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Spin torques and charge transport on the surface of topological insulator
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We study various aspects of interplay between two-dimensional helical electrons, realized on the surface
of a three-dimensional topological insulator, and the magnetization of a ferromagnet coupled to them. The
magnetization is assumed to be perpendicular to the surface, with small transverse fluctuations u. In the first part
of this paper, we calculate spin torques that the helical electrons exert on the magnetization. Up to first orders with
respect to u, space/time derivative and electric current, we have determined all torques, which include Gilbert
damping, spin renormalization, current-induced spin-orbit torques, and gradient corrections to them. Thanks to
the identity between the velocity and spin in this model, these torques have exact interpretation in terms of
transport phenomena, namely, diagonal conductivity, (anomalous) Hall conductivity, and corrections to them due
to ordinary Hall effect on top of the anomalous one. These torque (and transport) coefficients are studied in detail
with particular attention to the effects of vertex corrections and type of impurities (normal and magnetic). It is
shown rigorously that the conventional current-induced torques, namely, spin-transfer torque and the so-called β

term, are absent. An electromotive force generated by spin dynamics, which is the inverse to the current-induced
spin-orbit torque, is also studied. In the second part, we study the feedback effects arising as combinations of
current-induced spin-orbit torques and spin-dynamics-induced electromotive force. It is demonstrated that the
Gilbert damping process in this system is completely understood as a feedback effect. Another feedback effect,
which may be called “magnon-drag electrical conductivity,” is shown to violate the exact correspondence between
spin-torque and transport phenomena demonstrated in the first part.
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I. INTRODUCTION

Controlling a ferromagnetic moment by electric current
has been studied extensively for more than a decade. This
subject originates in a theoretical proposal of the spin-transfer
effect [1,2], which is based on the conservation of spin
angular momentum. Subsequently, it was noticed that there
are dissipative [3,4] or nonadiabatic [5,6] corrections to the
spin-transfer torque, which are not limited by the conservation
law and thus may be utilized for more efficient control of
magnetization. Recently, a new possibility was introduced
which utilizes current-induced spin polarization due to spin-
orbit coupling. Such “spin-orbit torques” can be expected in
systems without inversion symmetry, most typically in systems
with Rashba-type spin-orbit coupling [7–12]. Theoretical
analysis of them, in particular including the spatial gradient of
magnetization, is, however, quite complicated [13].

In a different branch of spintronics, a similar, but much
simpler, system came into the real physical world. This is
the surface states of a three-dimensional (3D) topological
insulator [14,15]. In addition to its interest in itself [16–24],
it may be regarded as an ideal system also in the context
described in the previous paragraph since the kinetic energy
consists purely of the Rashba term (hence takes a Dirac
form). In fact, it is accessible by a clean physical [21,23] and
analytical treatment, and sometimes allows exact statements.
The purpose of this paper is to pursue an analytical treatment
of this simple system, hopefully to gain some insight to

*Present address: Department of Physics, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.

study more complicated models such as the ordinary Rashba
system. Another pleasant aspect of this simple model is that
exact correspondences are expected among spin torque, charge
transport, and electromotive force generated by magnetization
dynamics.

A 3D topological insulator hosts on the surface a gapless
two-dimensional (2D) Dirac electron system with ideally
strong spin-orbit coupling. When coated with an insulating
ferromagnet [25–27] or doped with magnetic impurities
[28–30], a uniform and perpendicular component of magneti-
zation opens a gap in the Dirac spectrum. The electron system
in turn affects the magnetization, especially its dynamics, via
spin torques. The current-induced “spin-orbit torques” in this
system were first studied in the undoped case by Garate and
Franz as a topological magnetoelectric effect with emphasis on
its dissipationless nature [21]. Nomura and Nagaosa presented
a new viewpoint on the electrical driving of domain wall
based on their observation that a (Néel-type) domain wall
is associated with electric charge (for the undoped case)
[23]. Yokoyama et al. studied the doped case and found a
much larger current-induced torque [22]. They also studied
current-induced torques containing magnetization gradient,
but with incorrect results [31]. Our principal aim in this
paper is to further develop the theoretical study of spin
torques. We determine all torques up to the first order in time
derivative or spatial gradient, for a small-amplitude deviation
of magnetization from the uniformly and perpendicularly
magnetized state. The results on spin torques are readily
translated into charge transport phenomena driven by an
applied electric field or by an electromotive force generated
by magnetization dynamics. We give a precise calculation of
the linear-response coefficients describing these phenomena
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within the self-consistent Born approximation with ladder
vertex corrections. Effects of magnetic impurities are also
studied. The results found in this paper are summarized as
follows:

(i) Spin torques with time derivative are exhausted by
conventional ones, namely, Gilbert damping and spin renor-
malization. They are proportional to electrical conductivities
(σxx and σxy) as noted before [22]. We show that this fact can
be physically interpreted in terms of the feedback effect [see
(iv) below].

(ii) Current-induced spin torques are exhausted by the
so-called “spin-orbit torques” and gradient corrections to
them. The conventional current-induced torques (spin-transfer
torque and its dissipative correction called β term) are absent.

(iii) All torque coefficients can be (naively) related to trans-
port coefficients. In particular, the absence of conventional
current-induced torques can be understood as a consequence
of gauge invariance in the transport picture.

(iv) The so-called feedback effects are discussed, which
arise from the mutual coupling between spin dynamics
and charge transport. In addition to feedback spin torques
[32–35], we study a new type of feedback effect in which
the charge transport is affected by the induced spin dy-
namics and the resulting electromotive force. The former
gives Gilbert damping [35] and spin renormalization [see
(i) above]. The latter appears as the modification of con-
ductivity tensor and may be called “magnon-drag electrical
conductivity.”

(v) The correspondence between the torque coefficients
and the transport coefficients, mentioned in (iii) above, breaks
down if the feedback (or magnon-drag) effects are included in
the transport coefficients.

(vi) The quantum anomalous Hall (QAH) state, realized
when the chemical potential lies in the gap, is found to be
fragile (not protected by the gap) in the following sense:
low-frequency ac conductivity deviates from the QAH values
(vanishing σxx and quantized σxy) by some powers of the
frequency (at absolute zero temperature). This is due to the
dynamical nature of the magnetization which causes the gap,
and manifests as the feedback effect.

Through the calculation, we realized that the usual cutoff
prescription (in terms of lattice constant, or Brillouin-zone
size) to manage some divergent integrals fails to respect the
Ward-Takahashi identity. This invalidates the gauge invariance
and topological quantization of anomalous Hall conductivity.
We are thus led to exploit another cutoff scheme and take
the impurity-potential range as a cutoff which respects gauge
invariance [36].

This paper is organized as follows. In Sec. II, we describe
the model, Green’s functions, and the regularization scheme
to manage divergent integrals. Spin torques are calculated
in Sec. III (Gilbert damping and spin renormalization) and
Sec. IV (current-induced torques). The obtained results are
discussed in terms of transport coefficients in Sec. V, and
the feedback effects are studied in Sec. VI. Results and
discussion are given in Sec. VII, and the summary is
given in Sec. VIII. Calculational details are presented in
the Appendices. Mathematical notations are summarized in
the Supplemental Material [37]. Conceptually, this paper is
divided into two parts: the first part (Secs. III–V) emphasizes

the torque-transport correspondence, and the second part
(Sec. VI) is related to its violation.

II. MODEL AND FORMULATION

A. Model

We consider a two-dimensional helical electron system
coupled to a ferromagnetic moment by exchange interaction
[17–20]. Such a system may be realized by depositing a
ferromagnet [25–27] or by doping magnetic impurities which
eventually order [28–30] on the surface of a topological insu-
lator. In real materials, there are more or less deviations from
the simple Dirac model, and also some complicating factors.
For example, in the “magnetic coating” case, first-principles
studies show the appearance of other (nontopological) band
at the interface of most promising combination of realistic
materials Bi2Se3/MnSe(111) [25,27]. In this paper, deferring
the theoretical analysis of such complications to the future,
or hoping for some experimental breakthroughs to reduce
complications [38,39], we study a simple model Hamiltonian

H =
∑

k

c
†
k[−�vF(k × σ )z − μ]ck

−M

∫
d r (c†σc)r ·n(r,t) + V̂imp. (1)

Here, c† = (c†↑,c
†
↓) and c = t (c↑,c↓) are electron cre-

ation/annihilation operators, σ is a vector of Pauli matrices, and
μ is the chemical potential. The first term represents kinetic
energy with strong spin-orbit coupling of helical character. The
second term is the exchange coupling to the ferromagnetic
moment, whose spin direction is denoted by a unit vector
n, and M is a constant related to exchange splitting. The
coupling to random impurities V̂imp = ∫

d r c†(r)Vimp(r)c(r)
is detailed in the following. For the case of magnetic doping,
the ferromagnetic order parameter will have spatial variation.
The uniform part is expressed by M , and deviations from it
may roughly be treated as magnetic impurities. We assume
that the ferromagnetism is well developed and there is no sign
change in the order parameter, and neglect any zero-mode
effects [28,40].

For M = 0 (and Vimp = 0), the electron dispersion εk =
±�vFk is gapless and linear in k ≡ |k|. For M �= 0 with
a uniform magnetization n = ±ẑ, along the z direction, it
acquires a gap as εk = ±

√
(�vFk)2 + M2. This state supports

a zero-field Hall conductivity σxy �= 0, due to anomalous Hall
effect, a combined effect of spin-orbit coupling and exchange
splitting. When μ lies in the gap |μ| < |M|, this system is
in a quantum anomalous Hall (QAH) state and σxy takes a
half-quantum value [41]

σxy = e2

2h
sgnMz (|μ| < |M|), (2)

where Mz = Mnz = ±M , and h = 2π� is the Planck con-
stant. Another peculiar feature of the model (1) is that the
electron velocity

v = vF(ẑ × σ ) (3)

is essentially given by spin [42]. This fact turns out to be useful
for deeper understanding of the results.
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As for impurities, we consider normal and magnetic
impurities and take

Vimp(r) =
∑

i

u(r − Ri) +
∑

j

us(r − R′
j )Sj ·σ , (4)

where Sj represents the j th impurity spin. We focus on
short-range potential and put u(r) → u0δ(r) and us(r) →
usδ(r) whenever possible (see Sec. II D). We take a Gaussian
average over impurity positions as Vimp(r)Vimp(r ′) = (niu

2
0 +

nsu
2
s S

α
i S

β

j σ ασβ)δ(r − r ′), where ni (ns) is the concentration
of normal (magnetic) impurities. Averaging over impurity spin
direction is taken as Sα

i = 0 and

Sα
i S

β

j = δij δ
αβ ×

{
S2

⊥ (α,β = x,y),

S2
z (α,β = z).

(5)

In the main text, we consider only the normal impurities for
simplicity (except for figures). Modifications due to magnetic
impurities are summarized in Appendix A 4. Throughout, we
assume weak impurity scattering.

B. Spin torque

Dynamics of the ferromagnetic moment, or spin n, is
described by the Landau-Lifshitz-Gilbert (LLG) equation

ṅ = γd Heff × n − αd n × ṅ + t ′. (6)

Putting aside the ordinary precessional and damping torques
(first and second terms, with effective field γd Heff and damp-
ing constant αd coming from all but conduction electrons),
the effects of conduction electrons are contained in the third
term. It comes from the exchange interaction −Mn·σ̂ , where
σ̂ = c†σc, and is given by

t = Mn × 〈σ̂ 〉 ≡ s0 t ′. (7)

The second equality in Eq. (7) defines t ′ in Eq. (6), where

s0 = �S/a2 (8)

is the angular-momentum density of the ferromagnetic mo-
ment, with a2 being the area on the surface per localized spin
S which carries the ferromagnetic moment.

