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Hole transport and valence-band dispersion law in a HgTe quantum well
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The results of an experimental study of the energy spectrum of a valence band in a HgTe quantum well of
width d < 6.3 nm with normal spectrum in the presence of a strong spin-orbit splitting are reported. The analysis
of the temperature, magnetic field, and gate voltage dependences of the Shubnikov–de Haas oscillations allows
us to restore the energy spectrum of the two valence-band branches, which are split by the spin-orbit interaction.
Comparison with a theoretical calculation shows that a six-band kP theory well describes all the experimental
data in the vicinity of the top of the valence band.
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I. INTRODUCTION

Peculiarities of the energy spectrum of the spatially con-
fined gapless semiconductors (HgTe, HgSe) results in unique
transport, optical, and other properties of the carriers in struc-
tures with quantum wells based on such materials. Theoreti-
cally, the energy spectrum of confined gapless semiconductors
has been intensively studied since 1982 [1–4]. It was shown
that a Dirac-like spectrum linear in quasimomentum should
be realized at some critical width of the HgTe quantum
well, d = dc � 6.3 nm in CdTe/HgTe/CdTe heterostructures
[5]. Just these structures attract especial attention from both
theoreticians and experimentalists.

When the quantum well width is not equal to dc, the
energy spectrum is more complicated. Calculations show
that the quasimomentum dependence of the carrier energy
E(k) for the conduction band is simple enough both for
wide (d > dc) quantum wells with inverse subband ordering
and for narrow (d < dc) wells with a normal spectrum. The
dispersion for electrons is analogous to the spectrum of the
conduction band of the usual narrow-gap semiconductors.
It is close to parabolic in shape at small quasimomentum
(this area shrinks to zero when the well width tends to dc),
crosses over to linear as k increases, and becomes parabolic
again with further increase of k. The spectrum of the valence
band is much more complicated. Even at d close to dc

it is similar to the spectrum of the conduction band only
within a narrow range of energy near the top of the valence
band. In wider quantum wells, d > dc, the spectra of valence
and conduction bands differ greatly. At d > 10–12 nm, the
valence-band dispersion becomes nonmonotonic, namely, an
electronlike section appears at k � 0. In narrower quantum
wells, d < dc, the dispersion of the valence band is nontrivial
as well. Together with the main maximum at k = 0, secondary
maxima in the dependence E(k) arise at large k as theory
predicts.

The experimental study of magnetotransport and the energy
spectrum and their dependence on the well width became
possible only 10–15 years ago. This is primarily due to
the impressive progress in technology [6,7]. Although the
experimental studies are mainly focused on the investigation of

the quantum and spin Hall effects [5,8–11], there is a number
of papers [12–20] where the spectrum of carriers is studied.
However, only four of them, Refs. [13–16], are devoted to
the valence band. One of the key results of the papers is
that the dependence E(k) in structures with d > 10–15 nm
is really nonmonotonic and the electronlike section really
appears at k � 0. This result is in qualitative agreement
with the calculated ones; however, there are very significant
quantitative discrepancies with theoretical predictions [16].

The energy spectrum of the valence band in the structures
with a normal spectrum (d < dc) was experimentally studied
only in Ref. [14]. The measurements were taken at fixed hole
density p = 3 × 1011 cm−2; therefore the interpretation of the
data does not seem very reliable.

In this paper, we report the results of an experimental study
of the hole transport in a HgTe quantum well with a normal
energy spectrum. The measurements were performed over a
wide range of hole densities. Analysis of the experimental data
allows us to reconstruct the energy spectrum of the H1 hole
subband, which has been shown to be in good agreement with
the results of the kP theory.

II. EXPERIMENT

Our HgTe quantum wells were realized on the basis of
a HgTe/Hg1−xCdxTe (x = 0.55–0.65) heterostructure grown
by molecular beam epitaxy (MBE) on a GaAs substrate
with (013) surface orientation [7]. A sketch of the structures
investigated is shown in the inset of Fig. 1(a). The nominal
width of the quantum well was d = 5.8, 5.6, and 5.0 nm
in the structures H724, H1122, and H1310, respectively.
The results for all the structures are similar and we will
discuss the results that were obtained in the structure H724
with the highest Hall mobility. The samples were mesa
etched into standard Hall bars of 0.5 mm width and with
a distance between the potential probes of 0.5 mm. To
change and control the hole density (p) in the quantum
well, field-effect transistors were fabricated with Parylene
as the insulator and aluminum as the gate electrode. The
measurements were performed at temperature of 1.3–4.2 K
in magnetic fields B up to 7 T.
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FIG. 1. (Color online) The magnetic field dependences of ρxx

(a) and ρxy (b) measured for the different gate voltages. The inset
in (a) shows a sketch of the structure H724. The upper inset in (b)
demonstrates the magnetic field dependence of the Hall coefficient at
low magnetic field; the lower inset shows ρxy at B < 2 T.

