasi)horizontal lines correspond to the energy gaps (where
the edge states are rare) and the steps correspond to the bands
(where the bulk states are dense). The difference between the
two lines corresponding to opposite spins is very visible in
the energy range [−1,1], while for energies outside this range
the lines overlap, indicating an indistinguishable spin-orbit
splitting.

We make two observations concerning the behavior of
the spin-dependent edge states in the relativistic gaps: (i) In
contradistinction to the case of the topological gap (described
in the previous subsection) the chirality dEσ

n /d� of edge
states shows now the same sign, independently of the spin
orientation. A difference appears, however, in the magnitude
of the derivative, which again is more pronounced for the

internal gaps and less evident at higher energies. (ii) The
Hofstadter butterfly exhibits the splitting of each relativistic
band in two spin-dependent subbands. The small spin-orbit
gap created in between is filled with edge states of both
spins; however, essentially, the number of spin-up states differs
from the number of states with spin-down. This denotes the
existence in the energy spectrum of “spin-imbalanced’ gaps
induced by the ISO coupling [28]. This finding should not be
overlooked as it is associated obviously with an imbalance of
the spin currents, which may account for a nonzero QSHE
in the corresponding energy range. The explicit calculation in
the next section of the spin-dependent electron transmittance
confirms this prediction.

The manner in which the imbalanced gap arises is described
in Fig. 6. In panel (a) we show the first two relativistic gaps,
separated by the relativistic band, in the case of vanishing ISO
coupling, when all states are spin degenerate. It is known that
the number of edge states crossing the Fermi level at a given
flux in the first relativistic gap is N↑ + N↓ = 2 [29], while in
the second gap the number is 6. In panel (b), the degeneracy
of the band and of the edge states is lifted in the presence of
the ISO coupling, and a small spin-orbit gap arises between
the spin-down (blue) and spin-up (red) subbands. Now, we
are interested in the number and the spin of the edge states
occurring in this gap. We proceed by considering, for instance,
the upper half of the spectrum, where we notice that the spin-up
(red) edge state crosses the spin-down subband (blue) and
enters the spin-orbit gap. (At the same time, the spin-down
edge state is absorbed in the subband of the same spin.) Next,
we notice that three spin-down edge states originating from
the blue subband emerge in the spin-orbit gap, then cross
the subband of opposite spin (red), and eventually enter the
second relativistic gap. Altogether, it turns out that there are
four edge states in the gap we look at, namely N↑ = 1 and
N↓ = 3, justifying the term “spin-imbalanced” gap (see also
the note [30]).

FIG. 6. (Color online) (a) Schematic representation of the Dirac-Landau bands as a function of the magnetic field in the absence of ISO
coupling when the bands are spin degenerate. (b) The same in the presence of ISO coupling when each band splits into subbands of opposite
spin. The gap created in between contains different numbers of spin-up and spin-down states, as explained in the text. (c) A piece of the
Hofstadter energy spectrum calculated for a honeycomb lattice plaquette where a narrow spin-imbalanced gap occurs between the two black
curves (λSO = 0.05, and the dimension of the plaquette is 35 × 20 sites).
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FIG. 7. (Color online) (a) Disorder averaged eigenenergies 〈En〉
vs the Anderson disorder amplitude W at � = 0. The topological
states (indexed by n ∈ [345,356] are colored in blue and develop
a tulip-like shape with increasing disorder. (b) The level spacing
distribution Pn(t) for the helical states with n = 347, . . . ,353 at W =
1. The distribution functions are well fitted by Gaussian functions;
note that the states in the middle of the topological gap show a
narrower Gaussian [λSO = 0.05, the number of lattice sites is 35 × 20,
and the number of disorder configurations is 880 (a) and 5000 (b)].