In systems with weak spin-orbit coupling (with inversion
symmetry), spin torques are generally expected to have the
form [3,4]

t ′ = −αc (n × ṅ) − δS

S
ṅ − (

v0
s · ∇)

n − β n × (
v0

s · ∇)
n

(9)

in the first order in time derivative and spatial gradient of n.
The first term is the Gilbert damping with damping constant
αc. The second term contributes to renormalize the spin from
S to

Stot = S + δS (10)

by including the electron spin δS. These lead to

α = (αd + αc)
S

S + δS
(11)

as the total damping constant [43]. The third term is the spin-
transfer torque, with v0

s being a velocity proportional to spin-
current density, and the fourth term is its dissipative correction
due to spin-relaxation processes [3,44–46], called the β term
[4]. Other types of torques can be expected in the presence of
nonadiabaticity [5,6] or spin-orbit coupling (in systems with
broken inversion symmetry) [7,8].

In this paper, we restrict ourselves to a small-amplitude
magnetization dynamics around a uniformly magnetized state
n = ±ẑ and write as [44,45]

n = ±ẑ
√

1 − u2 + u � ±ẑ + u, (12)

where u(r,t) = (ux,uy,0) is a small transverse component. By
calculating the spin density in the first order in u, we obtain spin
torques from Eq. (7). It is convenient to divide the Hamiltonian
as H = H0 + H1:

H0 =
∑

k

c
†
k [−�vF(k × σ )z − Mzσ

z − μ] ck + V̂imp, (13)

H1 = −M

∫
d r (c†σc)r ·u(r,t), (14)

where

Mz = Mnz = ±M. (15)

In the first order in H1, hence in u, the electron spin acquires
a transverse component 〈σ̂⊥〉 ⊥ ẑ and contributes to the spin
torque

t = Mzẑ × 〈σ̂⊥〉. (16)

We focus on torques up to the first order in u.
Some remarks are in order. For the case of magnetic coating,

the spin torques act at the interface whereas the ferromagnet
has a finite thickness, hence t ′ in Eq. (6) should be divided by
the number of atomic layers of the ferromagnet [22].

For the case of magnetic doping, it is possible that the mag-
netization is entirely carried by helical electrons (“itinerant
ferromagnetism”). In this case, one may wonder whether the
expressions for the torque such as Eqs. (7) and (16) make sense
since both n and σ come from the same electrons. However,
careful studies show that the appropriate results can be
obtained from the present results by simply setting S = 0 while
keeping the conduction electron components (such as δS)
[45,46].

C. Green’s function

The (retarded) Green’s function for H0 is given by

GR
k (ε) = [ε + �vF(k × σ )z + Mzσ

z + μ − 	̂(k,ε)]−1

≡ (g0 + g · σ )DR
k (ε), (17)

where 	̂ = 	0 + � ·σ with � = (	1,	2,	3) is the (retarded)
self-energy due to impurity scattering, and

g0(ε) = ε + μ − 	0(ε), (18)

g(ε) = −�vF(ẑ × k) − Mzẑ + �(k,ε), (19)

DR
k (ε) = [(g0)2 − (g)2]−1. (20)

As described in the next section, 	0 and 	3 depend only on ε

but not on k, whereas 	1 and 	2 depend only on k (and not
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FIG. 1. Self-energy in the Born approximation.

on ε). At ε = 0, 	0 and 	3 can be taken to be pure imaginary

	0(0) = −iγ, 	3(0) = −iγ ′ (21)

by neglecting the real parts. (The real parts can be absorbed
into the definition of μ and Mz [47].) The damping constants
γ and γ ′ are calculated in the first Born approximation (Fig. 1)
as [48]

γ = γ0 |μ| 
(μ2 − M2), γ ′ = −(Mz/μ)γ, (22)

where 
(x) is the Heaviside step function, 
(x < 0) = 0,

(x > 0) = 1, and the dimensionless parameter

γ0 = niu
2
0

4(�vF)2
(23)

is assumed to be small (compared to unity). As for 	̂⊥ ≡
	1σ

x + 	2σ
y , it is calculated as (see below) [36]

	̂⊥(k) = γ0

π + γ0
�vF(k × σ )z. (24)

The Green’s function is thus written as

ĜR
k (ε) = [ ε + μ + �ṽF(k × σ )z + Mzσ

z − 	̂‖(ε)]−1, (25)

where 	̂‖ = 	0 + 	3σ
z, and

ṽF = π

π + γ0
vF ≡ ξvF (26)

is the renormalized velocity with

ξ = π

π + γ0
(27)

being the renormalization constant. In the following calcula-
tion, the full ε dependence of 	0 and 	3 is necessary at the
intermediate stage (when there is a “Fermi-sea term”), but the
final results depend only on those at ε = 0.

D. Regularization

In the calculation, we encounter divergent integrals such as∑
k Dk, and some consistent procedure is needed to handle

them. Usually, a momentum cutoff �BZ is introduced to limit
the single-particle states to |k| < �BZ [49]. However, this is
not favorable from the viewpoint of theoretical consistency
such as gauge invariance and topological quantization (see
Appendix A 5). In fact, the Ward-Takahashi identity [50]

vi + 1

�

∂	̂(k,ε)

∂ki

= �̃i(k,ε) (28)

between the self-energy 	̂(k,ε) and the current vertex function
�̃i(k,ε) does not hold since the δ-function potential leads
to a k-independent self-energy but the vertex function is

nonvanishing

�̃i(k,ε) = π

π + γ0
vF(ẑ × σ )i , (29)

as deduced from Eqs. (A56) or (A66) in Appendix A.
As a systematic method to overcome this unpleasant

situation, we introduce a (short-distance) cutoff in the range
of the impurity potential, and smear the δ-function potential.
Deferring the details to elsewhere [36], we summarize the
results as follows. The self-energy is determined in the self-
consistent Born approximation by

	̂(k,ε) = ni

∑
k′

|uk−k′ |2GR
k′(ε), (30)

where uk is the Fourier component of the impurity potential
whose range is finite (not zero like a δ function). The
self-energy then acquires a k dependence, and the result is
given by Eq. (24). The Ward-Takahashi identity (28) is thus
satisfied. The total self-energy is given by 	̂ = 	̂‖ + 	̂⊥,
where 	̂‖(ε) ≡ 	0(ε) + 	3(ε)σ z is determined from the self-
consistent equations

	0(ε) = niu
2
0 [ε + μ − 	0(ε)]

∑
|k|<�imp

Dk(ε), (31)

	3(ε) = −niu
2
0 [Mz − 	3(ε)]

∑
|k|<�imp

Dk(ε), (32)

where we have chosen uk = u0
(�imp − |k|) with �imp being
the potential-range cutoff. Equations (31) and (32) are formally
the same as those obtained based on the ordinary cutoff [51]
�BZ, but there is a crucial difference in 	̂⊥. In this paper, we
use the self-consistent equations (31) and (32) to remove the
divergence encountered in the calculation [see Eq. (B15)].
After removing the divergences, we evaluate the resulting
expressions based on the first Born approximation (for the
self-energy).

III. GILBERT DAMPING AND SPIN RENORMALIZATION

Gilbert damping constant αc and spin renormalization δS,
both due to conduction electrons, can be read from the ω-
linear terms of the transverse spin susceptibility [52] χ

αβ

⊥ (ω) =
〈〈 σ̂ α

⊥; σ̂ β

⊥〉〉ω+i0(α,β = x,y) as [45]

lim
ω→0

χ
αβ

⊥ (ω) − χ
αβ

⊥ (0)

iω
= s0

M2

{
αcδ

αβ

⊥ ± δS

S
εαβ

}
, (33)

where δ
αβ

⊥ = δαβ − δαzδβz, and ± corresponds to nz = ±1 [see
Eq. (12)]. This is derived by considering the linear response
of the electron spin density 〈σ̂ α

⊥(0)〉ω = Mχ
αβ

⊥ (ω)uβ(ω) to
a time-dependent (but uniform) magnetization n(t) = ±ẑ +
u(ω) e−iωt (the perturbation is H1) and using Eq. (16). The
form of Eq. (33), which has been confirmed by the present
explicit calculation, shows that torques which are first order in
u̇ are exhausted by [53]

t ′
1 = ∓αc(ẑ × u̇) − δS

S
u̇. (34)

This fact turns out to be crucial in the discussion in Sec. VI.
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FIG. 2. Feynman diagram for transverse spin susceptibility
(upper diagram). �β represents the renormalized vertex defined by
the lower diagrams.

For convenience, we introduce α̃ and δS̃ by

αc = (a/λM )2 α̃/S, δS = (a/λM )2 δS̃, (35)

where

λM = 2π�vF/|M| (36)

is the “Compton wavelength” for a particle with mass |M|/v2
F

and for a “light velocity” vF. (This is defined by using the bare
velocity.) With [54,55] vF = 4 × 105 m/s and a = 0.5 nm,
we may estimate as λM ∼ 17 nm, (a/λM )2 ∼ 10−3 for M =
0.1 eV, and λM ∼ 170 nm, (a/λM )2 ∼ 10−5 for M = 0.01 eV.

The diagrammatic expression for χ
αβ

⊥ (iωλ) ≡ 〈〈 σ̂ α; σ̂ β〉〉iωλ

is shown in Fig. 2. Let us first consider the contribution without
vertex corrections

χ
αβ

⊥ (iωλ) = −T
∑

n

∑
k

tr[σαG+
k σβGk]. (37)

Here and hereafter, we express the dependence on the Matsub-
ara frequency as G+ = G(iεn + iωλ), G = G(iεn). We defer
the details of calculation to Appendix A 1, but note here that α̃

and δS̃ (without vertex corrections) generally consist of three
terms

α̃ = α̃′ + α̃′′ + α̃′′′, (38)

δS̃ = δS̃ ′ + δS̃ ′′ + δS̃ ′′′. (39)

Here, O′, O′′, and O′′′ (with O = α̃,δS̃) refer to the first,
second, and third terms, respectively, in Eqs. (A11) and (A12).
These are characterized as follows:O′ comes from the analytic
continuation (G+,G) → (GR,GA), andO′′ andO′′′ come from
(G+,G) → (GR,GR) or (GA,GA). Often,O′ andO′′ are called
Fermi-surface terms, and O′′′ a Fermi-sea term.

The results are given as follows. For the “doped” case |μ| >

|M|, where the chemical potential μ lies in the band, we obtain

α̃′ = π

2

1 + γ 2
0

γ0

μ2 − M2

μ2 + M2
(1 − χζ ), (40)

α̃′′ = 1, (41)

δS̃ ′ = 2πM|μ|
μ2 + M2

(1 − χζ ), (42)

δS̃ ′′′ = tan−1

[
2γ0

1 − γ 2
0

2M|μ|
μ2 − M2

]
, (43)

and α̃′′′ = δS̃ ′′ = 0, where

χζ = 1

π
tan−1

[
2γ0

1 − γ 2
0

μ2 + M2

μ2 − M2

]
, (44)

with 0 � χζ � 1
2 . The results without vertex corrections are

given by α̃ = α̃′ + α̃′′ and δS̃ = δS̃ ′ + δS̃ ′′′.
The vertex corrections are taken into account by replacing

the bare vertex σβ by the renormalized vertex �β . This
is described in Appendix A 3. The results (with velocity
renormalization) are given by [53]

α̃ = ξ−2ρ (α̃′ cos θ ∓ δS̃ ′ sin θ ) + ξ−1α̃′′, (45)

δS̃ = ξ−2ρ (δS̃ ′ cos θ ± α̃′ sin θ ) + δS̃ ′′′, (46)

which amounts to rotation (by θ ) and dilation (by ρ or ξ )
in spin space. The θ , ρ, and ξ are given in Appendix A 3.
Explicitly, we have

α̃ = π

γ0

(1 − χζ )(μ2 − M2)

(1 + χζ )μ2 + (3 − χζ )M2
, (47)

δS̃ = 8π (1 − χζ )(μ2 + M2)M|μ|
[(1 + χζ )μ2 + (3 − χζ )M2]2

+ tan−1

(
γ0

4M|μ|
μ2 − M2

)
,

(48)

where we have deliberately neglected γ0 and γ 2
0 compared to

unity. If |μ| is not close to |M|, χζ and tan−1(. . .) are of order
γ0, and have

α̃ = π

γ0

μ2 − M2

μ2 + 3M2
, (49)

δS̃ = 8πM|μ| μ2 + M2

(μ2 + 3M2)2
, (50)

which coincide with the previous works (on transport coeffi-
cients) [56,57].