III. RESULTS AND DISCUSSION

An overview of the magnetic field dependences of
the longitudinal and transverse resistivity (ρxx and ρxy ,
respectively) for different gate voltages (Vg) is presented
in Fig. 1. Well-defined quantum Hall plateaus in ρxy and
minima in ρxx are evident. It should be noted that the
plateaus with the numbers 3 and 6 [see the lower inset in
Fig. 1(b)] are not observed. This point will be discussed
later. As clearly seen from the upper inset in Fig. 1(b), the
Hall coefficient RH = ρxy/B is almost independent of the
magnetic field in the low-field domain B � 0.01–0.2 T,
where the Shubnikov–de Haas (SdH) oscillations are not
observed yet. One can therefore assume that the density of
holes can be obtained as pH = 1/[eRH(0.1 T)]. The gate
voltage dependence of the hole Hall density so obtained
is presented in Fig. 2 by diamonds. One can see that pH

linearly changes with Vg with a slope |dpH/dVg| of about
1.5 × 1010 cm−2 V−1 at −3.5 < Vg < 4 V, where the hole
density is less than 1.5 × 1011 cm−2. At Vg � −3.5 V,
the slope becomes much less; |dpH/dVg| � 0.2 ×
1010 cm−2 V−1. Note that the capacitance C between
the gate electrode and the two-dimensional channel in this
sample is constant over the whole gate voltage range so that
the value of C/e = (1.4 ± 0.15) × 1010 cm−2 V−1 is almost
the same as |dpH/dVg| = 1.5 × 1010 cm−2 V−1 observed
at −3.5 < Vg < 4 V. Possible reasons for the |dpH/dVg|
decrease evident at Vg < −3 V are considered at the end of
this section. The Hall mobility μH = σRH(0.1 T), where σ

stands for the conductivity at B = 0, increases with increase
of pH, achieves the maximal value of about 8 × 104 cm2/(V s)
at pH = 1.3 × 1011 cm−2, and demonstrates a slight decrease
with further pH increase (not shown).

Another way to determine the hole density is by analysis
of the SdH oscillations. The experimental SdH oscillations of
ρxx are shown for several gate voltages in Fig. 3(a), while the
corresponding Fourier spectra are presented in Fig. 3(b). Two
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FIG. 2. (Color online) The gate voltage dependence of the Hall
density pH = 1/[eRH(0.1 T)] (diamonds) and densities p1 and p2

(circles and triangles, respectively) found from the SdH oscillations
(see text). The open circles are p2 found as pH − p1. The crosses are
the sum p1 + p2 = ptot. The solid and dashed straight lines are drawn
with the slopes −1.5 × 1010 cm−2 V−1 and −0.2 × 1010 cm−2 V−1,
respectively. The inset shows the Vg dependence of the ratio p2/p1.
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FIG. 3. (Color online) The SdH oscillations for some gate volt-
ages (a) and their Fourier spectra (b); the calculated energy spectrum
(c) and the Fourier spectrum of the SdH oscillations (d) from Ref. [14].
Arrows in (b) correspond to pH. The scale of the top axis in (b) is
associated with that of the bottom axis via p = ef/(2π�).
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maxima with the frequencies f1 and f2, which are shifted with
the gate voltage, can be easily detected in the Fourier spectra.1

It is noteworthy that the ratio of the frequencies f2/f1 is close
to 2. So the Fourier spectra are analogous to those in the case
when the spin splitting of the Landau levels manifests itself
with magnetic field increase. In such a situation the carrier
density should be determined as pSdH = ef1/(π�). If this is
true in our case, we obtain a pSdH which is significantly less
than the hole density pH obtained from the Hall effect. For
example, inspection of Fig. 3(b) reveals f1 � 2 T for Vg =
−3 V which yields pSdH � 0.95 × 1011 cm−2, whereas the
Hall effect for this gate voltage gives a much larger value,
pH � 1.4 × 1011 cm−2 (see Fig. 2).

