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Wave-function description of conductance mapping for a quantum Hall electron interferometer
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Scanning gate microscopy of quantum point contacts (QPC) in the integer quantum Hall regime is considered
in terms of the scattering wave functions with a finite-difference implementation of the quantum transmitting
boundary approach. Conductance (G) maps for a clean QPC as well as for a system including an antidot within
the QPC constriction are evaluated. The steplike locally flat G maps for clean QPCs turn into circular resonances
that are reentrant in an external magnetic field when the antidot is introduced to the constriction. The current
circulation around the antidot and the spacing of the resonances at the magnetic field scale react to the probe
approaching the QPC. The calculated G maps with a rigid but soft antidot potential reproduce the features
detected recently in the electron interferometer [F. Martins et al., Sci. Rep. 3, 1416 (2013)].
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I. INTRODUCTION

Transport properties of devices based on a two-dimensional
electron gas in the integer quantum Hall regime are determined
by uncompensated currents that are carried by the edges of
the sample [1]. The edge states have a very large coherence
length [1] and they can be used for construction of electron
interferometers [2,3]. Each of the edges carry the current
in a single direction only and the backscattering [4] at high
magnetic fields requires electron transfer from one edge to the
other across the bulk of the sample. The interedge tunneling
paths can be opened at constrictions (quantum point contacts
QPCs) that are intentionally introduced to the channel. A pair
of QPCs with an internal cavity [5] form a setup, which
is referred to as quantum Hall [6–8], electronic Fabry-Pérot
[9–11], or Aharonov-Bohm (AB) interferometer [12–14]. The
latter reference is due to the periodicity of conductance (G) in
an external magnetic field for the currents following the edges
of the cavity. A similar interference mechanism and periodic G

behavior is found for an antidot introduced between the edges
of the sample [7,15–21] with electron currents encircling the
antidot.

At low magnetic fields, the electron currents passing
through a quantum point contact can be mapped [22–26]
by the scanning gate microscopy [27], which measures the
conductance as a function of the position of the atomic force
microscope tip moving above the sample. The charged tip
is capacitively coupled to the electron gas and modifies the
local potential landscape. In particular, a clear semiclassical
magnetic focusing [28] of electron currents at a field of a
fraction of tesla was observed. The magnetic fields of the
order of millitesla lift the interference pattern of G maps of
QPC [29]. At higher magnetic fields, within the quantum Hall
regime, the currents evade a direct mapping bypassing any
potential perturbations introduced by the tip. The conductance
in the quantum Hall regime can still be affected by the tip when
it enhances the interedge tunnel coupling [30,31], depopulate
the edge states within QPC [32], or allow for selective control
of individual edge channels [29].

Scanning gate microscopy [7,8] was used for detection of
the charging effects [10,30,33] due to a Coulomb island in
the interferometer with an intentionally introduced antidot.

Recently [34], a spontaneous formation of an interferometer
with a quantum Hall island (QHI) located inside a quan-
tum point contact was demonstrated by the scanning gate
microscopy. The purpose of the present work is to make
simulations of the coherent transport in similar conditions. To
the best of our knowledge, we provide the first wave-function
description of the scanning gate microscopy mapping of the
coherent flow across the electron interferometer. The QHI is
modeled as an antidot with a fixed potential. We discuss the
formation of current loops around the QHI, which is reentrant
in function of the magnetic field. We describe the perturbation
to the current flow pattern introduced by the tip and the
consequences of bridging the edge currents by the tip for
conductance. The present numerical simulations reproduce the
steplike character of experimental [29,32,35] integer quantum
Hall G maps for clean QPCs [36] with flat minima near
the QPCs and no distinct features for the tip outside of the
QPC. Calculations for the electron interferometer reproduce
the characteristics of experimental SGM maps [34], including
the circular form of oscillations in the G map, the shifts
of resonant lines to lower values of B by the repulsive tip
as well as the reduction of the G periodicity for the tip
approaching the QHI. We demonstrate that the latter occurs
only when the potential of the QHI potential has a soft
profile.