For the “undoped” case, namely, when μ lies in the gap
|μ| < |M|, we have

α̃ = 0, (51)

δS̃ = π sgnM, (52)

irrespective of whether the vertex corrections are included or
not. [When the vertex corrections are included, the velocity
renormalization is also taken into account. This assures the
Ward-Takahashi identity (28) and the “half-quantum” value of
δS̃ [58].]

These results are plotted in Figs. 3 and 4 as functions of
μ. In both figures, the curve 1 contains RA-type and RR-type
vertex corrections as well as the velocity renormalization (ρ,θ ,
and ξ plotted in Fig. 5) [59]. The curve 2 includes no vertex
corrections (θ = 0, ρ = ξ = 1). Note that the magnitude of
the actual parameters is obtained by multiplying a small factor
(a/λM )2 [see Eq. (35)].
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FIG. 3. (Color online) Normalized Gilbert damping constant α̃

[Eq. (35)] as a function of chemical potential μ for γ0 = 0.1, with (1)
and without (2) vertex corrections. Partial contributions α̃′ and α̃′′ are
also plotted as 3 and 4, respectively.

One sees from the figures that both α̃ and δS̃ are enhanced
by the vertex corrections. As will be discussed in Sec. V,
these quantities are equivalent to electrical conductivities
σxx and σxy , respectively. The enhancement is then naturally
understood as due to the dominance of forward scattering in
the impurity scattering. Namely, spin-conserving scattering
is dominated by forward scattering for |μ| � |M| because of
the “spin-momentum locking” on the Fermi surface. [Note that
the electron spin sees the vector Re g, Eq. (19), as an effective
magnetic field.] This feature is weakened for |μ| � 2|M| and
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FIG. 4. (Color online) Normalized spin renormalization δS̃

[Eq. (35)] as a function of chemical potential μ for γ0 = 0.1, with (1)
and without (2) vertex corrections. Partial contributions δS̃ ′ and δS̃ ′′′

are also plotted as 3 and 4, respectively.

FIG. 5. (Color online) Parameters c0,c1,ρ,θ [see Eqs. (A59)–
(A61)], ξ and Cζ [see Eq. (B12)] as functions of μ for γ0 = 0.1.
c0 and ρ are almost overlapped.

diminishes as μ approaches the band edge because of finite
g3 ∼ −M .

For δS, even a qualitative feature is changed from a mono-
tonically decreasing behavior (without vertex corrections) to
a peaked one (with vertex corrections) as a function of |μ|.
This is mainly due to the mixing of α̃′ which is much larger
than δS̃ ′ for |μ| > |M|. This mixing is allowed because of the
violation of time-reversal symmetry (and parity) by M .

The effects of vertex corrections are expected to change
if we include magnetic impurities which cause spin-flip
scattering. Examples are shown in Figs. 6 and 7 for α̃ and

FIG. 6. (Color online) Normalized Gilbert damping constant α̃

as a function of chemical potential μ in the presence of magnetic
impurities (γz) in addition to normal impurities (γ0). Their relative
magnitudes are changed by keeping γ0 + γz = 0.1 and γ⊥ = 0. See
Eq. (A76) for the notations.
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FIG. 7. (Color online) Normalized spin renormalization δS̃ as
a function of chemical potential μ in the presence of magnetic
impurities (γz) in addition to normal impurities (γ0). Their relative
magnitudes are changed by keeping γ0 + γz = 0.1 and γ⊥ = 0.

δS̃, respectively, for the case of “Ising-type” impurity spins
which point to the normal to the surface of a topological
insulator. As the magnetic (spin-flip) scattering, quantified by
its contribution γz to the electron damping [see Eq. (A75)
for the definition], is increased relative to the spin-conserving
scattering (γ0), the effect of vertex corrections changes from
the enhancement (for γz < γ0) to suppression (for γz > γ0).
The curves at γz = γ0 exactly coincide with those without
vertex corrections (curves 2 in Figs. 3 and 4). The results
(not shown) for “XY -type” impurity spins, which point to
the in-plane direction, show similar behavior but with a
more moderate dependence on the corresponding damping
parameter (γ⊥). The difference comes from the difference in
the spin-flip rate.

The fact that the sign of δS is the same as the sign of
M is quite natural in view of the fact that S + δS enters
the LLG equation as the total spin (angular momentum).
Namely, the spin of the conduction electrons (δS) will be
parallel to the d spin (S) if M > 0, and anti-parallel if M < 0.
However, it should be distinguished from the equilibrium
spin polarization 〈σ̂ z〉0 since δS is a dynamical quantity
(obtained as an ω-linear term in the response function), and
does not necessarily coincide with 〈σ̂ z〉0 when there are
spin-nonconserving processes [3] such as due to the spin-orbit
coupling [60].

The value of δS in the limit μ,M → 0 depends on the
way the limit is taken; if μ → 0 is taken first, we have δS̃ →
π sgnM , whereas if M → 0 is taken first, we have δS̃ → 0. In
the former case, δS is discontinuous at M = 0. This is known
as “parity anomaly” in field theory [61].

It is worth noting that, when μ lies in the gap, δS̃ ′′′
has a topological character and takes a quantized value
δS̃ ′′′ = π sgnM , as shown in Appendix A 5. We stress that
such a topological argument remains valid in the presence of
impurities (or self-energy in general) if the Ward-Takahashi
identity (28), or ∂G/∂(�ki) = G�̃iG, is satisfied [58]. This
requires a careful treatment of ultraviolet divergence in the
calculation of self-energy as mentioned in Sec. II D.

IV. CURRENT-INDUCED TORQUES

For current-induced torques, we consider a static but
spatially varying magnetization n(r) = ±ẑ + u(q) eiq·r and
calculate electrons’ spin polarization 〈σ̂ α

⊥〉 in a state with an
Ohmic current. We introduce an external electric field E to
drive a current, and apply the linear-response theory to this
perturbation:

〈σ̂ α
⊥〉 = lim

ω→0

Kα
i (q,ω + i0) − Kα

i (q,0)

iω
Ei, (53)

where [52] Kα
i (q,iωλ) = 〈〈 σ̂ α

⊥(q); Ĵi〉〉iωλ
describes the re-

sponse of σ̂ α to E which perturbs the total electric current
Ĵ = −e

∑
kσ c

†
kσvckσ . We look at the spin density whose wave

vector q comes from the magnetization texture.
As noted by Garate and Franz [21], the response (53) is

already finite in a state with uniform magnetization n = ±ẑ.
Thanks to the spin-velocity equivalence (3), and as will be
discussed in Sec. V, we readily obtain the spin density [53]

〈σ⊥〉 = e

4π2�vF
{ ± δS̃ E + α̃ (ẑ × E)}, (54)

or the torque density [53]

t2 = eM

4π2�vF
{ δS̃ (ẑ × E) ∓ α̃E}. (55)

The coefficients (δS̃ and α̃) are precisely the same as those
calculated in the previous section. Garate and Franz [21]
considered the case |μ| < |M|, where only the δS̃ term is
present. Yokoyama et al. [22] pointed out that the α̃ term is
also present (and much larger than δS̃) for the doped case
|μ| > |M|. Here, we see that they are enhanced by vertex
corrections (Figs. 3 and 4) if the effects of magnetic impurities
are not too strong.

In this paper, we proceed further and calculate torques in
the first order in u (and q). By expanding Kα

i with respect to
u (namely, H1) and q both in the first order, we write

Kα
i (q,iωλ) = −eMK

αβ

ij (iωλ) qju
β(q). (56)

The coefficient K
αβ

ij is expressed diagrammatically in Fig. 8.
For example, the contribution without vertex corrections
[Fig. 8(a)] is given by

K
αβ

ij (iωλ) = T
∑

n

∑
k

{tr[σα(∂jG
+
k )σβG+

k viGk]

− tr[σαG+
k viGkσ

β(∂jGk)]}. (57)

This is calculated in Appendix A 2, and the result is

K
αβ

ij (ω + i0) = ω

M2
(Aεiα + B δiα

⊥ ) δ
βj

⊥ + O(ω2), (58)

where A and B are dimensionless coefficients presented below.
The torque density is thus obtained as

t3 = e {−AE + B (ẑ × E)} divu, (59)

where divu = (∂ux/∂x) + (∂uy/∂y). Inclusion of vertex cor-
rections shown in Fig. 8(b) does not change the functional
form of the torque, but modifies the coefficients A and B (see
below). These are calculated in Appendix A 3. Contributions
with another type of vertex corrections shown in Fig. 8(c) turn
out to vanish [62].
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FIG. 8. Diagrammatic expression for K
αβ

ij without (a) and with
(b), (c) vertex corrections. The shaded triangles in (b) and (c) represent
renormalized vertices: the one with �α represents a renormalized
spin (σα) vertex, and that with �̃i represents a renormalized velocity
(vi) vertex. The former has been defined in Fig. 2(b), and the latter
is defined by �̃i = −vFεiα�

α . The double line with a cross in (c)
represents a ladder defined in (d).

Note the peculiar combination divu = ∇ · u, of ∇ and u in
Eq. (59), which is different from the spin-transfer torque and
the β term [see Eq. (9)]; while the (vectorial) direction of the
spin-transfer torque (and the β term) is determined by the spin

direction u, the direction of the present torque [Eq. (59)] is
determined by E, and we see that the latter is just the gradient
correction to Eq. (55). Since the present calculation shows
that all torques of the form Ei∂ju

β are exhausted by Eq. (59),
we conclude that the spin-transfer torque and the β term are
absent in the present system. This fact will be reinforced by
the gauge-invariance argument in Sec. V.