Before interpreting our data let us recall that very similar
results were obtained in Ref. [14] for a HgTe quantum well
of the same nominal width but with somewhat larger Hall
density, pH = 3 × 1011 cm−2 [see Fig. 3(d)]. As seen from
the figure two maxima in the Fourier spectrum with a ratio of
frequencies of about 2 were observed also in that paper. Thus
the hole density found from the SdH oscillations turns out to be
less than the Hall density. The authors of Ref. [14] attributed
this discrepancy to the peculiarity of the valence-band energy
spectrum. The energy spectrum calculated for the actual energy
range in Ref. [14] is presented in Fig. 3(c). As seen there
are additional maxima in the dispersion of the valence band
H1 in the (1,1) direction at k‖ � 0.5 nm−1. These maxima
are situated 28 meV below the main maximum at k‖ = 0.
In accordance with the calculation, the authors of Ref. [14]
reasoned that the experimental peak corresponding to p = 1 ×
1011 cm−2 is two merged peaks centered at p = 1.01 × 1011

cm−2 and p = 0.97 × 1011 cm−2, which originate from the
spin-orbit-split H1− and H1+ subbands at k‖ ≈ 0. The peak
at p = 1.95 × 1011 cm−2 corresponds to the sum of the hole
densities in these subbands. So the hole density pSdH found
from the SdH oscillations is about 2 × 1011 cm−2 according to
the interpretation given in Ref. [14]. The difference between
the Hall density pHall = 3 × 1011 cm−2 [see Fig. 3(d)] and
SdH density pSdH = 2 × 1011 cm−2, which is about 1 ×
1011 cm−2, has been attributed to the holes in the four
secondary maxima at k‖ = 0.5 nm−1. According to the authors
of [14] “A peak in the Fourier spectrum due to these holes could
be expected; however, this should occur at a very low frequency
corresponding to p = 0.24 × 1010 cm−2 and is therefore not
observed”. It is clear in the framework of this model that the
reduction of the total hole density to 2 × 1011 cm−2 and below
should lead to the disappearance of the contribution of the
carriers from the secondary maxima and, thus, should lead to
agreement between the Hall and SdH densities. Unfortunately,
the structure studied in Ref. [14] was ungated; therefore the
authors could not control the density of the carriers to check
this interpretation. So the results of Ref. [14] do not seem very
conclusive.

In the structures investigated in the present paper, the
difference between the density found from the SdH oscillations

1Note that in order to find the parameters of the energy spectrum
from the SdH oscillations one should make the Fourier analysis at
low enough magnetic field where the oscillations of the Fermi energy
with the magnetic field can be neglected, i.e., where δρxx/ρxx � 1.

within the above model and the density found from the Hall
effect is observed over the whole gate voltage range, where
the hole density changes from 0.6 × 1011 cm−2 to 1.7 ×
1011 cm−2. Thus, this interpretation does not correspond to
our case.

The only model that describes our results is as follows. As in
Ref. [14], we suppose that the subband of spatial quantization
H1 is split by spin-orbit interaction into two subbands, H1+
and H1−, due to asymmetry of the quantum well. But in
contrast to Ref. [14], we believe that the spin-orbit splitting
is so large that the two maxima evident in our Fourier spectra
originate just from these H1+ and H1− subbands. Under
this assumption the hole densities in the split subbands should
be found as p1,2 = ef1,2/(2π�), where the indices 1 and 2
correspond to H1+ and H1−, respectively. The factor of 2 in
the denominator is due to the absence of “spin” degeneracy of
the split subbands. The total density in this case is the sum of p1

and p2; ptot = p1 + p2. The results of such a data treatment
are presented in Fig. 2 within the gate voltage range from
−8.5 to +0.5 V, where we were able to determine reliably the
frequencies for both peaks in the Fourier spectra. One can see
that the values of ptot coincide with pH, to within experimental
error. At Vg > 0.5 V, we could determine the frequency of
only the low-frequency Fourier component resulting from the
quantization of the H1+ subband. In this case the hole density
in the second subband, H1−, was found as p2 = pH − p1

(depicted by the open circles in Fig. 2). As seen, these data
match the data obtained directly from the Fourier spectra at
Vg < 0.5 V well.