Below we discuss the periodicity of the conductance oscilla-
tions. The early experiments [5,16] on electron interferometers
in the integer quantum Hall regime detected the Aharonov-
Bohm periodicity with period �B = �0/S, where �0 = e/h

is the flux quantum and S is the area encircled by the currents.
Subsequent studies [14,37] reported fractional periodicity with
�B = �0/(fcS), where fc is the number of edge modes fully
transmitted across the scatterer. The fractional periodicity of
AB conductance oscillations in electron interferometers is
explained as due to the electron-electron interaction [6]. The
interaction effects leading to fractional periodicity are outside
the range of mean-field description [12,15], which reproduces
the �B = �0/S period. The present calculation neglects the
electron-electron interaction and in consequence the integer
periodicity is found for any fc. We focus on the qualitative
changes of the AB period that are due to the presence of the
tip and are independent of fc.
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FIG. 1. (Color online) Sketch of the QPC system considered in
this paper. The dots in the left corner show the finite difference mesh
used in numerical calculations. The vertical dashed red line shows
the path of the conductance scan discussed in the text. The gray area
in the center of QPC indicates a local potential maximum introduced
to model the quantum Hall island.

II. MODEL

We consider a wide channel with a narrowing that is
presented in Fig. 1. The channel has a width of 600 nm that
is reduced to 200 nm within the QPC. We assume that the
narrowing has a Gaussian shape (aspect ratio is preserved in
Fig. 1). The length of the computational box is 2000 nm.

The Fermi level electron within the system is described by
a two-dimensional effective-mass Schrödinger equation[

1

2meff
(−i�∇ + eA)2 + V (x,y)

]
�(x,y) = EF �(x,y),

(1)

with the total potential V (x,y) = Vc(x,y) + Vtip(x,y) +
VQHI(x,y), where Vc is the confinement potential (we assume
an infinite potential outside the channel and zero in the inside),
Vtip is the tip potential, and VQHI is the potential that models
the quantum Hall island within the QPC. We consider a GaAs
system with the effective electron band mass meff = 0.067m0.
The spin Zeeman effect for B of the order of 1 T is still weak
in GaAs [38] and is neglected in the calculations.

The original potential of the tip as seen by the two-
dimensional electron gas is of the Coulomb form. This poten-
tial is screened by deformation of the gas [39]. In consequence
the potential as seen by the Fermi level electrons is short-
range. Our previous Schrödinger-Poisson calculations [39–41]
indicated that the effective tip potential is close to Lorentzian
with the width of the order of the distance between the tip and
the electron gas. Accordingly, in this paper, we use the Lorentz
model of the potential

Vtip(x,y) = Utip

1 + [(x − xtip)2 + (y − ytip)2]/d2
tip

, (2)

for the tip localized above point (xtip,ytip). We use dtip = 60 nm
for the width of the tip potential. The potential of the quantum
Hall island is also taken in the Lorentz form,

VQHI(x,y) = UQHI

1 + [(x − xQHI)2 + (y − yQHI)2]/d2
QHI

, (3)

we assume that the QHI is located in the center of the
constriction (see Fig. 1) with xQHI = 1000 nm and yQHI = 0.

We choose the Lorentz gauge A = (−By,0,0) for the
uniform magnetic field applied perpendicular to the plane of

confinement. The brown areas at the ends of the computational
box in Fig. 1 denote the asymptotic regions where the boundary
conditions are introduced. The calculation method applied here
is a variant of the one used previously in Ref. [39]. We use
the gauge-invariant kinetic-energy discretization [42], which
leads to the following finite difference equation:

�u,v(4t0 + Vu,v − EF ) + �u+1,v(−t0C
∗
x ) + �u−1,v(−t0Cx)

+�u,v−1(−t0) + �u,v+1(−t0) = 0, (4)

where Cx = e−i e
�

�xAx , and t0 = 1/(2meff�x2). For the con-
sidered magnetic fields and Fermi wave vectors, convergent
results are obtained for �x = �y = 2 nm.

Equation (4) defines a set of linear equations for the
wave function in the interior of the computational box. The
boundary conditions for the scattering problem are set in
the following way. In the leads far away from the QPC and
the tip potential, the confinement potential is independent of
x, i.e., V (x,y) → V (y), thus we can write the asymptotic
Hamiltonian eigenfunctions as superpositions of plane waves
multiplied by transverse modes χk . Far away from the scatter-
ing region—beyond the range of the evanescent modes—the
wave function takes the form [43]

�(x,y) =
M∑

k=1

ake
ikxχk(y) + bke

−ikxχ−k(y), (5)

where M is the number of subbands at the Fermi level, k is the
real wave vector, χk(y) [χ−k(y)] represents the kth incoming
(backscattered) transverse mode. The transverse modes are
found by solving the eigenproblem for the homogeneous
lead [39]. The coefficients ak and bk correspond to the incom-
ing and the outgoing amplitudes, respectively. At the output
lead, we can write the solution in the form of superposition of
outgoing modes:

�(x,y) =
M∑

k=1

dke
ikxχk(y), (6)

where dk is the amplitude of outgoing mode χk . The method
applied in Refs. [39–41] used an iterative scheme for evalua-
tion of the scattering amplitudes. In this paper, we get rid of the
iteration employing the quantum transmitting boundary (QTB)
which was originally developed [44,45] for the finite element
method. Here, we adapt the QTB for the finite difference
method. The details of the present calculation are given in
Appendix. A similar procedure has been applied recently in
Ref. [46] for the current flow through ballistic nanodevices but
in the absence of magnetic field.

After solution of the quantum scattering problem we
evaluate the conductance by the Landauer-Büttiker formula

G = e2

h
T = e2

h

M∑
i

Ti, (7)

where Ti is the transmission probability of the ith mode
incident from the input lead. The transmission Ti for each
incoming mode is calculated in the following way. For a
given incoming mode i we set the incoming amplitudes to
ak = δik , where k = (1, . . . ,M). We solve the Schrödinger
equation (4) with transmitting boundary conditions (see
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FIG. 2. (Color online) (a) Transfer probability through the QPC summed over the incident subbands [Eq. (7)] and (b) the number of
transport modes M in the leads as functions of Fermi energy EF and the perpendicular magnetic field B. The dashed lines on both plots show
the energy value EF = 6 meV, which is considered further in this paper. (c) Cross-section of (a) and (b) for EF = 6 meV.

Appendix). Then, we calculate incoming bk and outgoing dk

amplitudes (Appendix). Finally, the transmission probability
is calculated from the probability current fluxes

Ti =
M∑

k=1

|dk|2
∑Ny

v=1 |χk(v)|2 sin
(

e
�
�x2vB + k�x

)
∑Ny

v=1 |χi(v)|2 sin
(

e
�
�x2vB + ki�x

) , (8)

where ki stands for the wave vector of the ith incoming
mode and the expression

∑Ny

v=1 |χk(v)|2 sin( e
�
�x2vB + k�x)

corresponds to the probability flux of a given mode (with
k > 0).

III. RESULTS

A. G maps for a clean QPC

Figure 2(a) demonstrates the transfer probability summed
over the subbands [Eq. (7)] as a function of the magnetic
field B and the Fermi energy EF . The T (B,EF ) function
exhibits a steplike behavior with reduction of the number
of the transport modes with increasing B or lowering EF .
The results of Fig. 2(a) are obtained from a solution to the

scattering problem involving M subbands in the leads [see
Fig. 2(b)], which appear at the Fermi level for a given B.
For the further discussion, we choose a Fermi energy equal to
6 meV.

The G map calculated for B = 0.9 T for the clean QPC [36]
is presented in Fig. 3(a) as a function of the position of the
tip as modeled by Eq. (2). The conductance is reduced from
fc = 4 to fc = 3 when the tip approaches the area of the
QPC. Note that when the tip is outside the QPC the G map
ignores its presence. The flat minimum of G within the QPC
and the insensitiveness of the map to the position of the tip
when outside the constriction is a characteristic feature of
experimental maps obtained in SGM imaging of the edge states
in QPCs—see Ref. [32] or Fig. 4 in Ref. [29]. Note that in
contrast to the integer quantum Hall regime, for B = 0, the
G maps collected from the outside of the QPC contain fine
details with resolved branches [23,29] as well as interference
fringes [25] involving backscattering by the tip. For high B,
the backscattering is only allowed for the tip forming bridges
between the conducting sample edges, hence the flat region of
the G map outside the QPC.
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FIG. 3. (Color online) Conductance maps obtained for B = 0.9 T and different values of Utip (a) without QHI and (b)–(d) with QHI within
QPC.
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FIG. 4. (Color online) Conductance for EF = 6 meV as a function of the y position of the tip and the magnetic field. The scans were
performed along xtip = 1100 nm line (see Fig. 1) with dtip = 60 nm for different values of the tip potential Utip [Eq. (2)]. (a) Scan of the
QPC obtained with Utip = 3 meV and UQHI = 0 (in the absence of QHI). (b)–(e) Scans obtained for QHI present with: UQHI = 11 meV and
dQHI = 40 nm [Eq. (3)] for Utip = 1,2,3, and −5 meV.