C. Disorder effects

Both the helical and chiral edge states are topological states
which are robust with respect to disorder, being protected,
however, by different symmetries. The helical states are
protected by the time-reversal symmetry (TRS) which is
preserved by the ISO interaction, while the chiral edge states,
despite the TRS breaking, are robust against disorder due to
the strong magnetic field that imposes the chiral motion and
impedes the backscattering. So, it is pertinent to ask whether
the two types of states are equally robust. Up till now, we
could not give a definite answer to this question, and here we
restrict ourselves to follow the evolution with the disorder of
the spectral properties only at � = 0. We use the Anderson
disorder model characterized by the parameter W defining the
width of the diagonal disorder.

The general aspect of the disordered spectrum of the
confined honeycomb lattice shown in Fig. 7(a) is determined
by the existence of regions that respond differently to the
increase of the disorder strength. We know that, at low disorder,

the topological gap is not affected, but, on the other hand,
the energy ranges with very high density of states of about
E = ±1 (which correspond in the periodic model to the
saddle points M in the Brillouin zone) are very sensitive to
any disorder. The consequence is a specific tulip-like shape
of the spectrum in the topological range E ∈ [−0.25,0.25],
depicted in blue in Fig. 7(a). The qualitative explanation of
this shape is the following: The disordered potential broadens
the very dense spectrum close to E = ±1, where the level
spacing increases with the disorder strength W and produces a
“compression” on the topological levels located in the middle
of the spectrum. Since, according to the von Neumann–Wigner
theorem [31,32], the energy levels cannot cross each other, the
result is the tulip shape of the levels in the topological range.

The level spacing analysis helps us also to understand the
disorder effects on the energy spectrum. Let us define the
level spacing as tn = δEn/〈δEn〉, where δEn = En+1 − En

and 〈· · · 〉 means the average over all disorder configurations.
The level spacing distributions Pn(t) calculated numerically
at low disorder for several n-s corresponding to states in the
topological gap are shown in Fig. 7(b). The distributions can be
well fitted with Gaussian functions. Note in Fig. 7(b) that the
curves show different widths; namely the states in the center
of the topological gap exhibit a narrower width (being more
robust) than those located near the gap margin. The Gaussian
distribution of the level spacing was also found for the edge
states in the integer quantum Hall phase [33]; a similarity that
might deserve more attention.

Additional information can be obtained by calculating
the edge localization equation (6) as a function of W . In
Fig. 8(a) we find that the disordered helical states remain
localized near edges as long as W is small. However,
P Edge falls with increasing disorder, meaning that the states
extend gradually inside the plaquette, and eventually become
disordered metallic-like states spread over the whole plaquette
area if W � 4. An example of such a uniformly distributed
state originating from a helical state is shown in Fig. 8(b).
Of course, the level spacing distribution should change also
from a Gaussian to a Wigner- Dyson distribution; however,
this topic will be discussed elsewhere.

III. SPECIFIC IQHE AND QSHE OF THE CONFINED
HONEYCOMB LATTICE WITH SPIN-ORBIT COUPLING

In this section, we simulate a four-lead device by attaching
leads to a honeycomb plaquette, and calculate the longitudinal
and transverse resistances corresponding to both spin and
charge currents. We emphasize specific properties of the
transmittance matrix T σ

αβ in the presence of the ISO coupling
that generates an uncommon behavior of the spin and charge
quantum Hall effect. We find that, besides the usual plateaus
of the Hall conductance at ±(2e2/h)(2n + 1), the IQHE gets
new intermediate plateaus at ±(2e2/h)(2n + 2) with n =
0,1,2, . . . . Next, we find that these plateaus are associated with
a nonvanishing quantum spin conductance GS

H = −2e/4π ,
the sign being opposite to the usual spin Hall conductance
that occurs in the topological gap. The changes of both IQHE
and QSHE can be observed in Fig. 13, which represents the
main result of the section. These transport effects have not
been explored up till now, and it turns out that they show up
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FIG. 8. (Color online) (a) The disorder averaged edge localization 〈P Edge
n 〉 vs the disorder amplitude W for several helical states; the states

prove to be robust against disorder only for small disorder (� = 0, λSO = 0.05, nunber of lattice sites is 35 × 20, and number of disorder
configurations is 880). (b) The disorder averaged wave function 〈|�(r)|2〉 for a former helical state at � = 0 (λSO = 0.05, W = 5, the number
of lattice sites is 35 × 20, and the nnumber of disorder configurations is 500).

in energy gaps with spin imbalance, where T
↑
α,α+1 
= T

↓
α,α+1.