The inset in Fig. 2 shows that the ratio of the hole densities
in spin-orbit-split subbands is essentially independent of the
gate voltage and is about 2 over the whole gate voltage range.
Such a large ratio is evidence of giant spin-orbit splitting.2

At first sight the large spin-orbit splitting of the energy
spectrum in the nominally almost symmetrical structure [see
the inset in Fig. 1(a)] seems very surprising. However, one
must take into account the peculiarity of the MBE growth
process of the Hg1−xCdxTe/HgTe heterostructures. There is
an overpressure of tellurium during the growth process, and
therefore mercury vacancies are present in the structure at the
end of growth. They are the acceptors in Hg1−xCdxTe, and
therefore the major carriers in the quantum well should be the
holes. Nevertheless, the heterostructures as a rule demonstrate
n-type conductivity after evacuation from the growth chamber.
It is believed that this is because mercury overpressure remains
in the chamber after completion of growth. During the cooling,
the mercury vacancies are annealed. When the cooling time is
small, the upper barrier is converted to n type, while the lower

2It might be expected that the existence of two types of carriers
corresponding to the two spin-orbit-split subbands should reveal
itself in the magnetic field dependences of the Hall coefficient and
longitudinal resistance. However, it is easy to check that for such a
ratio between the densities and with a ratio between the mobilities
of about 1.5–2, the change of RH and ρxx in classical magnetic
fields should be about 4%–7% only. In fact, changes of RH and
ρxx with magnetic field of about 3%–5% are observed; however,
it is impossible to find four parameters unambiguously from these
dependencies.
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FIG. 4. (Color online) The values of the hole effective mass in
the subbands H1+ (triangles) and H1− (circles) found at different
quasimomenta k1,2 = √

p1,2/4π . The dotted line is the interpolation
dependence for the m1 vs k data. The solid lines are the result of
the theoretical calculation (see text). The left upper and lower insets
show the Fourier spectra of the oscillations of ρxx taken at Vg = −3 V
within the magnetic field ranges 0.1–0.4 and 0.1–1.1 T, respectively.
The lines in the lower inset are the best fit with two Lorentzians. The
right inset is the temperature dependence of the oscillation amplitude
at B = 0.3 T (symbols) and the result of the best fit by the Lifshits-
Kosevich formula [22] with m = 0.018m0 (line).

barrier can remain of p type. In this case, the quantum well
is brought into the p-n junction and the strong electric field
of the junction should lead to spin-orbit splitting due to the
Rashba effect [21].

Thus, the analysis of the gate voltage dependences of the
Hall density and SdH oscillations shows that we are dealing
with structures whose valence band is strongly split due to
spin-orbit interaction. Knowing this, we are in position to study
the spectrum in more detail.

In order to do this we have determined the hole effective
mass by analyzing the temperature dependence of the am-
plitude of the SdH oscillations. As seen from the left upper
inset in Fig. 4, the main contribution to the SdH oscillations at
low enough magnetic field comes from the one spin-orbit-split
subband H1+, which gives the lower frequency to the Fourier
spectrum. Thus, the effective mass m1 found from the SdH
oscillations within this magnetic field range will correspond to
the mass in the H1+ subband. As an example, the temperature
dependence of the amplitude of SdH oscillations at B = 0.3 T
measured at Vg = −3 V is shown in the right inset in Fig. 4.
A fit of this dependence by the Lifshits-Kosevich formula [22]
(shown by the line) gives m1 = (0.018 ± 0.003)m0. Such an
analysis performed for the different gate voltages gives the
quasimomentum dependence of the effective mass m1, which
is plotted in Fig. 4 by the triangles. One can see that m1

increases with k significantly.
The experimental determination of the effective mass in

the second subband H1− is much more difficult. With this
aim, we have decomposed the Fourier spectra for every
temperature by fitting them by two Lorentzians L1 and L2

0.0 0.5 1.0 1.5
-40

-20

0

H1+

H1-

(a)

E
 (

m
eV

)

k(106 cm-1) 

H1+

0 -10 -20 -30
0.00

0.05

0.10

H1-

 m
1

 m
2

(b)

 m
 / 

m
0

E (meV)

FIG. 5. (Color online) The energy dispersion (a) and the effective
mass plotted against the energy (b) for the H1+ and H1− hole
subbands. Symbols are taken from the experimental data; the solid
lines are the results of a theoretical calculation taking into account
the electric field in the well.