The coefficients A and B are given by Eqs. (A48)–(A51),
or more explicitly as follows. For |μ| > |M|, we have obtained

A′ = − 1

2π2

μM2Mz

μ2 + M2
�, (60)

B ′ = M2

8π2

1 + γ 2
0

γ0

μ2 − M2

μ2 + M2
� sgnμ, (61)

B ′′′ = γ0

3π2

M2(μ2 + M2)

W0
sgnμ, (62)

and A′′ = A′′′ = B ′′ = 0, with

� = (μ2 − M2)
(
1 − γ 2

0

)
W0

+ π (1 − χζ )

2γ0(μ2 + M2)
, (63)

W0 = (
1 − γ 2

0

)2
(μ2 − M2)2 + (2γ0)2(μ2 + M2)2

� (μ2 − M2)2 + (2γ0)2(μ2 + M2)2. (64)

Here, we have used γ = γ0|μ|, and ρ, θ , and χζ are given
as before. [It is legitimate to neglect γ 2

0 compared to unity,
as done in Eq. (64), also in B ′ and �.] The results without
vertex corrections are given by A = A′ and B = B ′ + B ′′′. If
the vertex corrections are included, we have

A = ρ2 (A′ cos 2θ − B ′ sin 2θ ), (65)

B = ρ2 (B ′ cos 2θ + A′ sin 2θ ) + ξ 2B ′′′, (66)

or

A = − 2

π
μM2Mz

(
μ4 − M4

πW0
+ 1 − χζ

2γ0

)
(3 − χζ )μ2 + (1 + χζ )M2

[(1 + χζ )μ2 + (3 − χζ )M2]3
, (67)

B =
{

1

2πγ0

(
μ4 − M4

πW0
+ 1 − χζ

2γ0

)
μ2 − M2

[(1 + χζ )μ2 + (3 − χζ )M2]2
+ γ0

3(π + γ0)2

μ2 + M2

W0

}
M2 sgnμ. (68)

If |μ| is not close to |M|, these can be approximated as

A = − 1

4πγ0

M2Mzμ

(μ2 + M2)2
, (69)

B = 1

16πγ 2
0

(μ2 − M2)M2

(μ2 + M2)2
sgnμ (70)

for the case without vertex corrections, and

A = − 1

πγ0

(3μ2 + M2)M2Mzμ

(μ2 + 3M2)3
, (71)

B = 1

4πγ 2
0

(μ2 − M2)M2

(μ2 + 3M2)2
sgnμ (72)

for the case with vertex corrections. For small γ0, the
coefficients grow as A ∝ γ −1

0 and B ∝ γ −2
0 .

For |μ| < |M|, we have

A = B = 0, (73)

irrespective of whether the vertex corrections are included or
not. This means that the torques in Eq. (55) get no corrections
due to magnetization gradient. In particular, δS̃ is not affected
by the inhomogeneity of magnetization, and this fact reinforces
the topological nature of δS̃ in the QAH state.

The coefficients A and B are plotted in Fig. 9 as functions
of μ. Both quantities are enhanced by the vertex corrections
for spin-conserving impurity scattering. Inclusion of magnetic
impurities tends to suppress them, as shown in Fig. 10.
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FIG. 9. (Color online) The coefficients A and B of current-
induced torques with magnetization gradient as functions of chemical
potential μ for γ0 = 0.1, with (1) and without (2) vertex corrections.
For B, partial contributions B ′ and B ′′′ are also plotted as 3 and 4,
respectively.

These features are shared by α̃ and δS̃. Relation to transport
coefficients will be discussed in the next section.

V. TRANSPORT PICTURE

In the present model, the electron velocity is essentially
given by spin v = vF (ẑ × σ ) [Eq. (3)], and so is the current-
density operator

j = −ec†vc = −evF c†(ẑ × σ )c. (74)

Because of this relation, various spin properties can be identi-
fied with transport properties. In particular, the spin-torque
coefficients given by spin-spin response functions 〈〈σ ; σ 〉〉
(for torques with time derivative) or spin-current response

FIG. 10. (Color online) The coefficients A and B of current-
induced torques with magnetization gradient as functions of chemical
potential μ in the presence of magnetic impurities (γz) in addition to
normal impurities (γ0). Their relative magnitudes are changed by
keeping γ0 + γz = 0.1 and γ⊥ = 0.

functions 〈〈σ ; j〉〉 (for current-induced torques) can also be
expressed as current-current response functions 〈〈 j ; j〉〉, that
is, transport coefficients. (Note, however, that this equivalence
is actually limited, as will be discussed in Sec. VI D.)

The above equivalence between spin and current also means
the equivalence of external perturbations coupled to them. A
vector potential Aem (introduced by �k → �k + eAem) and
the exchange field −Mu couple to spin σ in the combination
−evF(ẑ × Aem) − Mu. This means that electrons can not
distinguish these two perturbations, and in this sense, they
are equivalent. In other words, u contributes to the effective
vector potential through

A = Aem − p−1(ẑ × u), (75)

or Aem acts as a transverse magnetization through

U = u + p (ẑ × Aem), (76)

where

p = evF/M. (77)

We now look at some consequences of the above equiva-
lence. First, the coefficients of torques with time derivative are
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related to diagonal conductivity (σxx) and Hall conductivity
(σxy) [53]:

σxx = e2

2πh
α̃, σxy = ± e2

2πh
δS̃. (78)

Note that sgn(δS) = sgnM whereas sgn(σxy) = sgnMz. The
finite σxy is due to the anomalous Hall effect. This equivalence
has been used in Sec. III to discuss the effects of vertex
corrections such as the enhancement of α and δS. Experimental
data on the anomalous Hall conductivity in a range of doping
level started to be available [63,64].

To the same equivalence class belongs a phenomenon
described by 〈〈σ ; j〉〉. This is the current-induced spin po-
larization, which has already been presented in Eq. (54), or
the resulting spin torque, Eq. (55). This equivalence class is
completed by a process expressed by 〈〈 j ; σ 〉〉. This describes
a current induced by magnetization dynamics

〈 j〉 = p−1{σxx (ẑ × u̇) + σxy u̇}. (79)

This shows that there arises an electromotive force, or an
effective electric field,

Eeff = p−1(ẑ × u̇), (80)

due to spin dynamics. This is not a spin-motive force but an
electromotive force acting in the charge channel since all elec-
trons feel the same field Eeff (same direction) independently
of their spin direction.

Another example is the current-induced torques with
magnetization gradient [Eq. (59)]. In the transport language,
namely, using Eq. (74) and the equivalence of u and
p(ẑ × Aem) [Eq. (76)], it is expressed as [53]

〈 j〉 = ± ep2 {−A E + B (ẑ × E)} (rotAem)z. (81)

This represents a normal Hall effect due to external magnetic
field (rotAem)z ≡ H applied perpendicularly to the conducting
plane. This process gives rise to additional contributions to
Eq. (78) by [53]

�σxx(H ) = ∓ ep2AH, (82)

�σxy(H ) = ∓ ep2B H. (83)

Note that the diagonal component σxx is also modified in the
linear order in H . This is because σxy is nonzero even at H = 0
due to the anomalous Hall effect. Note also that these results
are gauge invariant with respect to Aem.

For |μ| > |M|, we observe a relation [53] B ′/α̃′ = ∓A′/
δS̃ ′ or, equivalently, �σ ′

xy(H )/σ ′
xx = −�σ ′

xx(H )/σ ′
xy . This

means that, for the case γ0 � 1, where the single-primed
quantities dominate the higher-primed ones, we can define
a Hall angle θH due to the normal Hall effect by tan θH =
�σxy(H )/σxx . This is the angle of rotation induced by H in
the σxx-σxy plane, and is given by

tan θH = − μ|M|
μ2 + M2

ωcτ0 = −|M|
μ

ωcτ (84)

for the case without vertex corrections [65]. Here, ωc = eH/m

is the cyclotron frequency for a nonrelativistic particle with

mass m = |M|/v2
F, τ0 = �/2γ , and

τ = μ2

μ2 + M2
τ0 (85)

is the lifetime of band electrons at energy μ. At the band edge
μ → ±|M|, it becomes tan θH → ∓ωcτ as expected, but is
suppressed by a factor of |M|/μ for |μ| � |M|. For |μ| <

|M|, we observed that A = B = 0. This means that the half-
quantum value σxy = ±e2/2h is not affected by the weak-field
normal Hall effect.

Finally, let us consider the conventional current-induced
torques, namely, the spin-transfer torque (t ∼ ∂in, where i is
the current direction) and the β term (t ∼ n × ∂in) given by
the last two terms in Eq. (9). The absence of these torques
is clearly understood in the transport picture, where they are
expressed as

〈 j〉 ∼ ẑ × ∂i Aem, ∂i Aem. (86)

Since these are not gauge invariant, the response coefficients
should vanish. Therefore, the spin-transfer torque and the β

term are strictly prohibited by the gauge invariance in the
present model.

VI. FEEDBACK EFFECTS

Since magnetization dynamics and current flow mutually
affect each other, the so-called feedback effects are expected.
In this section, we study two such feedback effects. One is
the effect of magnetization dynamics on itself via the induced
current [32–35], and the other is the effect of current flow on
itself via the induced magnetization dynamics.

The former effect was considered for ordinary ferromagnets
[32–34] (with no or weak spin-orbit coupling), and recently
applied to a ferromagnet with Rashba spin-orbit coupling [35].
Here, we apply it to topological insulator surface states. The
latter effect is newly considered in this paper.

A. Feedback torque

First, consider the former effect. A dynamical magnetiza-
tion u̇ induces a current [Eq. (79)] or an effective electric field
Eeff = p−1(ẑ × u̇). The induced current, or the field Eeff , will
exert a torque on the magnetization according to Eq. (55),
which may be calculated as [53]

�t ′ = 1

s0

eM

4π2�vF
{ δS̃ (ẑ × Eeff) ∓ α̃Eeff}

= ∓αc (ẑ × u̇) − δS

S
u̇, (87)

with use of Eqs. (7), (8) and (35). As seen, the resulting
“feedback torques” are precisely the same as the αc and δS

terms calculated in Sec. III as Eq. (34) without considering the
feedback process.

Now, a question arises: Are these “feedback torques” new
contributions to be added to the results of Sec. III, or we are
just looking at the same thing differently? If the former is the
case, αc and δS will be effectively doubled by the feedback
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effect, and the experiments of magnetization dynamics would
effectively observe

(αc)eff
?= 2αc, (δS)eff

?= 2 δS, (88)

where αc and δS on the right-hand sides are the ones calculated
in Sec. III. However, in Sec. III, we determined all torques
which are first order in u̇, namely, such torques are exhausted
by Eq. (34). Therefore, what is calculated in Eq. (87) should not
be new contributions, not to be added to Eq. (34). Rather, what
is done with Eq. (87) is the calculation of Eq. (34) itself in a
different way. This means that the feedback process presented
here affords a complete physical picture of the Gilbert damping
(and spin renormalization) process in this system.

B. Feedback conductivity

Next, consider the latter feedback effect. A current flow,
or the driving electric field E, induces a torque [Eq. (55)] as
expressed by the LLG equation [53]

u̇ = ± 1

s0p
{σxy(ẑ × E) − σxx E} + δ t ′, (89)

and the resulting motion of the magnetization u̇ induces a
current � j according to Eq. (79). Here, δ t ′ represents all other
torques such as exchange, damping, and magnetic anisotropy.
If the effects of δ t ′ can be neglected, � j would be obtained as

� j = ∓ 1

s0p2

{(
σ 2

xx − σ 2
xy

)
(ẑ × E) + 2σxxσxy E

}
. (90)

Namely, this effect manifests itself as the change of electrical
conductivity �σij . In the above case, one has [53]

�σxx = ∓2a2

�S

(
M

evF

)2

σxxσxy, (91)

�σxy = ± a2

�S

(
M

evF

)2 (
σ 2

xx − σ 2
xy

)
. (92)

With [54,55] vF = 4 × 105 m/s, a = 0.5 nm, and S = 1
2 ,

the prefactor is estimated as (a2/�S)(M/evF)2 ∼ (10−4–
10−2)h/e2 for M = 0.01–0.1 eV. If σxy is comparable to e2/h

or larger, �σxx/σxx may be appreciable. In a metallic regime,
σxx � |σxy |, the ratio �σxy/σxy can be significant.