Figure 4(a) shows the conductance for the tip scanning
across the channel close to QPC along the red dashed line in
Fig. 1 with varying magnetic field. In the absence of the tip,
the G(B) dependence has a steplike character [see Fig. 2(a)]
in consistence with the experimental results of Ref. [32] [see
Fig. 2(f)] and the ones of Ref. [29] (see Fig. 4) and Ref. [35]
[see Fig. 1(a)]. When the repulsive tip approaches the axis of
the QPC (y � 0) it enhances the backscattering and induces
shifts of G steps to lower values of B. The experimental
result for the equivalent measurement with QHI inside the
constriction [Fig. 2(a) of Ref. [34]] exhibits oscillations of G

instead of steps that appear in the result of Fig. 2(a).

B. G maps for the interferometer

In search for the oscillatory behavior of conductance in
function of the tip position, we have introduced a local
potential maximum to the center of the QPC in order to
simulate the quantum Hall island [34] with radius dQHI =
40 nm [see Eq. (3)]. The results for the transfer probability
as a function of the magnetic field and the height of the
QHI potential perturbation are given in Fig. 5. For low B,
an increase of UQHI monotonically reduces the conductance.
However, at higher B oscillations of conductance appear. The
period of these oscillations decreases with UQHI (see the red
arrows), which suggests that the resonances correspond to
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FIG. 5. (Color online) (a) Transfer probability as a function of the amplitude UQHI and magnetic field for dQHI = 40 nm and the center of
the potential maximum located at the center of QPC [see Fig. 1]. The number of fully transparent subbands fc is given. The vertical dashed line
present the value of UQHI, which chose for further calculations. (b)–(g) Probability density current distribution (color scale shows the absolute
value, and vectors the orientation of the current) for various points along resonances with locations indicated by arrows.
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FIG. 6. (Color online) (a)–(c) Probability density current distribution (color scale shows the absolute value, and the arrows—the orientation
of the current) corresponding to points marked by symbols in the conductance scan of Fig. 4(d). The position of the tip is marked by cross.

currents circulating around the QHI with area increasing with
the value of the local potential maximum. The currents in the
selected locations of the (B,UQHI) diagram were presented
in Figs. 5(b)–5(g). In all the plots, we find that the current
approaches the QPC along the upper edge and is partially
backscattered to the lower one. The transmitted current stays
close to the upper edge. The area of the QHI is surrounded by
an anticlockwise current with the electron density pushed to
the left of the current direction in consistence with the classical
Lorentz force orientation [47]. We find that the loops of current
are fully developed for both G resonances [Figs. 5(b)–5(d)] and
antiresonances [Figs. 5(g) and 5(f)]. Outside the resonances
and antiresonances the current vortex is weak [Fig. 5(e)]. We
conclude that the presence of a potential defect inside the QPC
leads to formation of closed current loops which is reentrant in
function of B for values of the magnetic field, which are more
or less periodically spaced. The current loops are coupled to
the edge currents, hence the periodic features of conductance.
For the following discussion, we fix UQHI = 11 meV for which
fc � 1 for B up to 2.2 T.

The G maps obtained for B = 0.9 T for the QHI present
inside the QPC are displayed in Figs. 3(b)–3(d). Instead of a
central flat minimum of conductance found for the clean QPC
[Fig. 3(a)], a resonant ring localized around the QHI defect is
detected in agreement with the experimental results [34]. The
radius of the ring increases with Utip.

Figures 4(b)–4(d) show scans of conductance along the
line at a side of the QPC [see Fig. 1] for the increasing value
of the tip potential. Already for the tip outside the channel
(y = 400 nm), the conductance exhibits peaks which reappear
nearly periodically as functions of B [Fig. 5]. The repulsive
tip changes the position of the resonances shifting them to
lower magnetic field [Figs. 4(b)–4(d)] in accordance with the

experiment [34]. An opposite shift is found for the attractive
tip [Fig. 4(e)].

In Fig. 6, we plotted the current distribution for three
points following the resonance of Fig. 4(d) that are marked by
(◦,�,�) and one point (�) outside the resonance [Fig. 4(e)].
The resonances are related to the interference with current cir-
culating around the QHI. The repulsive tip potential increases
the area encircled by the current when placed near the QHI [cf.
Figs. 7(a) and 7(c)]. In consequence, we find that the period of
the oscillations is reduced [see Fig. 7] when the tip is near QPC.