The transport calculations are based on the Landauer-Büttiker
formalism applied to the four-terminal Hall setup sketched in
Fig. 9.

A. Properties of the spin-resolved transmittances

The Landauer-Büttiker approach requires that the Hamil-
tonian (1) be completed with terms describing the leads (HL)
and the coupling between leads and the graphene plaquette
(HLP). Then the total Hamiltonian reads

HT = H + HL + τHLP, (7)

where the last two terms are considered to be spin inde-
pendent. The quantities which enter the expression of the
spin-dependent electron transmittance between the leads α

and β are the lead-plaquette coupling τ , the matrix element
of the retarded Green function corresponding to the total
Hamiltonian equation (7), and the lead density of states:

T σ
αβ(E,�) = 4τ 4

∣∣Gσ
αβ

∣∣2
(E,�) Im gL

α (E) Im gL
β (E), α 
= β,

(8)

where gL is the Green function of leads. The symmetries
of the energy spectrum, discussed in the previous section,
determine the properties of the Green function Gσ

αβ , and reflect
eventually, via Eq. (8), in the symmetries of the spin-resolved

FIG. 9. The four-terminal Hall device: the dimension of the
plaquette is 105×40 sites, the transverse plaquette size is 59a0, and
the magnetic length corresponding to the flux � = 0.03�0 used in
calculations is lB = 3.7a0 (a0 = hexagon side length).

transmittance matrix:

T σ
αβ(E,�) = T −σ

βα (−E,�) = T −σ
βα (E, − �). (9)

An inspection of the Hofstadter spectrum shows that
the gaps located in the central part of the spectrum (i.e.,
topological and relativistic gaps) open at lower magnetic fluxes
in comparison with the conventional Landau gaps located at
higher energies. That is, it is hard to find a magnetic flux that
allows us to find evidence simultaneously for all the types
of edge states occurring in different energy gaps. Intending
to compare all the three regimes (topological, relativistic, and
conventional Landau), we need to perform the calculations at a
relatively small flux, and we select � = 0.03�0. On the other
hand, at such a small flux, the transmittance Tα,α+2 (that hops
over a lead) gets rather large values in some energy ranges
affecting the quantum Hall effect; the implications will be
discussed below.

The transmittances calculated according to Eq. (8) are illus-
trated in Fig. 10. In Fig. 10(a), the plot of T

↑
12 and T

↓
21 proves the

symmetry T
↑

12(E) = T
↓

21(−E) expressed by Eq. (9). The two
transmittances allow an easy identification of the topological
gap in the middle of the energy axis (approximately in the
range E ∈ [−0.25,0.25]), where T

↑
12 = T

↓
21 = 1, denoting the

presence of two channels of opposite spin running in opposite
directions, i.e., the well known condition for QSHE.

In Fig. 10(b) we compare the transmittance T
↑

12 with T
↓

12,
which carries the opposite spin but runs in the same direction.
The two curves coincides at high energy; however, they show a
significant shift in the central region of the spectrum. This shift
of the transmittances is an obvious consequence of the shifted
spin-dependent energies in the spectrum, which has been
already noticed in Fig. 5. The inset depicts the energy range that
comprises the topological gap and the spin-imbalanced gap at
about E = 0.6, where observe that T