The above argument [Eqs. (90)–(92)] can be made more
realistic if we solve the spin dynamics explicitly by including
δ t ′. Let us analyze the LLG equation (89) by taking magnetic
anisotropy and damping terms in δ t ′. (We consider a spatially
uniform mode and drop the gradient term.) Suppose we apply
an ac electric field E ∝ e−iωt , and induce a ferromagnetic
resonance. By solving the linearized LLG equation, and
substituting the obtained u̇ into Eq. (79), we have [53](

�σxx

�σxy

)
= a2

�Stot

(
M

evF

)2
ω

(ω0 − iαω)2 − ω2

×
(±2ωσxxσxy + (αω + iω0)

(
σ 2

xx − σ 2
xy

)
∓ω

(
σ 2

xx − σ 2
xy

) + 2(αω + iω0)σxxσxy

)
,

(93)

where ω0 is the resonance frequency (determined by magnetic
anisotropy), Stot = S + δS is the total spin [Eq. (10)], and
α = (αd + αc)S/Stot is the total damping constant [Eq. (11)]
coming from Eqs. (6) and (34). The feedback corrections
�σxx and �σxy of Eq. (93) vanish in the dc limit ω → 0
since in this case the magnetization just settles into a new
equilibrium direction under a static effective field due to
current-induced spin. In the high-frequency limit ω � ω0, they
reproduce Eqs. (91) and (92) with corrections due to α. More
importantly, they show the frequency dependence reflecting
the characteristics of spin dynamics, resonance in this case,
and this will enable us an experimental discrimination of this
effect. At the resonance frequency, the feedback corrections
are enhanced by a factor of α−1, which should be detectable
rather easily. This effect can be regarded as an experimental
(indirect) measurement of electromotive force generated by
magnetization dynamics.

C. Diagrammatic consideration

One may feel uneasy to see the “asymmetry” between the
above two feedback effects, namely, while the latter effect
(Sec. VI B) provides a new effect, the former (Sec. VI A) does
not. To fully understand this, we supplement the argument with
Feynman diagrams.

The two feedback effects can be expressed diagrammati-
cally as Figs. 11(a) and 11(b), respectively. Here, for technical
simplicity, we have quantized u as magnons, and expressed
the magnon propagator by a wavy line. While the vertices
σ and j are essentially the same (spin-velocity equivalence),
there is an obvious difference between the two diagrams: the
diagram (b) has a one-particle-reducible magnon line (i.e., it
can be disconnected by cutting a single magnon line). It gives

FIG. 11. Diagrammatic expressions for the two feedback effects
(a), (b) and the renormalization of magnon propagator (c). (a) The
feedback torque due to induced current. This is actually identical
to the one calculated in Sec. III. The dashed rectangle indicates
the intermediate state discussed in the main text. (b) The feedback
correction to conductivity due to induced magnetization dynamics.
The wavy line represents the propagator (D̂) of induced magnons, and
the electron bubble is essentially the conductivity tensor iωσ̂ , without
feedback effects. (c) Dyson equation for the magnon propagator.
The thick (thin) wavy line represents the renormalized (bare)
propagator D̂ (D̂0). The electron bubble contributes to the self-energy
�̂ = M2χ̂⊥ = −M2ε̂σ̂ ε̂/(evF)2, which is essentially the transverse
spin susceptibility χ̂⊥, or the (irreducible) conductivity tensor, given
by (a).
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a correction to the conductivity tensor (σ̂ )ij = σij by

�σ̂ (ω) = −1

�

(
M

evF

)2

iωσ̂ ε̂D̂(ω)ε̂σ̂ , (94)

where [D̂(ω)]αβ = 〈〈uα; uβ〉〉ω+i0 is the (retarded) Green’s
function of magnons, and (ε̂)αβ = εαβ connects the spin and
current indices, such that σ = −(evF)−1ε̂ j [Eq. (74)]. In
deriving Eq. (94), we have noted that the two electron bubbles
in Fig. 11(b) are given by 〈〈 j ; σ 〉〉 = −(evF)−1〈〈 j ; ε̂ j〉〉 =
+(evF)−1〈〈 j ; j〉〉ε̂ and 〈〈σ ; j〉〉 = −(evF)−1ε̂〈〈 j ; j〉〉, respec-
tively, and that 〈〈 j ; j〉〉 = iωσ̂ . Since D̂(ω) is calculated as
[53,66]

D̂(ω) = a2

Stot

1

(ω0 − iαω)2 − ω2

(
ω0 − iαω ±iω

∓iω ω0 − iαω

)
,

(95)

we see that �σxx and �σxy obtained from Eq. (94) exactly
coincide with those in Eq. (93). Such contributions may be
called “magnon-drag electrical conductivity.”

The magnon propagator used above is the renormalized one
in the sense depicted in Fig. 11(c) or expressed by D̂ = D̂0 +
D̂0�̂D̂. Here, the bare propagator D̂0 is defined by Eq. (95)
with the replacements α → αd , Stot → S, and ω0 → ω0Stot/S

(bare frequency); the difference comes from the magnon self-
energy �̂ due to the coupling to electrons.

In process (a), the intermediate state, indicated by the
dashed rectangle, is a state with an excited spin mode (σ ) by
definition, but it can also be viewed as a state with an excited
current mode ( j ) because of the spin-velocity equivalence.
This fact seems to lie behind the argument of Sec. VI A. There,
we have considered the “feedback process” σ → j → σ , but
this is actually not a sequence of different physical events,
but a sequence of different viewpoints on an identical event.
Note that all processes in (a) occur within the electron system,
while the processes in (b) occur in both electron and magnon
systems.

D. Violation of torque-transport correspondence

The results in this section indicate that the equivalence
between the torque coefficients and transport coefficients,
demonstrated in Sec. V, is actually limited to the case
without drag processes. Mathematically, this comes from the
fact that these coefficients are not simply defined by the
Green’s functions [in spite of our (somewhat loose) notation
such as 〈〈σ ; σ 〉〉], but rather as self-energy parts. The torque
coefficients are defined as the self-energy of magnons (or LLG
equation), and should be “one-particle irreducible (1PI)” with
respect to the magnon propagator. On the other hand, the
electrical conductivities are not necessarily 1PI with respect
to the magnon propagator. This is why the process shown in
Fig. 11(b) is allowed in the conductivity, but not in the torque
coefficients.

E. Deviation from the QAH behavior

The results in this section hold also in the QAH state
|μ| < |M|. In this case, the magnon-drag contribution leads to
the deviation from the QAH behaviors such as the quantization
of σxy and vanishing σxx .

In the low-frequency limit ω → 0, Eq. (93) becomes [53](
�σxx

�σxy

)
= e2

4�Stot

(
a

λM

)2 (−iω̃ + αd ω̃2

±ω̃2

)
, (96)

where ω̃ = ω/ω0. This shows that the quantized value of σxy

at ω = 0 is easily modified by a small ω. (Note that the exact
quantization is based on the diagram without drag processes.)
Also, the diagonal conductivity becomes finite at finite ω,
giving rise to dissipation ∼αdω

2. Note that these occur at finite
ω but smaller than the gap |M|. Since the electron system can
not absorb such low energy, the “Joule heating” Re(�σxx)E2

should be ascribed to the dissipation in the magnetization
channel; in fact, one can check that the energy dissipation
αds0u̇2 (per unit volume) due to the Gilbert damping fully
explains the value of the above Joule heating.

At the resonance frequency, ω = ω0, which we assume
to be smaller than the gap |M|, we have �σxx = ∓i�σxy =
(e2/8�Sαd )(a/λM )2, with a small factor αd in the denominator.
With αd = 10−3 and the parameters presented below Eq. (36),
this is estimated as �σxx ∼ (10−2 ∼ 1)(e2/�) for M = 0.01–
0.1 eV. On the other hand, the quantization of δS̃ remains exact
since the magnon-drag processes are excluded.

VII. RESULTS AND DISCUSSION

A. Summary of results

So far, we have studied various effects separately. Here, we
summarize the results by gathering them in a single place. If
we note that u and Aem enter in the combination, Eqs. (75) or
(76), we may obtain further new terms.

First, the obtained spin torques are summarized as [53]

t ′ = ∓αc {ẑ × u̇ + pE} − δS

S
{u̇ − p ẑ × E}

+ (e/s0) {−AE + B(ẑ × E)} (divu − pH )

+ (e/s0p) {−A(ẑ × u̇) − B u̇} (divu − pH ). (97)

In the first line, the torques containing u̇ are Gilbert damping
and spin renormalization, and the torques containing E are
due to current-induced (uniform) spin polarization (spin-orbit
torque). Those in the second and third lines (with divu) are
gradient corrections to them when the magnetization direction
is inhomogeneous. The appearance of the external magnetic
field H shows that the torques, for example, the Gilbert
damping, are linearly affected by the orbital effect.

The magnitudes of these torques are estimated as follows.
We use the parameters described in the caption of Table I.
(Table I summarizes some results.) We first consider the
magnetic-doping case by taking S = 0.05. First, from the
results of Sec. III, we see

αc � π

Sγ0

(
a

λM

)2

,

(
δS

S

)
max

� 5

S

(
a

λM

)2

, (98)

where αc is evaluated at |μ| � |M|, and δS is evaluated at the
peak (as a function of μ, see Fig. 4). This leads to a large value
αc � 0.06. Second, the spin-orbit torques are conveniently
estimated by the equivalent magnetic field

γd HLLG
eff = ∓αcp(ẑ × E). (99)
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TABLE I. Typical magnitudes of several key quantities estimated
for vF = 4 × 105 m/s, a = 0.5 nm, M = 0.01 eV, γ0 = 0.01, and
γd = 1.76 × 1011 T−1 s−1 (free-electron value). The last column
shows the dependence on M and γ0.

Quantity Value for M = 0.01 eV, γ0 = 0.01

p = evF/M 4 × 109 (cm/V s) M−1

λM = hvF/M 1.7 × 10−5 (cm) = 170 (nm) M−1

(a/λM )2 10−5 M2

αc 0.006 × (2S)−1 M2γ −1
0

(δS/S)max 10−4 × (2S)−1 M2

H LLG
eff 0.01S−1 (T) for j2D = 0.3 A/cm Mγ −1

0

pH [25 (nm)]−1 for H = 1 T M−1

For a moderate current density j3D = 107 A/cm2 flowing in
a surface region of thickness 0.3 nm (hence the sheet density,
j2D = 0.3 A/cm), the effective magnetic field is H LLG

eff = 0.2
T, which is also large. Third, the gradient corrections are
smaller by a factor of ∼2uγ0A(λM/λ) � 0.04 × u × (λM/λ)
where λ is the length scale of spatial variation of u. This
term will be small. This fact, together with the absence of the
spin-transfer torque and the β term, indicates that the effects
of spatial variation of magnetization are negligible (as far as
the magnetization is pointing perpendicularly). Last, the effect
of the orbital magnetic field H can be appreciable compared
to the equivalent divu term (see the last line of Table I). A field
of H = 1 T modifies the field-free term, such as αc (and the
spin-orbit torque), by a factor of ∼0.27. Since the variation is
linear in H , if positive H increases the effective αc, negative
H will decrease it (if the magnetization does not switch).
For smaller value of S, all of these effects will be enhanced.
On the other hand, for the magnetic-coating case, if we take
S = 1

2 , each torque is one order of magnitude smaller than the
magnetic-doping case (studied above), which should further
be divided by the number of atomic layers (see Sec. II B), and
the effects will not be easy to observe.

The results for the electric current density are summarized
as [53]

〈 j〉 = σxx

(
E + 1

p
ẑ × u̇

)
− σxy

(
ẑ × E − 1

p
u̇
)

± ep {−AE + B(ẑ × E)} (pH − divu)

± e {−A(ẑ × u̇) − B u̇} (pH − divu)

+�σxx E − �σxy(ẑ × E). (100)

The terms in the first line describe the currents induced by
ordinary electric field E and the effective electric field Eeff

[Eq. (80)] due to spin dynamics. A frequency ω = 2π ×
100 MHz of the magnetization dynamics corresponds to the
effective electric field Eeff ∼ 0.15u (V/cm). This is one or two
orders of magnitude larger than the Rashba system [22].

