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Accuracy evaluation and mechanism crossover of single-electron transfer
in Si tunable-barrier turnstiles
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Using an error-counting scheme, we evaluated the accuracy of single-electron (SE) transfer in Si tunable-barrier
turnstiles in a dilution refrigerator. The error counting was performed by shuttling SEs between a lead and a
charge-accumulating node and detecting in real time the number of electrons in the node with an SE-resolution
charge sensor. The best experimentally obtained error rate is about 100 parts per million (ppm), where the SE
capture in the SE island occurs in thermal equilibrium due to the heating effect on SEs caused by pulse voltages
applied to modulate the potential barrier. When we reduce the heating effect by suppressing the pulse voltages,
there is a change in the SE transfer mechanism to nonequilibrium SE capture. We theoretically discuss the
crossover point of the change. Moreover, at the minimum pulse voltage, the theoretical lower bound of the error
rate estimated by fitting is on the order of 0.01 ppm. This suggests that Si SE-transfer devices are promising
candidates for use as quantum current standards in metrology.
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I. INTRODUCTION

Single-electron (SE) transfer has been attracting much
interest for applications to SE circuits [1], on-demand SE
sources [2], and quantum current standards in metrology,
which could allow us to redefine the ampere by fixing the
elementary charge e [3]. Quantum current standards can also
be used for quantum metrology triangle experiments, which
provide a consistency check for the existing two electric
standards: the quantum Hall resistance standard and the
Josephson voltage standard [4]. For these applications, it is
necessary to realize an SE transfer error rate of better than
0.01 parts per million (ppm) and a current level larger than
several hundred picoamperes [5].

In pioneering work [6,7], the SE transfer was demonstrated
by using arrays of metallic islands separated by oxide tunnel
barriers. Periodic gate modulation at a frequency f generates
a quantized current I = nef , where the n electrons in a
group are transferred one by one. By increasing the number
of tunnel barriers, an error rate of 0.015 ppm has been
achieved [8]. Although this value almost satisfies the accuracy
criterion, the current level (∼ a few picoamperes), which is
limited by the fixed and large tunneling time constant, is not
high enough for the current standards. In another approach
using hybrid superconducting-normal metal turnstiles [9], a
quantized current has been clearly generated but the criteria
for the current standards have not yet been satisfied. On
the other hand, semiconductor-based SE transfer driven by
electrostatically induced tunable barriers [10–13] allows us
to generate a high (nanoampere level) current with gigahertz
operation [13]. Thus, the accuracy of semiconductor-based
devices should be investigated toward current standards.

Two main approaches have been used to evaluate the
accuracy of SE transfer: a comparison of current generated
by the SE transfer with that generated by primary standards
[14] and error counting with an SE-resolution sensor during SE
shuttle transfer, which is called shuttle error measurement [15].
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With the former method, an error rate of about 1.2 ppm has
been reported in a GaAs-based SE pump, which represents
the best data obtained to date for semiconductor-based SE
transfer [16], although a magnetic field of 14 T is necessary
to improve the accuracy [17]. However, the primary standards
determine the upper bound of the measurable accuracy of the
SE transfer. In contrast, the latter method has no such upper
bound, thus allowing us to explore the true accuracy of the
SE transfer. Using the latter method, we have evaluated the
accuracy of the SE transfer in Si metal-oxide-semiconductor
field-effect transistors (MOSFETs) and shown that the error is
due to thermal fluctuations at 17 K, where the error rate was
still high (∼ 2 × 104 ppm) [18].

In this paper, we report single-shot shuttle error mea-
surements in Si MOSFETs at a base temperature of 30 mK
and in a zero magnetic field. The best obtained error rate is
about 100 ppm. Furthermore, we reveal the mechanism that
dominates the error rate and indicate the potential for further
reduction of the error rate to about 0.04 ppm.

II. DEVICE STRUCTURE AND
MEASUREMENT SCHEMES

Figure 1(a) shows a scanning electron microscope (SEM)
image of the device. The left and right parts of the device are
a charge sensor and an SE transfer device, respectively. The
device fabrication process is as follows. First, Si nanowires
and a side gate (SSG) on a 400-nm-thick buried oxide layer
were formed by using electron beam lithography, followed
by thermal oxidation for the formation of a 40-nm-thick gate
oxide layer. The nanowires should be 20 nm thick and 10
and 30 nm wide, respectively, for the charge sensor and the
SE transfer device. Next, three polycrystalline-Si lower gates
(LG1, LG2, LG3) with a gate length of 30 nm were formed
on the nanowire for the SE transfer device. The gap between
LG1 and LG2 was 130 nm. Then, a 50-nm-thick interlayer
oxide was grown by chemical vapor deposition. After that,
the entire region seen in the SEM image was covered with a
polycrystalline-Si gate, which is referred to as an upper gate.
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FIG. 1. (Color online) (a) Scanning electron microscope image
of the device before upper gate formation. The wide upper gate covers
the whole region shown in the image. The charge sensor and the SE
transfer device are on the left and right sides of the dotted line,
respectively. (b) Pulse sequence of the SE turnstile operation. The
pulse voltages are applied to LG1 (VLG1) and LG2 (VLG2). NIS1 and
NIS2 are the numbers of electrons in the island at the regions indicated
by arrows. (c) Pulse sequence of the SE shuttle transfer. In addition
to VLG1 and VLG2, the pulse voltages are applied to the source (VS).