↑
12 = 1 and T

↓
12 = 3. As

the other transmittances vanish, we may conclude that in this
gap there are four active channels, one of spin-up and three of
spin-down, all of them running in the same direction. In the
next subsection, when calculating the transverse resistance, we
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FIG. 10. (Color online) (a) Illustration of the symmetry T
↑

12(E) =
T

↓
21(−E); the transmittances show plateaus corresponding to all gaps

present in the spectrum. T13 is symmetric around E = 0 and vanishes
in the topological and relativistic regions, but it is not negligible in
the rest of the spectrum. (b) T

↑
12 and T

↓
12 coincide at high energies,

but are shifted in the middle of the spectrum. The inset shows the
topological gap, where T

↑
12 = 1, T

↓
12 = 0, and the imbalanced gap,

where T
↑

12 = 1, T
↓

12 = 3 (� = 0.03�0, λSO = 0.05, and the number
of sites is 105 × 40).

shall see that this spin imbalance yields unusual plateaus of
both integer and spin Hall effect.

The relatively small value of the magnetic flux, at which
we are compelled to perform the transport calculations, makes
it interesting to discuss the behavior of T σ

α,α+2. Recall that, at
strong magnetic fields, the gaps corresponding to the quantized
plateaus are characterized by T σ

α,α+1 = integer, while all the
other transmittances vanish, including T σ

α,α+2. At such strong
fields, the edge states are localized very close to the perimeter
of the plaquette, and the negligible value of Tα,α+2 may be
considered as a measure of the high degree of edge localization.
For � = 0.03�0 the transmittance T

↑
13 is shown in Fig. 10(a).

One notices the vanishing of T13 in the topological gap, which
attests to the strong localization of the helical edge states. On
the other hand, the large values shown in a rather wide range
of about E = ±1 can be associated with the bulky character of
the quantum states, accompanied by the absence of quantum
plateaus in the corresponding energy range.

B. Longitudinal and transverse charge and spin conductances

Without spin-flip processes, the system behaves as a
two independent spin fluids. Then, the particle current in a
multilead device can be written in the linear approach as
I σ
α = ∑

βσ T σ
αβV σ

β , where {α,β} stand for the lead indices, I σ
α

is the current through the lead α, and V σ
β is the potential at the

contact site β. Summing up the contributions of the two spins,
the total charge and spin currents flowing through the lead α

read

IQ
α = e2

h

∑

σ

I σ
α , I S

α = e

4π

∑

σ

σIσ
α . (10)

Since the transmittance matrix T σ
α,β is already known, the spin-

resolved longitudinal and Hall resistances can be calculated
according to the Landauer-Büttiker formalism as

Rσ
L = Rσ

14,23 = (
T σ

24T
σ

31 − T σ
21T

σ
34

)
/D,

Rσ
H = (

Rσ
13,24 − Rσ

24,13

)
/2

= (
T σ

23T
σ

41 − T σ
21T

σ
43 − T σ

32T
σ

14 + T σ
12T

σ
34

)
/2D, (11)

where D is any 3 × 3 subdeterminant of the transmittance
matrix.

The comparative study of the Hall resistance, with and
without SO coupling, is instructive. This is done in Figs. 11(a)
and 11(b) where Rσ

H , calculated at the flux � = 0.03, is
superimposed over the corresponding Hofstadter spectrum.
When the spectrum and the resistance are spin independent (the
case λ = 0), the two quantities appear as in Fig. 11(a), where
the antisymmetry Rσ

H (E,�) = −Rσ
H (−E,�) is obvious. If

λ 
= 0, the previous antisymmetry at the reflection E → −E

is lost since one has now to inverse also the spin. Indeed, from
Eqs. (9) and (11), it follows immediately that Rσ

H (E,�) =
−R−σ

H (−E,�).
We emphasize that in Fig. 11(b) the spin-dependent

Hall resistances show the plateaus R
↓
H = 1 and R

↑
H = −1,

respectively, which extend over both the topological gap and
the the first relativistic gap, each one crossing the band of
opposite spin. This behavior of the resistance is the immediate
result of the fact that the chiral edge states located in the first
relativistic gap extend also in the topological gap, as underlined
in the previous section and observable in Fig. 3 (right).