The terms in the second and third lines are corrections
to those in the first line due to normal Hall effect (H ) or
magnetization gradient (divu). In particular, the magnetization
texture with divu �= 0 plays a role of orbital magnetic field on
electrons. With the parameters used in the previous section,
this effective field is estimated as H orb

eff ∼ 25u/λ T, where
λ is measured in nm. These terms (in the first three lines)

embody the equivalence of spin torque and electrical transport
j = ∓ps0 t ′.

The last line of Eq. (100) describes the feedback correc-
tion or magnon-drag contribution, which violates the above
equivalence. Note that the following terms are absent:

p−1{�σxx(ẑ × u̇) + �σxy u̇}, (101)

which might have been expected based on Eq. (75). In other
words, the feedback processes do not simply modify σij as
σij + �σij in the first line of Eq. (100). This is because the
terms containing u̇ in the first line describe electric current
induced by a given u̇, and there is no room for the magnon-drag
process to appear. The same reasoning can be applied to the
discussion below Eq. (33), and this confirms the statements
made in Sec. VI D.

When μ lies in the gap, Eq. (100) becomes

〈 j〉 = e

4π�vF
sgnMz{Ṁ⊥ − evF(ẑ × E)}

+ (
σ0/ω

2
0

){ω0 Ė − αd Ë ± (ẑ × Ë)}, (102)

where M⊥ = M − Mzẑ = (Mx,My,0) with M = Mn, and
σ0 = (e2/4�Stot)(a/λM )2. The second term in the braces in the
first line represents the famous “parity anomaly.” The first term
was recently used to propose a generation and rectification
of electric current due to magnetization precession [67]. The
terms in the second line come from the feedback effect, which
are estimated in the low-frequency limit, Eq. (96).

B. On the charging of magnetic texture

In Ref. [23], Nomura and Nagaosa proposed a new
mechanism (or picture) to electrically drive a domain wall
based on their observation that a domain wall (of Néel type) is
accompanied by electric charge (for the undoped case). This is
equivalent to the mechanism based on the effective magnetic
field M〈σ⊥〉 due to current-induced spin polarization 〈σ⊥〉
given by Eq. (54) with α̃ = 0. In fact, the effective Lagrangian
density L′ ≡ Mu · 〈σ⊥〉, which is written as

L′ = σ ′′′
xy

p
u · E = −σ ′′′

xy

p
u · (∇φem + Ȧ

em
), (103)

is nothing but (a part of) the Chern-Simons term LCS ≡
(σ ′′′

xy/2)εμνλAμ∂νAλ. Here, σ ′′′
xy represents the Fermi-sea term

as before. On the right-hand side, we have expressed the
electric field E by the scalar and vector potentials φem and Aem.
A charge accumulation (change of ρ ≡ −e〈c†c 〉) induced by
magnetization gradient is obtained from δρ = −δL′/δφem as

δρ = κ divu, (104)

where [53]

κ = ∓ eM

4π2�vF
δS̃ ′′′ = − M

evF
σ ′′′

xy. (105)

Note that, in Eq. (104), the combination of ∂i and uα is fixed
uniquely by gauge invariance. These have been discussed in
Refs. [21,23] for the undoped case |μ| < |M|.

We now ask how the above scenario is modified in the
doped case |μ| > |M|. In this case, there arise other additional
contributions to 〈σ⊥〉, i.e., the Fermi-surface term δS̃ ′ and
the term due to α̃, as expressed by Eq. (54). However, we
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found that, in the static case u̇ = 0, to which we restrict
ourselves, these terms do not contribute to δρ, and Eqs. (104)
and (105) continue to hold. As a result, the coefficients of
the constituent terms of LCS become differentiated, and this
(apparently) challenges the gauge invariance ofLCS. However,
the gauge invariance of LCS is actually intact because of the
assumption of static situation, where time-dependent gauge
transformations are excluded. If we allow time dependence of
u, the Fermi-surface term δS̃ ′ also contributes to κ . Also, there
arises a contribution to δρ due to (spatially inhomogeneous)
electromotive force induced by spin dynamics. Deferring the
details to elsewhere, here we just comment that, as the driving
mechanism of a domain wall, the picture based on the charging
of the domain wall seems to be limited to the undoped
case, whereas the picture based on the current-induced spin
polarization is generally valid including the doped case. We
also note that the induced charge, determined by δS̃ ′′′, quickly
diminishes upon doping as seen from Fig. 4.

VIII. SUMMARY

We have calculated spin torques due to two-dimensional
helical electrons as realized on the surface of a topological
insulator. We have treated impurity scattering in the (self-
consistent) Born approximation for self-energy, and consis-
tently took the ladder-type vertex corrections for response
functions. The so-called Fermi-sea terms are also retained.

Thanks to the identity between spin and velocity operators,
which is specific to the present model, the obtained spin-torque
coefficients have been identified as transport coefficients. This
allows us a rather clear understanding of the results such as
the effects of vertex corrections.

We have determined all torques up to first orders in
u, space/time derivative, and electric current. Torques with
time derivative are exhausted by Gilbert damping and spin
renormalization as usual, and their coefficients are identified
as diagonal conductivity and anomalous Hall conductivity. For
torques with spatial derivative, ordinary torques (spin-transfer
torque and its dissipative correction called β term) have not
been obtained. Instead, two new types of current-induced
torque are found. The absence of the spin-transfer torque was
a surprise since it is the most fundamental spin torque (being
based on the angular-momentum conservation), but this fact
has been assured by the gauge-invariance argument in the
transport picture. We add that we have paid a special care on
gauge invariance (Ward-Takahashi identity) in the formulation,
which required a careful treatment of ultraviolet divergence.
Details of this aspect have been presented in a separate
paper [36].

The ordinary current-induced torques (9) will arise if one
takes account of some realistic factors beyond the present
idealized model, such as deviations of electron dispersion
[54,55,68] or the deviation from the current-spin relation
(74), but they will remain small compared to ordinary
(nontopological) systems.

Finally, we have examined the so-called feedback effects
coming from the mutual coupling between spin dynamics
(u̇) and charge transport ( j ), as expressed by Eqs. (97) and
(100). We have shown that the feedback process j → u̇ → j
manifests itself as the modification of electrical conductivity.

On the other hand, the process u̇ → j → u̇, which is naively
expected to give additional contribution to the Gilbert damping
(and spin renormalization), does not actually add a new
process but is just a restatement of those obtained by the
standard calculation (as done in Sec. III). It, in turn, offers
a physical picture of the Gilbert damping in terms of the
induced current and its feedback action on the spin dynamics.
These contrasting features of the two feedback effects mean
the violation of exact correspondence between spin-torque and
charge-transport phenomena.

Some of the results of this paper hold also in ferromagnets
with Rashba spin-orbit coupling, which will be reported
elsewhere.
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APPENDIX A: DETAILS OF CALCULATION

Details of the calculations are presented here. We
first consider the processes without vertex corrections in
Appendices A 1 and A 2, and then include vertex corrections in
Appendix A 3. The velocity renormalization is also considered
in Appendix A 3 (but not in Appendices A 1 and A 2). From
Appendices A 1 to A 3, only nonmagnetic impurities are
considered for simplicity. The effects of magnetic impurities
are summarized in Appendix A 4. The topological expression
for δS̃ ′′′ is derived in Appendix A 5 as Eq. (A99).

1. Gilbert damping and spin renormalization

We study the transverse susceptibility

χ
αβ

⊥ (iωλ) = −T
∑

n

∑
k

tr[σαG+
k σβGk], (A1)

where α,β = x,y. Writing as Gk = (g‖ + g⊥)Dk and G+
k =

(g+
‖ + g⊥)D+

k with

g‖ = g0 + g3σ
z, (A2)

g⊥ = g1σ
x + g2σ

y, (A3)

we expand the trace part with respect to g‖ and g⊥. Then, the
following two terms survive the trace:

tr[σαg+
‖ σβg‖] = 2(δαβ

⊥ X + iεαβY ), (A4)

tr[σαg⊥σβg⊥] = 2(2gαgβ − δαβ g2
⊥), (A5)

where

X = X(iεn + iωλ,iεn) = g+
0 g0 − g+

3 g3, (A6)

Y = Y (iεn + iωλ,iεn) = g+
0 g3 − g+

3 g0. (A7)
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The term (A5) has d symmetry (k2
x − k2

y or kxky) and
vanishes after the k integration [69]. Therefore, we have

χ
αβ

⊥ (iωλ) = −2T
∑

n

(δαβ

⊥ ϕ + iεαβψ), (A8)

with

ϕ(iεn + iωλ,iεn) = X
∑

k

D+
k Dk, (A9)

ψ(iεn + iωλ,iεn) = Y
∑

k

D+
k Dk. (A10)

After analytic continuation and extracting the ω-linear terms,
we have from Eq. (33)

α̃ = 4π (�vF)2

{
ϕ(2)(0,0) − Re[ϕ(1)(0,0)]

− i

∫ 0

−∞
dε(∂ε − ∂ε′ ) Im[ϕ(1)(ε,ε′)]|ε′=ε

}
, (A11)

δS̃ = ±4πi(�vF)2

{
ψ (2)(0,0) − Re[ψ (1)(0,0)]

− i

∫ 0

−∞
dε(∂ε − ∂ε′ ) Im[ψ (1)(ε,ε′)]|ε′=ε

}
. (A12)

The Fermi-surface terms are calculated as follows:

ϕ(2)(0,0) = XRAI011 = 1

(2�vF)2

μ2 + γ 2

2|μ|γ
μ2 − M2

μ2 + M2
Cζ ,

(A13)

ϕ(1)(0,0) = XRRI020 = − 1

4π (�vF)2
, (A14)

ψ (2)(0,0) = Y RAI011 = − i

(2�vF)2

2Mz|μ|
μ2 + M2

Cζ , (A15)

and ψ (1)(0,0) = 0. We have defined XRA ≡ X(ε + i0,ε −
i0)|ε→0, XRR ≡ X(ε + i0,ε + i0)|ε→0, and similarly Y RA. For
the notation I�mn and the results of the k integrals, see
Appendix B.