Finally, n-type leads (source and drain for the SE transfer
device; SS and SD for the charge sensor) were formed by ion
implantation with the upper gate used as a mask.

The SE transfer is performed by using a turnstile operation
with high-frequency pulse voltages alternately applied to LG1
and LG2 [Fig. 1(b)], where a small charge island is formed
between LG1 and LG2, yielding quantized current plateaus
I = nef [11]. For the SE shuttle transfer, we apply one
more pulse voltage to the source to change the direction of
the SE transfer. In addition, a charge-accumulating node is
electrostatically created between LG2 and LG3. As a result,
an SE is transferred from the source to the node (SE injection),
then returns from the node to the source (SE ejection). The
pulse sequence for the SE shuttle transfer is shown in Fig. 1(c).
The charge sensor, which has sufficient sensitivity for SE
detection [19], counts the number of electrons in the node
(Nnode) during the SE shuttle transfer to determine the number
of errors. Since the error rate of SE injection is significantly
different from that of SE ejection as discussed below, we used
single-shot error detection to evaluate the injection and ejection
errors separately; the time intervals of the two hatched regions
in Fig. 1(c), which have the same voltage conditions, are four
orders of magnitude longer than the other time intervals. In
addition, the time interval of the right hatched region is about
double that of the left one. The rise time of the pulse voltage
is 2 ns. All the measurements were performed in a dilution
refrigerator at a base temperature of 30 mK and in a zero
magnetic field.
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FIG. 2. (Color online) (a) Two-dimensional plot of the current
passing through the SE transfer device as a function of VS and voltages
applied to the upper gate (VUG), where the current is normalized by
ef . Voltages applied to the drain (VD) and LG3 (VLG3) are −0.9 and
1.5 V, respectively. VLG1 and VLG2 are modulated between −3 and
0.5 V. The dotted line and red arrows indicate irregular characteristics.
(b) Sensor current Isensor as a function of time during the 2-SE shuttle
transfer (VLG3 = −3 V, VUG = 4.14 V, VD = −0.9 V). The voltages
applied to SD (VSD), SS (VSS), and SSG (VSSG) are 1 mV, 0 mV,
and −3.1 V, respectively. VLG1 and VLG2 are modulated between −3
and 0.5 V. VS is modulated between −0.72 and 0.7 V. The voltage
conditions do not correspond to ±2ef plateaus in (a) presumably
because of the different VLG3 and the feedback effect discussed in
Sec. III C. The pulse rise time is 2 ns.

III. RESULTS AND DISCUSSION

A. SE turnstile operation and 2-SE shuttle transfer

Figure 2(a) shows the current, which is normalized by ef ,
observed during SE turnstile operation as a function of voltages
applied to the source (VS) and the upper gate (VUG). The clear
current plateaus nef (−nef ) indicate the SE transfer from
drain to source (from source to drain). Additionally, Fig. 2(a)
helps us to explore the voltage conditions for the SE shuttle
transfer. We decided to use 2ef and −2ef plateaus in the
SE shuttle transfer (2-SE shuttle transfer) because they are
relatively clear and wide. They correspond to the ejection and
injection of 2 SEs and hereafter we call them 2-SE ejection
and 2-SE injection, respectively. In the current diagram, we
can see certain irregularities indicated by red arrows that are
probably due to the SE transfer via trap levels [18]. However,
we confirmed experimentally that most of the current plateaus
including 2ef originate from the SE transfer via a charge
island [20]. The error rate of the island-mediated SE transfer
is determined by the electron addition energy, Eadd, which is
estimated from the width of the current plateau [21].

We detected changes of Nnode in real time during the 2-SE
shuttle transfer, as shown in Fig. 2(b). The abrupt increase
and decrease in the current correspond to 2-SE ejection and
injection, respectively. It is beneficial that this measurement
does not suffer from measurement noise because the charge
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sensor has sufficient sensitivity. At the point indicated by the
blue arrow, the current amplitude is half, which means that
just one electron is injected in error. We count such errors to
estimate the error rate of the SE shuttle transfer.