FIG. 7. (Color online) �B dependence on the position y of the
tip for different values of Utip as extracted from Figs. 4(b) and 4(d).
For the definition of �B1 and �B2 see Fig. 4(d).
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K. KOLASIŃSKI AND B. SZAFRAN PHYSICAL REVIEW B 89, 165306 (2014)

Note that for fixed B the tip even when far from the center of the
QPC destroys the resonant current loop while moving along
the straight line (note the radial form of G map of Fig. 3). In
the discussed plots of Figs. 5(b)–5(f), the values of B had to be
changed to follow the resonance. Moreover, for the attractive
tip [Fig. 4(e)] the spacing between the resonances increases
when tip gets close to the center of the QPC, indicating that
the area encircled by the current is decreased. The present
calculations confirm the interpretation of Ref. [34] that the
reduced period of G oscillations for the repulsive tip is a
signature of the presence of QHI inside the QPC. Note that
the spacings between B values—already in the absence of the
tip are not exactly equal (see Fig. 7 for Utip = 0), which results
from the softness of the assumed QHI potential. For B > 0,
the current circulates counterclockwise around the QHI [see
Figs. 5(b)–5(g)]. The Lorentz force pushes the electron density
to the left of the current. For higher magnetic field, the shift
of the electron density to the center of QHI is stronger, hence
the reduced area of the loop [cf. Figs. 5(b) and 5(d)] and the
increased Aharonov-Bohm period.

The change of the Aharonov-Bohm period with the pres-
ence of the tip results from superposition of the two potentials:
the one of the defect forming the QPC and the tip potential. We
find that in order for this superposition to be effective in the
modulation of the B period the potential of the defect needs to
be soft. We have performed calculations for a hard-wall QHI
potential simulated by

VQHI(x,y) = UQHIe
(−{[(x−xQHI)2+(y−yQHI)2]/rQHI}8). (9)

For the purpose of the hard-wall simulation, we adopted
UQHI = 10 meV exceeding by 4 meV the Fermi energy, and
rQHI = 70 nm. The results for the scan along the path marked
in Fig. 1 by the dashed line are given in Fig. 8. In contrast to
the results with the soft QHI potential of Fig. 4 we notice that
(i) in the absence of the tip (y = 400 nm) the subsequent G

resonances at the B scale are spaced by periods, which change
with the magnetic field much more slowly than for the soft QHI
defect, and (ii) the presence of the tip shifts the position of the
resonances but does not change their spacing significantly as
it was the case for the soft QHI defect.

For the soft defect, the edges of antidot are not precisely
defined and are modified when the tip potential is in neighbor-
hood implying a modified area circulated by currents carried
by the Fermi level electrons that is translated to the change of
the Aharonov-Bohm period. For the hard-wall potential, the
antidot edges are well-defined and are not affected by the tip
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FIG. 8. (Color online) Same as Fig. 4 only for the hard-wall
profile of the QHI [Eq. (9)].

potential, which only shifts the G steps on the energy scale
with no effect on the area encircled by the currents.

IV. SUMMARY AND CONCLUSIONS

We have simulated scanning gate microscopy mapping of
conductance of both a clean QPC and the one turned into an
electron interferometer by a local maximum of the potential
landscape in the integer quantum Hall regime. We have solved
the quantum scattering problem as given by the Schrödinger
equation using a direct finite difference approach with an
implementation of the quantum transmitting boundary method.
We have described the stepwise reduction of conductance that
is due to the tip for clean QPC as well as formation of resonant
current loops around the potential defect when introduced to
the constriction. We found that the repulsive tip reduces the
period of the Aharonov-Bohm-like conductance oscillations
for the interferometers. We demonstrated that the periodicity of
AB oscillations reacts to the tip only when the potential defect
within QPC has a soft character. The presented results for the
conductance maps are consistent with the recent experimental
results for both clean QPCs and the electron interferometer.
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APPENDIX

This appendix contains the details of the implementation
of the quantum transmitting boundary method for the finite
difference approach. After Refs. [44,45], we multiply both
sides of Eq. (5) by a complex conjugate of the mth outgoing
transverse mode χ−m, then we integrate both sides along the
channel, putting x = 0,