The Fermi-sea term δS̃ ′′′ [the third term of Eq. (A12)] is
calculated as follows:

(∂ε−∂ε′) [ψ (1)(ε,ε′)]|ε′=ε = 2(g′
0g3−g0g

′
3)

∑
k

[Dk(ε + i0)]2

= − 1

2π (�vF)2

g′
0g3 − g0g

′
3

ζ (ε)
, (A16)

where

g0 ≡ g0(ε + i0) = ε + μ − 	0(ε + i0), (A17)

g3 ≡ g3(ε + i0) = −Mz + 	3(ε + i0), (A18)

ζ (ε) = [ε + μ − 	0(ε)]2 − [Mz − 	3(ε)]2, (A19)

with g′
i ≡ ∂gi/∂ε. By noting ζ (ε) = g2

0 − g2
3, and using

g′
0g3 − g0g

′
3 = (g′

0 ± g′
3)g3 − (g0 ± g3)g′

3, we have

δS̃ ′′′ = ± Im
∫ 0

−∞
dε

[
g′

0 + g′
3

g0 + g3
− g′

0 − g′
3

g0 − g3

]

= ±
[

Im ln
g0 + g3

g0 − g3

]0

−∞

= ± Im ln
g0(0) + g3(0)

g0(0) − g3(0)
. (A20)

In the last equality, the contribution from ε = −∞ drops out
since the sign of the imaginary part is the same (positive)
between the numerator and the denominator in the logarithm.
This expression shows that δS̃ ′′′ is determined solely by the
quantities at ε = 0 quite generally (e.g., even with self-energy).
Explicit evaluation gives

δS̃ ′′′ =
{

π sgnM (|μ| < |M|),
(ϕ+ − ϕ−) sgnM (|μ| > |M|), (A21)

where

tan ϕ± = γ0

∣∣∣∣ |μ| ± |M|
|μ| ∓ |M|

∣∣∣∣ , (A22)

with 0 � ϕ± � π/2. As seen, δS̃ ′′′ is odd in M and even in μ.
The obtained results are summarized as follows:
(i) For |μ| > |M|,

α̃′ = π

2

μ2 + γ 2

γ |μ|
μ2 − M2

μ2 + M2
Cζ , (A23)

α̃′′ = 1, α̃′′′ = 0, (A24)

δS̃ ′ = 2πM|μ|
μ2 + M2

Cζ , δS̃ ′′ = 0, (A25)

δS̃ ′′′ = (ϕ+ − ϕ−) sgnM. (A26)

(ii) For |μ| < |M|,
α̃′ = −1, α̃′′ = 1, α̃′′′ = 0, (A27)

δS̃ ′ = δS̃ ′′ = 0, δS̃ ′′′ = π sgnM. (A28)

2. Current-induced torques

We next calculate the coefficients of the current-induced
torques K

αβ

ij shown in Fig. 8(a). By noting ∂jG = GvjG with
Eq. (3), we first calculate

K̃
αβ

ij (iωλ) ≡ T
∑

n

∑
k

{tr[σαG+
k σ jG+

k σβG+
k σ iGk]

− tr[σαG+
k σ iGkσ

βGkσ
jGk]} (A29)

and then K
αβ

ij as

K
αβ

ij = v2
Fεii ′εjj ′K̃

αβ

i ′j ′ . (A30)

Using the decomposition G = (g‖ + g⊥)D and G+ =
(g+

‖ + g⊥)D+, we expand Eq. (A29) with respect to g‖ and g⊥.
After many cancellations as shown in Figs. 12(b) and 12(c),
we are left with terms shown in Fig. 12(a). They are calculated
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FIG. 12. Contributions to K
αβ

ij . For simplicity, those without
vertex corrections are shown. The original contribution is shown in
Fig. 8(a) in which each line represents G = (g‖ + g⊥)D. Expansion
with respect to g‖ and g⊥ generates processes shown in (a)–(c) in this
figure. Only (a) contributes to the final result since each diagram of
(b) vanishes and the four diagrams of (c) sum to zero. In the figure,
a line with a letter m attached represents gmσm, m = x,y, and the
one without such a letter represents g‖. In (c), m̄ = y for m = x,
and m̄ = x for m = y. Sum over m is understood. These features
remain valid even if the vertex corrections (σα → �α , vi → �̃i) are
included.

as K̃ = K̃1 + K̃2 + K̃3 with

K̃1(iωλ) = 2T
∑

n

{X(δαi
⊥ δ

βj

⊥ − εαiεβj )

+ iY (εαiδ
βj

⊥ + δαi
⊥ εβj )}(Z+J031 − ZJ013),

(A31)

K̃2(iωλ) = 2T
∑

n

{X(δαi
⊥ δ

βj

⊥ + εαiεβj )

+ iY (εαiδ
βj

⊥ − δαi
⊥ εβj )}(J131 − J113), (A32)

K̃3(iωλ) = 2T
∑

n

(δαj

⊥ δ
βi

⊥ + εαj εβi)(Z+J131 − ZJ113),

(A33)

where X and Y are given by Eqs. (A6) and (A7), Z = g2
0 − g2

3,
Z+ = (g+

0 )2 − (g+
3 )2, and

J�mn ≡
∑

k

(�ṽFk)2�(D+
k )m(Dk)n. (A34)

Here, g� and D with (without) the superscript “+” have
Matsubara frequency iεn + iωλ (iεn). In deriving the above
expressions, we have noted the identities

δαi
⊥ δ

βj

⊥ − εαiεβj = δ
αj

⊥ δ
βi

⊥ − εαj εβi, (A35)

εαiδ
βj

⊥ + δαi
⊥ εβj = εαj δ

βi

⊥ + δ
αj

⊥ εβi . (A36)

After analytic continuation, the ω-linear terms are extracted
as K̃�(ω + i0) − K̃�(0) = (ω/2π )(K̃ ′

� + K̃ ′′
� + K̃ ′′′

� ), with the
prime notation explained after Eqs. (38) and (39).

From the RA channel, we have

K̃ ′
1 = 4{XRA(δαi

⊥ δ
βj

⊥ − εαiεβj )

+ iY RA(εαiδ
βj

⊥ + δαi
⊥ εβj )}Im(ζ I031), (A37)

K̃ ′
2 = 4{XRA(δαi

⊥ δ
βj

⊥ + εαiεβj )

+ iY RA(εαiδ
βj

⊥ − δαi
⊥ εβj )}Im(I131), (A38)

K̃ ′
3 = 4(δαj

⊥ δ
βi

⊥ + εαj εβi)Im(ζ I131), (A39)

where ζ is given by Eq. (B3), and I�mn by Eq. (B1). Using
the results of Appendix B, first the relations Im(ζ I031) =
−Im(I131) and Im(ζ I131) = 0, and then explicit expressions,
we have

K̃ ′
1 + K̃ ′

2 = η

(�vF)2

{
Reζ

π |ζ |2 + 2|η|Cζ

}

× (XRAεαi − iY RAδαi
⊥ ) εβj (A40)

and K̃ ′
3 = 0.

From the RR and AA channels, we have K̃ ′′
1 = K̃ ′′

2 =
K̃ ′′

3 = 0, and

K̃ ′′′
1 = −4(δαi

⊥ δ
βj

⊥ − εαiεβj )

× Im
∫ 0

−∞
dε ζ (ε) ζ ′(ε) [I040(ε) − 2ζ (ε)I050(ε)]

= −4(δαi
⊥ δ

βj

⊥ − εαiεβj )

× Im
∫ 0

−∞
dε

d

dε

{
I130(ε) + 1

2
I020(ε) + 1

2
I240(ε)

}
,

(A41)

K̃ ′′′
2 = −4(δαi

⊥ δ
βj

⊥ + εαiεβj ) Im
∫ 0

−∞
dε ζ (ε)ζ ′(ε) [−2I150(ε)]

= −4(δαi
⊥ δ

βj

⊥ + εαiεβj )

× Im
∫ 0

−∞
dε

d

dε

{
2

3
I130(ε) + 1

2
I240(ε)

}
, (A42)

K̃ ′′′
3 = −4(δαj

⊥ δ
βi

⊥ + εαj εβi)

× Im
∫ 0

−∞
dε ζ ′(ε) [I140(ε) − 2ζ (ε)I150(ε)]

= −4(δαj

⊥ δ
βi

⊥ + εαj εβi)

× Im
∫ 0

−∞
dε

d

dε

{
1

3
I130(ε) + 1

2
I240(ε)

}
, (A43)

where ζ (ε) is given by Eq. (A19). Note that ζ (0) = ζ

[Eq. (B3)]. In the above, we have noted the relations
X(ε + i0,ε + i0) = ζ (ε), D′(ε) = −D2(ε)ζ ′(ε), and thus
I ′
�,m−1,0(ε) = −(m − 1)ζ ′(ε)I�m0(ε), where ′ ≡ ∂/∂ε. Using

first Eq. (B6) to eliminate all ζ (ε)’s and then ζ ′(ε)I�m0(ε) =
−I ′

�,m−1,0(ε)/(m − 1) to eliminate ζ ′(ε), we have expressed
the integrands as total derivatives. As a result, the above
integrals are given by quantities at ε = 0, namely, by Eq. (B1),
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giving

K̃ ′′′
1 = 1

6π (�vF)2
Im

1

ζ
(δαi

⊥ δ
βj

⊥ − εαiεβj ) , (A44)

K̃ ′′′
2 = − 1

6π (�vF)2
Im

1

ζ
(δαi

⊥ δ
βj

⊥ + εαiεβj ) , (A45)

and K̃ ′′′
3 = 0. Therefore, we obtain

K̃
αβ

ij = ω

M2v2
F

(Aδαi
⊥ + Bεαi) εβj (A46)

or

K
αβ

ij = ω

M2
(Aεiα + Bδiα

⊥ ) δ
βj

⊥ . (A47)

The coefficients are given by A = A′ + A′′ + A′′′ and B =
B ′ + B ′′ + B ′′′, where

A′ = − 1

2π2

μM2Mz

μ2 + M2

[
μ2(μ2 − M2)(μ2 − γ 2)

W

+ π |μ|
2γ (μ2 + M2)

Cζ

]
, (A48)

B ′ = M2

8π2

μ2 + γ 2

μγ

μ2 − M2

μ2 + M2

[
μ2(μ2 − M2)(μ2 − γ 2)

W

+ π |μ|
2γ (μ2 + M2)

Cζ

]
, (A49)

B ′′′ = M2

3π2

μ3γ (μ2 + M2)

W
, (A50)

and A′′ = A′′′ = B ′′ = 0 with

W = (μ2 − γ 2)2(μ2 − M2)2 + (2μγ )2(μ2 + M2)2. (A51)

For the undoped case |μ| < |M|, we set γ → 0 and obtain
[70]

A′ = B ′ = B ′′′ = 0. (A52)

3. Vertex corrections

Now let us calculate the ladder-type corrections to the
σα vertex. The σα vertex thus renormalized is denoted by
�α . We consider several types depending on the analyticity
(GR or GA) of Green’s functions in �α . They satisfy the
equation [see Fig. 2(b)]

(�α)CC′ = σα + niu
2
0

∑
k

GC
k (�α)CC′

GC′
k , (A53)

where C,C′ = A or R specifies the analytic branch. Note
that Eq. (A53) is written in matrix form, viz., (G�G)σσ ′ =
Gσσ1 �σ1σ2Gσ2σ ′ . The solutions for α = x,y are given in the
following:

(i) Case of |μ| > |M|:
(�α)AR = c0 σα + c1 εαβσβ, (A54)

(�α)RA = c0 σα − c1 εαβσβ, (A55)

(�α)RR = (�α)AA = ξ σα, (A56)

where

(c0,c1) = (1 − XRA�0,iY
RA�0)

(1 − XRA�0)2 + (iY RA�0)2
, (A57)

with XRA = (1 + γ 2
0 )(μ2 − M2) � μ2 − M2, iY RA = 4γMz

[Eqs. (A6) and (A7)],

�0 = niu
2
0

∑
k

DR
k DA

k = 1 − χζ

2(μ2 + M2)
, (A58)

and ξ = π/(π + γ0) in Eq. (A56) is the same as the velocity
renormalization factor (27). Explicitly, they are given by

c0 = 2(μ2 + M2)

(1 + χζ )μ2 + (3 − χζ )M2
, (A59)

c1 = 8(1 − χζ )γMz(μ2 + M2)

[(1 + χζ )μ2 + (3 − χζ )M2]2
, (A60)

where the terms of order γ 2
0 are neglected. If |μ| is not close

to |M|, χζ can be dropped. If we write

(c0,c1) = ρ (cos θ, sin θ ), (A61)

the effect of the RA-type vertex correction [Eqs. (A54) and
(A55)] can be viewed as the dilation (by ρ) and rotation (by
θ ) in spin space, and that of RR or AA type [Eqs. (A56)]
is a simple dilation (by ξ ). Together with the velocity
renormalization, which multiplies all the torque coefficients
by ξ−2 [see Eqs. (B4) or (B5)], these effects lead to [53]

α̃ = ξ−2ρ (α̃′ cos θ ∓ δS̃ ′ sin θ ) + ξ−1α̃′′ + α̃′′′, (A62)

δS̃ = ξ−2ρ (δS̃ ′ cos θ ± α̃′ sin θ ) + ξ−1δS̃ ′′ + δS̃ ′′′. (A63)

A = ρ2 (A′ cos 2θ − B ′ sin 2θ ) + ξ 2(A′′ + A′′′), (A64)

B = ρ2 (B ′ cos 2θ + A′ sin 2θ ) + ξ 2(B ′′ + B ′′′). (A65)

Note that δS̃ ′′′ is not renormalized in this procedure because
of the cancellation between RR-type vertex corrections and
self-energy corrections (velocity renormalization). The results
without vertex corrections are obtained by setting ρ = ξ = 1
and θ = 0.