Since the two spins act as two parallel channels, the total
charge and spin resistances (RQ and RS , respectively) are
given by

1

R
Q
L,H

= 1

R
↓
L,H

+ 1

R
↑
L,H

,
1

RS
L,H

= 1

R
↓
L,H

− 1

R
↑
L,H

, (12)

where the indices L and H stand for longitudinal and
transversal (Hall), respectively. It is straightforward to prove
the relationships

R
Q
H (E) = −R

Q
H (−E), RS

H (E) = RS
H (−E), (13)

that show the different symmetries of the charge and spin
resistance.

In the previous section, we mentioned the presence in the
relativistic range of the energy spectrum of small gaps, induced
by the spin-orbit splitting, where a spin imbalance exists.
Obviously, the imbalance gives rise to R

↑
H 
= R

↓
H , and, in line

165412-8
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FIG. 11. (Color online) The spin-resolved Hall
resistances Rσ

H at � = 0.03 (the flux is indicated
by the black horizontal line). (a) At λSO = 0, the
two resistances for spin up and down coincide and
are symmetric around E = 0. (b) At λ = 0.05, R

↑
H

(red curve) and R
↓
H (blue curve) are different, and

satisfy the property R
↑
H (E) = −R

↓
H (−E) mentioned

in the text; the difference is more visible in the
central region E ∈ (−1,1). Notice that the plateaus
at ±e2/h cover the topological and first relativis-
tic gaps, confirming the behavior of edge states
sketched in Fig. 6. The plaquette consists of 33 × 30
sites.

with Eq. (12), this fact indicates the presence of a net spin
current. In other words, the mesoscopic honeycomb lattice
plaquette exhibits QSHE not only in the weak topological gap,
located symmetrically about E = 0, but also in some other
energy stripes, where the number of spin-up edge states differs
from that of the spin-down edge states. Another peculiar aspect
is that, contrary to the situation in the topological gap, the two
spins flow in the same direction, as the chirality of the edge
states is the same no matter the spin.

The result of the numerical calculation for R
↑
H and R

↓
H is

presented in Fig. 12 together with the spin-dependent densities
of states [34]. The shift between the spin-up and spin-down
resistances, visible in the energy stripes about E ∼ 0.6 and
E ∼ 0.8, is confirmed by a similar shift between the two spin-
dependent densities of states.

A last comment concerns the sign of the QSHE: in
the topological gap one has R

↓
H = 1 and R

↑
H = −1; then,

according to Eq. (12), the sign of the total Hall resistance
RS

H is positive. On the other hand, in the spin-imbalanced gap
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FIG. 12. (Color online) The spin-resolved Hall resistance and
density of states; the shifted regions are those where the spin
resistance should be nonzero. The densities of states exhibit the same
shift (� = 0.03, λSO = 0.05, and number of sites = 105 × 40).
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B. OSTAHIE, M. NIŢĂ, AND A. ALDEA PHYSICAL REVIEW B 89, 165412 (2014)

-10

-5

 0

 5

 10

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

C
on

du
ct

an
ce

S
pi

n-
re

so
lv

ed
 D

O
S

 (
ar

b.
un

its
)

Energy

GH
S

GH
Q

intermediate plateaus

DOS DOS

FIG. 13. (Color online) The spin and charge Hall conductance in
the quantum regime (in e/4π and e2/h units, respectively); novel
plateaus are visible in the imbalanced gaps opened by the intrinsic
spin-orbit coupling. The spin-resolved density of states are also shown
(� = 0.03, λSO = 0.05, and number of sites = 105 × 40).

at E = 0.6, one has R
↓
H = −1/3 and R

↑
H = −1, meaning that

RS
H is negative. This opposite sign of RS

H follows from the fact
that, in the spin-imbalanced gap, the spin-up and spin-down
edge sates show the same chirality (which is not the case in
the topological gap).