〈χ−m,�〉 =
M∑

k=1

ak〈χ−m,χk〉 + bk〈χ−m,χ−k〉, (A1)

where 〈A,B〉 = �x
∑Ny

j=1 A∗
jBj is an inner product calculated

for the transverse wave function across the channel, here writ-
ten in finite difference formalism. Equation (A1) can be written
as a system of M linear equations for outgoing amplitudes bk:

v = Aa + S−1b, (A2)

with vm = 〈χ−m,�〉, Amk = 〈χ−m,χk〉, S−1
mk = 〈χ−m,χ−k〉,

a = (a1,a2, . . . ,aM )T , and b = (b1,b2, . . . ,bM )T .
Note that the different lateral modes χk are not orthogonal

in presence of the external magnetic field [43], and thus S−1

and its inverse matrix are not diagonal. We use Eq. (A2) to
express vector b in terms of the incident amplitudes

b = Sv − SAa,

with

bk =
M∑

p=1

Skp

{
〈χ−p,�〉 −

M∑
q

Apqaq

}
. (A3)

In order to apply the boundary conditions for Eq. (4), we
calculate the derivative of Eq. (5) at x = 0 (u = 1) using the
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standard central finite difference formula for the first-order derivative:

∂�

∂x

∣∣∣∣
u=1

= �2,j − �0,j

2�x
=

M∑
k=1

�kakχk(j ) − �kbkχ−k(j ), (A4)

where

�k = eik�x − e−ik�x

2�x
= −�−k.

Now we put Eq. (A3) to Eq. (A4), where we also use the formula for an inner product:

〈χ−m,�〉|u=1 = �x

Ny∑
i=1

χ∗
−m(j )�1,i ,

we get

�2,j − �0,j

2�x
=

M∑
k=1

�k

⎡
⎣akχk(j ) − χ−k(j )

M∑
p=1

Skp

⎧⎨
⎩〈χ−p,�〉 −

M∑
q=1

Apqaq

⎫⎬
⎭

⎤
⎦ ,

=
M∑

k=1

�kakχk(j ) +
M∑

k=1

�kχ−k(j )
M∑

p=1

Skp

M∑
q=1

Apqaq − �x

Ny∑
i=1

�1,i ·
M∑

k,p=1

χ∗
−p(i)Skpχ−k(j )�k

= Fj − �x

Ny∑
i=1

α
j

i �1,i ,

where

Fj =
M∑

k=1

�kakχk(j ) +
M∑

k=1

�kχ−k(j )
M∑

p,q=1

SkpApqaq,

α
j

i =
M∑

k,p=1

χ∗
−p(i)Skpχ−k(j )�k.

From Eq. (A5), we get

�0,j = �2,j − 2�x

⎛
⎝Fj − �x

Ny∑
i=1

α
j

i �1,i

⎞
⎠ ,

which we put into the Schrödinger equation (4) in order to
apply boundary conditions for nodes with u = 1:

�1,v(4t0 + V1,v − EF ) − 2t0
{Cx}�2,v − 2t0Cx�x2
Ny∑
i=1

αv
i �1,i

− t0(�1,v−1 + �1,v+1) = −2t0Cx�xFv.

Since 2t0�x2 = 1/meff , we get

�1,v

(
4t0 + V1,v − EF − Cx

meff
αv

v

)
− 2t0
{Cx}�2,v

+�1,v+1

(
−t0 − Cx

meff
αv

v+1

)
+ �1,v−1

(
−t0 − Cx

meff
αv

v−1

)

−
Ny∑

i �={v−1,v,v+1}

Cx

meff
αv

i �1,i = −2t0�xCxFv, (A5)

which is the final formula for the boundary condition for the
input lead. Using Eq. (6) and choosing the coordinate frame
in which x = 0 at nodes with u = Nx , we get

dk =
∑

p

Dkp〈χp,�〉, D−1
kp = 〈χk,χp〉.

The same as for the input lead one can show that the
boundary condition at the output lead u = Nx is given by
formula

�Nx,v

(
4t0 + VNx,v − EF − C∗

x

meff
βv

v

)
− 2t0
{Cx}�Nx−1,v

+�Nx,v+1

(
−t0 − C∗

x

meff
βv

v+1

)

+�Nx,v−1

(
−t0 − C∗

x

meff
βv

v−1

)

−
Ny∑

i �={v−1,v,v+1}

C∗
x

meff
βv

i �Nx,i = 0, (A6)

with

β
j

i =
M∑

k,p=1

χ∗
p(i)Dkpχk(j )�k.

Equations (4), (A5), and (A6) define a set of NxNy algebraic
equations for unknown nodal values of �u,v , which we solve
using the LU method for sparse matrices [48].
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