(see the left lower inset in Fig. 4). Then, after inverse Fourier
transformation of L2 we obtained oscillations coming solely
from the H1− subband. Treating the temperature dependence
of the amplitude of these oscillations we have found the
effective mass m2. The results are shown in Fig. 4 by the
circles.

Knowing the m vs k dependence and assuming an isotropic
energy spectrum one can restore the dispersion E(k): E(k) =∫ k

0 k/m(k)dk. Because m1 is measured within a wider interval
of k, we first obtained E(k) for the H1+ subband. Using the
interpoled dependence m(k) shown in Fig. 4 by the dotted
curve, we have obtained the dependence E(k), which is
depicted in Fig. 5(a) by the triangles. To restore the dispersion
of the H1− subband we use the fact that the ratio of the
hole densities in the H1− and H1+ subbands is about 2
over the whole gate voltage range (see the inset in Fig. 2).
So the dispersion of the H1− subband has been obtained
from the H1+ dispersion by scaling with the factor

√
2 in

the k direction. The value of the spin-orbit splitting is really
gigantic: for example, it is about 8 meV at the Fermi energy
20 meV, i.e., approximately 40%, Now, when we have restored
the E vs k dependence we can find the energy dependence of
the effective masses [see Fig. 5(b)]. It is seen that m1 increases
strongly with the energy and m2 is 2–3 times larger than m1.

To compare the experimental results with theory, we have
calculated the energy spectrum within the framework of the
six-band kP model taking into account the lattice mismatch
between the Hg1−xCdxTe layers forming the quantum well
and the CdTe buffer layer. The calculations were performed
within the framework of the isotropic approximation using
the direct integration technique as described in Ref. [23].
The electrostatic potential has been obtained self-consistently
from the simultaneous solution of the Poisson and Schrödinger
equations. The donor and acceptor densities in the upper and
lower barriers, respectively, were supposed to be equal to
3 × 1017 cm−3. The other parameters were the same as in
Refs. [24,25].
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The calculated energy diagram and the dispersion law E(k)
for the heterostructure H724 are shown within a wide k range in
Fig. 6. As clearly seen, the energy spectrum of the valence and
conduction bands is strongly split due to the Rashba effect. A
peculiarity of the spectrum is that the positions of the branches
H1+ and H1− are interchanged at k � 2.5 × 106 cm−1.

To correlate theoretical and experimental results, we have
depicted the calculated dependences m(k), E(k), and m(E) on
the same figures in which the experimental data are presented
[see Figs. 4, 5(a), and 5(b), respectively]. It is evident that in
the range where the experimental data were obtained, they are
in good agreement with the theoretical curves, suggesting the
adequacy of the model used.

Let us now turn to the peculiarity of the quantum Hall effect
mentioned in the beginning of this section and evident as the
absence of the quantum Hall plateaus with the numbers 3 and 6
[see Fig. 1(b)]. Interestingly, the absence of the same plateaus
was also observed but not commented on and discussed in
Ref. [14] (see Fig. 7 in that paper). To understand this feature,
one should calculate the Landau levels. It can be done in
principle with the use of one of the techniques presented in
the literature [25,26]. However, a qualitative explanation can
already be obtained within the much simpler semiclassical
quantization approximation. The energy of the N th Landau
level, EN , in the magnetic field B can be obtained in this case
by substitution of (2N + 1)/l2 instead of k2 in the dependence
E(k), where l = √

�/eB is the magnetic length. Moreover, it
must be taken into account that there is an additional zero-mode
Landau level for such a spectrum, whose position is almost
independent of the magnetic field [16,25–27]. In Fig. 7, we
have depicted a fan-chart diagram calculated in this manner for
the spectrum shown in Fig. 5(a). The dotted lines in this figure
are the Fermi levels calculated with Landau level broadening of
1 meV for the two hole densities p = 1 × 1011 cm−2 and 1.5 ×
1011 cm−2. One can see that the energy distances between the
levels 1− and 0+ and the levels 3− and 2+ near the Fermi