So far, the vertex corrections and self-energy themselves
have been evaluated with bare velocity. Inclusion of velocity
renormalization does not affect the vertex correction in the RA
channel (c0 and c1) but does affect that in the RR channel (ξ ).
What is important here, however, is to calculate self-energy
and vertex corrections on the same footing, and both yield the
same ξ factor. In this sense, we need not pursue this issue
further in this paper.

(ii) Case of |μ| < |M|:
The vertex corrections all coincide,

(�α)AR = (�α)RA = (�α)RR = (�α)AA = ξ σα. (A66)

This is natural since there is no distinction between GR

and GA away from the pole. The torque coefficients are
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renormalized as

α̃ = ξ−1(α̃′ + α̃′′) + α̃′′′, (A67)

δS̃ = ξ−1(δS̃ ′ + δS̃ ′′) + δS̃ ′′′. (A68)

A = ξ 2(A′ + A′′ + A′′′), (A69)

B = ξ 2(B ′ + B ′′ + B ′′′), (A70)

in general. Actually, only δS̃ ′′′ is relevant (other terms
vanish), and this is not renormalized because of the cancel-
lation between the velocity renormalization and the vertex
correction.

4. Magnetic impurities

In the presence of magnetic impurities, the results so far
obtained (and presented in the main text) are modified as
follows. As for self-energy, the damping constants are modified
to

γ = �1 |μ| 
(μ2 − M2), (A71)

γ ′ = −�2 Mz
(μ2 − M2) sgnμ, (A72)

where

�1 = γ0 + γz + 2γ⊥, (A73)

�2 = γ0 + γz − 2γ⊥, (A74)

γz = nsu
2
s

4(�vF)2
S2

z , (A75)

γ⊥ = nsu
2
s

4(�vF)2
S2

⊥. (A76)

[γ0 is given by Eq. (23) as before.] The velocity renormaliza-
tion factor (27) is modified to

ξ = π

π + (γ0 − γz)
. (A77)

As for vertex corrections, we have Eqs. (A54)–(A56) and
(A66) with modified quantities

XRA = μ2 − M2 + γ 2 − γ ′2, (A78)

iY RA = 2γMz(1 + �2/�1), (A79)

�0 = γ0 − γz

2(�1μ2 + �2M2)
Cζ , (A80)

and ξ given by Eq. (A77). Note that the vertex corrections
vanish if γz = γ0.

In the evaluation of α̃, δS̃, A, and B, the expressions of the
integrals, presented in Appendix B, are not modified if we use
Eqs. (A71) and (A72) for γ and γ ′. Modification is present
only in δS̃ ′′′ [Eq. (43)], where ϕ± becomes

ϕ± = tan−1

∣∣∣∣�1|μ| ± �2|M|
|μ| ∓ |M|

∣∣∣∣ . (A81)

Explicit expressions are as follows. For |μ| > |M|, the
results without vertex corrections are given by

α̃′ = π

2

μ2 − M2

�1μ2 + �2M2
(1 − χζ ), (A82)

α̃′′ = 1, (A83)

δS̃ ′ = 2π (γ0 + γz)M|μ|
�1μ2 + �2M2

(1 − χζ ), (A84)

δS̃ ′′′ = tan−1

[
4(γ0 + γz)M|μ|

μ2 − M2

]
, (A85)

and

A′ = − 1

2π2

(γ0 + γz)M2Mzμ

�1μ2 + �2M2

{
μ2 − M2

(μ2 − M2)2 + 4(�1μ2 + �2M2)2
+ π (1 − χζ )

2(�1μ2 + �2M2)

}
, (A86)

B ′ = 1

8π2

(μ2 − M2)M2

�1μ2 + �2M2

{
μ2 − M2

(μ2 − M2)2 + 4(�1μ2 + �2M2)2
+ π (1 − χζ )

2(�1μ2 + �2M2)

}
sgnμ, (A87)

B ′′′ = 1

3π2

(�1μ
2 + �2M

2)M2

(μ2 − M2)2 + 4(�1μ2 + �2M2)2
sgnμ. (A88)

If μ is not close to ±M , we have

A′ � − 1

4π

(γ0 + γz)M2Mzμ

(�1μ2 + �2M2)2
, (A89)

B ′ � 1

16π

(μ2 − M2)M2

(�1μ2 + �2M2)2
sgnμ, (A90)

and B ′′′ ∼ O(γ ). The vertex corrections are included by
using

c0 = 2
�1μ

2 + �2M
2

�′
1μ

2 + �′
2M

2
, (A91)

c1 = 4
(
γ 2

0 − γ 2
z

)
Mz|μ|

�′
1μ

2 + �′
2M

2
(1 − χζ ) c0, (A92)
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where

�′
1 = (1 + χζ )γ0 + (3 − χζ )γz + 4γ⊥, (A93)

�′
2 = (3 − χζ )γ0 + (1 + χζ )γz − 4γ⊥. (A94)

For |μ| < |M|, the results are the same as the case without
magnetic impurities.

5. Topological expression for δ S̃′′′

When μ lies in the gap, δS̃ ′′′ has a topological character and
takes a quantized value. This is explicitly demonstrated here
with self-energy and vertex corrections included. We stress
that the consistency between them is necessary to assure this
topological character.

From Eq. (A12), it is written as

δS̃ ′′′ = ∓ 2πi(�vF)2
∑

k

Im
∫ 0

−∞
dε

× (∂ε − ∂ε′)tr[�xG(ε)�yG(ε′)]|ε=ε′

= ∓ 2πiεij

∑
k

Im
∫ 0

−∞
dε

× tr[ G (∂εG
−1)G (∂iG

−1)G (∂jG
−1)], (A95)

where all quantities (Green’s function G and vertex function
�α) are in the retarded branch G = GR, �α = (�α)RR,
and “Im” means subtraction of the “advanced” counterpart
(GR → GA) followed by division by 2i. Note that the Ward-
Takahashi identity is used in the second equality. An intuitive
expression can be obtained by using the form G = (g0 + g · σ )
D = gμσμD [Eq. (17)]; we first write

δS̃ ′′′ = ±4πεij

∑
k

Im
∫ 0

−∞
dε d0 ·(di × dj )[Dk(ε)]3,

(A96)

where dμ(ε) = g (∂μg0) − g0(∂μ g) − i(g × ∂μ g). By defin-
ing “normalized” quantities ĝ = g/(g2)1/2, ĝ0 = g0/(g2)1/2,
such that ĝ2 = 1, we write as dμ(ε) = g2{ ĝ (∂μĝ0) −
ĝ0(∂μ ĝ) − i( ĝ × ∂μ ĝ)}. Note that ĝ is in general a complex
vector because of the self-energy, but the normalization assures
that ∂μ ĝ is orthogonal to ĝ. After some manipulations, we have

δS̃ ′′′ = ±4πεμνλIm
∑

k

∫ 0

−∞
dε ∂μ [hk(ε) ĝ ·(∂ν ĝ × ∂λ ĝ)] ,

(A97)

where ∂μ = ∂/∂kμ with kμ = (ε,kx,ky). The function hk(ε) is
determined from ∂μh = (∂ĝ0/∂kμ)/(ĝ2

0 − 1)2 as

hk(ε) = − ĝ0

2
(
ĝ2

0 − 1
) − 1

4
ln

ĝ0 − 1

ĝ0 + 1
. (A98)

In deriving Eq. (A97), we have noted that εμνλ∂μ ĝ ·(∂ν ĝ ×
∂λ ĝ) = 0 [71]. Equation (A97) is evaluated as a surface
integral; a nonvanishing contribution comes only from
the surface ε = 0, where Imhk(0) = −π/4 for |μ| < |M|.
(Contributions from other surfaces vanish since hk = 0 at

kμ = ±∞.) Therefore, we obtain [41]

δS̃ ′′′ = ∓1

2

∫ ∞

−∞
dkx

∫ ∞

−∞
dky ĝ ·(∂x ĝ × ∂y ĝ)|ε=0, (A99)

where ĝ |ε=0 = (�vFky,−�vFkx,−Mz)/
√

(�vFk)2 + M2 is a
(real) unit vector and defines a map from a two-dimensional
(kx,ky) plane to a unit sphere | ĝ| = 1. The integral represents
a solid angle swept by ĝ|ε=0, giving [53] −2π sgnMz =
∓2π sgnM , and thus

δS̃ ′′′ = π sgnM. (A100)

APPENDIX B: INTEGRALS

Here, we give a calculation of the integral

I�mn ≡
∑

k

(�ṽFk)2�
(
DR

k

)m(
DA

k

)n
, (B1)

where ṽF = vF or ṽF = ξvF depending on whether the velocity
renormalization [coming from the k dependence of self-
energy, see Eqs. (26) and (27)] is considered or not. Let us
write as

DR
k = 1

ζ − x
, DA

k = 1

ζ ∗ − x
, (B2)

with x = (�ṽFk)2 and

ζ = (μ + iγ )2 − (Mz + iγ ′)2. (B3)

Then, the integration over k is carried out as

∑
k

= 2π

(2π )2

∫ ∞

0
k dk = 1

4π (�ṽF)2

∫ ∞

0
dx, (B4)

and thus

I�mn = 1

4π (�ṽF)2

∫ ∞

0
dx

x�

(ζ − x)m(ζ ∗ − x)n

≡ 1

4π (�ṽF)2
Ĩ�mn. (B5)

The following relations and explicit expressions are easy to
verify:

I�mn = ζ I�−1,mn − I�−1,m−1,n

= ζ ∗I�−1,mn − I�−1,m,n−1, (B6)

I�mn = iη (I�m,n−1 − I�,m−1,n), (B7)

Ĩ0m0 = − 1

m − 1

1

ζm−1
(m � 2), (B8)

Ĩ011 = πCζ

|Im ζ | = 2π |η| Cζ , (B9)

Ĩ021 = −i
η

ζ
− 2πiη|η| Cζ , (B10)

Ĩ031 = −i
η

2ζ 2
− η2

ζ
− 2πη2|η| Cζ , (B11)
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where

Cζ =
{

1 − χζ (Re ζ > 0),

χζ (Re ζ < 0),
(B12)

χζ = 1

π
tan−1 |Im ζ |

|Re ζ | , (B13)

η = 1

2 Im ζ
. (B14)

Note that 0 � χζ � 1
2 . These expressions are valid irrespective

of the signs of Re ζ and Im ζ .

Calculation of I010 needs special care since it is logarith-
mically divergent in the ultraviolet. If the loop momentum
runs through the impurity potential uk, one can interpret and
evaluate the integral as

niu
2
0 I010 → ni

∑
k

|uk|2DR
k = −iγ

μ + iγ
, (B15)

where Eqs. (31) and (21) have been used. Otherwise, one
needs to introduce additional cutoff such as �BZ to make
this integral finite. This case happens in the calculation of
magnetic anisotropy [72] and the equilibrium polarization
〈σ̂ z〉0. The gauge invariance assured by the present scheme
(based on �imp) is intact if �imp < �BZ.
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