The longitudinal and Hall resistances being known from
Eq. (12), in the spirit of the experimental work [1], we shall
plot in Fig. 13 the corresponding Hall conductances calculated
as

G
Q
H = R

Q
H(

R
Q
H

)2 + (
R

Q
L

)2 , GS
H = RS

H(
RS

H

)2 + (
RS

L

)2 . (14)

Concerning the charge conductance G
Q
H , we observe not only

the vanishing value in the topological range and the known
plateaus at 2, 6, and 10 in the relativistic one, but also some
unexpected plateaus at 4 and 8 (in units of e2/h). A similar
behavior is proved by the spin Hall conductance GS

H , which
shows the expected value 2e/4π in the topological range, and
then vanishes everywhere except the same energy stripes where
the unusual values of the charge Hall conductance occur. In the
respective stripes the spin Hall conductance equals −2e/4π .
According to the previous discussions, it is obvious that they
appear in the spin-imbalanced gaps generated by the intrinsic
spin-orbit interaction in the presence of the magnetic field.

IV. CONCLUSIONS

The main result consists of finding anomalous plateaus
GS

H = −2e/4π of the QSHE outside the topological gap,
namely in the range of the spin-imbalanced gaps. In the
same places, the IQHE exhibits also uncommon intermediate

plateaus at G
Q
H = ±(4e2/h)(n + 1). The spin-imbalanced

gaps are characterized by nonequal numbers of spin-up and
spin-down edge states. They are due to the splitting generated
by ISO coupling, as sketched in Fig. 6. Since we consider a
small spin-orbit coupling (λSO  t), this type of gaps appear
in the relativistic range of the energy spectrum.

In the “weak” topological gap, the degeneracy of the helical
states is lifted by the magnetic field B. The states evolve with
B and merge into the bands that confine the gap. During
this process the states lose the edge character, as shown in
Fig. 4. At some higher magnetic fields, the topological gap
gets filled with edge states of chiral origin, i.e., coming from
the neighboring Dirac-Landau gaps. These states come also
in pairs of opposite spin and chirality [see Fig. 3 (right)], so
that the QSHE survives, and continues to equal 2e/4π , even
at higher magnetic fields, as long as the gap remains open.

We have noticed that, outside the topological gap, in
the relativistic gaps of the energy spectrum, the degree of
localization of the edge states depends on the spin. Moreover,
the derivatives dE↑/d� and dE↓/d� are different, meaning
that also the diamagnetic moments carried by states of opposite
spins differ in magnitude.

We have looked for disorder effects on the topological gap
and helical edge states at vanishing magnetic field. Although
it is robust at low disorder, the localization along the edges
of the helical states is lost at higher disorder strength [see
Fig. 8(a)], when the states become of metallic type, being
distributed uniformly on the whole plaquette. We find also
that the level spacing of the disordered helical states follows
a Gaussian distribution at low disorder [see Fig. 7(b)]. For
W � 2, the topological gap at � = 0 becomes progressively
narrower with increasing disorder under the compression of
the levels that stem from the highly quasidegenerate regions
of about E = ±1, resulting in a tulip-like spectrum [as in
Fig. 7(a)].

The transmittance matrix is spin dependent and its sym-
metries are shown in Eq. (9) and Fig. 10(a). The symmetry
of T σ

αβ(E,�) results in the properties of the spin and charge
Hall resistance of the four-lead graphene device, which we
are interested in. The numerical calculations are performed at
relatively small magnetic flux (� = 0.03�0) in order to catch
the effect of all gaps specific to the honeycomb lattice (i.e.,
of Dirac-Landau and conventional Landau type). This allows
us also to show the energy dependence of T σ

αα+2(E,�): the
transmittance that kills the quantum plateaus when it takes
large values [noticeable in Fig. 10(a)].
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