0 2 4 6

-30

-20

-10

0
ZM

1+
0+

2+ 3- 2- 1-

1.5x1011 cm-2

en
er

gy
 (

m
eV

)

B (T)

p=1x1011 cm-2

0-

FIG. 7. (Color online) The energy of the Landau levels as a
function of magnetic field calculated within the semiclassical ap-
proximation. The dotted lines represent the Fermi level for two hole
densities calculated with a Landau level broadening of 1 meV. The
Landau levels are labeled with the quantum numbers N ; the indices
+ and − indicate from which subband, H1+ or H1−, the levels
originate. The zero-mode Landau level is labeled as ZM.

level within this hole density range are less noticeable than
those between the other levels. Therefore, the localized states
between these Landau levels are absent so the ρxy plateaus
with the numbers 3 and 6 have not been observed.

Another feature mentioned above is that the p vs Vg

dependence is flattened at Vg � −3.5 V when the density
reaches the value 1.5 × 1011 cm−2 as the gate voltage is
lowered (Fig. 2). There are two possibilities to explain this
behavior. The first one results from the peculiarity of the
energy spectrum. It is easy to estimate from Fig. 5(a) that the
Fermi level at p = 1.5 × 1011 cm−2 lies at an energy of about
−25 meV. As seen from Fig. 6, this value is close to the energy
of the secondary maxima in the dependence E(k), located at
k � 4 × 106 cm−1. Because of the large effective mass in these
maxima the sinking speed of the Fermi level decreases strongly
when these states are being occupied at Vg < −3.5 V. In the
presence of potential fluctuations, these states can be localized
and, hence, they will not contribute to the conductivity. In this
case, the Hall density will correspond to the hole density in the
main maximum, while the total charge of carriers in the well
will be determined by the density in all the maxima. In favor of
this conclusion is the fact that the flattening of the dependence
p(Vg) is observed in all three structures under study.

The second possibility to explain the feature under discus-
sion is the existence of localized states in the lower barrier
which start to be occupied as the gate voltage decreases just at
Vg � −3.5 V. This should also result in the saturating behavior
of the hole density at Vg � −3.5 V. We cannot exclude this
mechanism at the moment.

IV. CONCLUSION

We have studied the transport phenomena in narrow (d <

dc) HgTe-based quantum wells of p-type conductivity with
a normal energy spectrum. In analyzing the data we have
reconstructed the dispersion law near the top of the valence
band at k � 106 cm−1. It has been shown that the hole energy

165311-5



G. M. MINKOV et al. PHYSICAL REVIEW B 89, 165311 (2014)

spectrum is strongly split by spin-orbit interaction, so that the
ratio of the holes in the split subbands is approximately equal
to 2. It has been shown that the energy spectrum is strongly
nonparabolic, namely, the hole effective masses significantly
increase with energy increase. These results are well described
in the framework of the kP model if one supposes that the lower
barrier remains of p type, while the upper one is converted to
n type after growth stops, so that the quantum well is located
in the strong electric field of a p-n junction.

It is noteworthy that the above conclusion about the
adequacy of the kP model for description of the hole energy
spectrum is opposite to the conclusion made in our previous
paper [16] on wide (d > dc) HgTe quantum wells with an
inverted spectrum. It was there shown that the valence-band
spectrum is electronlike near k = 0 so the top of the band is
located at k �= 0. The key result of the paper, however, was that
the experimental and calculated hole spectra, though in quali-
tative agreement, were strongly different quantitatively within
the whole range of experimentally accessible quasimomentum
values, k � 1.7 × 106 cm−1.

One of the possible reasons why the theory works well
in the narrow HgTe quantum wells and does not explain
the data in wide wells is the following. The top of the

valence band is formed from the different subbands of spatial
quantization in narrow and wide quantum wells. The top
is the H1 subband in the first case and the H2 subband
in the second one. Thus it turns out that the standard kP
model describing the dispersion of the H1 subband fails
to describe the spectrum of the H2 subband for whatever
reason. The other possible reason concerns the band gap. In
the quantum wells investigated in the present paper, the valence
and conduction bands are separated by the gap. The systems
investigated in Ref. [16] are semimetallic, and therefore
electrons and holes can coexist in that case. The workability
of the single-particle approximation in such a situation can
be really questionable and a many-particle approach could
be more adequate. In any case, this problem requires further
investigation.
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