B. Details of the 2-SE shuttle transfer: Effect of the
charging in the node

To understand the results of the shuttle error measurements
shown later, we first consider the 2-SE shuttle transfer
procedure in detail. Figure 3(a) is a stability diagram of the
SE turnstiles [11]. We define the number of electrons captured
in the island immediately after the fall of the pulse applied
to LG1 and LG2 as NIS1 and NIS2, respectively [see also
Fig. 1(b)]. Since the island is coupled to the upper gate
and the source during the LG1 modulation (there is a large
potential barrier under LG2), the boundary for NIS1 is given
by VUG = VS + eNIS1/CUG + const. [red lines in Fig. 3(a)],
where CUG is the capacitance between the upper gate and the
island. By contrast, during the LG2 modulation, the island
is coupled to the upper gate and node (there is a large
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FIG. 3. (Color online) (a) Stability diagram of the SE turnstile
as a function of VUG and VS. nef (n = −3,−2, . . . ,3) is the current
plateau. The operating points for the 2-SE shuttle transfer are located
in the ±2ef plateaus. NIS1 and NIS2 are the numbers of electrons
captured in the island just after the fall of the pulse applied to LG1 and
LG2, respectively. The red and blue lines are the boundaries for NIS1

and NIS2, respectively. (Inset) The movement of the position of the
2-SE injection (−2ef plateau) toward the region where NIS1 = 2 and
NIS2 = 0. (b) Potential diagrams corresponding to operating points
A, B, C, and D in Fig. 1(c), where the number of electrons in the node
(Nnode) is assumed to be N or N + 2.

potential barrier under LG1), giving the boundary for NIS2

as VUG = eNIS2/CUG + const. [blue lines in Fig. 3(a)]. The
total number n of electrons transferred from the node to the
source is given by n = NIS2 − NIS1, resulting in the current
plateaus nef . Note that the distances between each boundary
are determined by Eadd.

The two gates, LG1 and LG2, are each modulated two
times per cycle for the 2-SE shuttle transfer, as indicated
by operating points A, B, C, and D in Fig. 1(c). A potential
diagram corresponding to the four points is shown in Fig. 3(b).
First, at operating point A, where we assume Nnode = N ,
LG1 is modulated and NIS1 = 4. Next, LG2 is modulated at
operating point B, where Nnode = N + 2 because NIS2 = 2.
These two processes correspond to the 2-SE injection into the
node and the operating points are located in the −2ef plateau
in Fig. 3(a). To perform the 2-SE ejection from the node, the
operating point is moved to the 2ef plateau, which is indicated
in Fig. 3(a), by changing VS. Then, LG1 is modulated at
operating point C, where NIS1 = 0 and Nnode = N + 2. After
that, LG2 is modulated at operating point D, where NIS2 = 2
and Nnode = N . Finally, to perform the 2-SE injection again,
the operating point is moved to the −2ef plateau by changing
VS. The 2-SE shuttle transfer is performed by repeating these
procedures.

In the 2-SE shuttle transfer, when the electron addition
energy in the node, Enode

add , is not much smaller than Eadd,
the potential change in the node caused by SE charging is
not negligible. As a result, the SE capture probability in the
island at operating point B (Nnode = N + 2) is different from
that at operating point D (Nnode = N ). In addition, when 2-SE
injection or ejection errors occur, both Nnode and the error
rate change. Thus, Enode

add should be minimized if we are to
investigate the error rate properly. Note that charging the node
has no effect on the SE capture probability in the island at
operating points A and C because the node is decoupled from
the island.

Although we can increase the node size to reduce Enode
add , this

would reduce the SE resolution of the sensor. Thus, we need
an optimized design for the device structure. Alternatively,
the effect of node charging can be reduced by moving the
operating points for the 2-SE injection to the region where
NIS1 = 2 and NIS2 = 0 [inset in Fig. 3(a)]. Since the position
of operating point B can be set sufficiently far from the blue
lines, the errors at operating point B can be neglected.

C. Error rate estimated by shuttle error measurements

To estimate the tiny error rate of the 2-SE shuttle transfer,
we performed a longer measurement as shown in Fig. 4(a),
in which the horizontal axis is compressed compared with
that in Fig. 2(b). Although the sensor current should change
between two levels without errors, the observed sensor current
fluctuated between more than two levels due to transfer errors.
A notable feature is that most of the errors occurred during
the 2-SE injection. This could be related to the trap levels
that disturb the stability diagram shown in Fig. 2(a). The fact
that the irregular lines in the stability diagram in Fig. 2(a)
correspond to the red lines in Fig. 3(a) indicates that the
trap levels could be located under LG1 and NIS1 may be
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FIG. 4. (Color online) (a) Sensor current Isensor as a function of
time taken by the long-term 2-SE shuttle transfer (VLG3 = −3 V,
VUG = 4.15 V, VSD = 5 mV, VSS = 0 mV, VSSG = −3.75 V, VD =
−0.9 V). VLG1 and VLG2 are modulated between −3 and 0.5 V. VS is
modulated between −0.72 and 1.4 V. The rise time of the pulse is
2 ns. The frequency of the applied pulse voltage is about 1.6 Hz. The
SE ejection and injection are performed in 0.2 ms. (b) Histograms
of the number of 2-SE ejections (NEJ) as a function of Nnode − N ,
where Nnode is assumed to be N at maximum NEJ. (c) A magnified
plot of (a), where Nnode − N is denoted. (d) The error rate of the 2-SE
ejection at Nnode = N as a function of VUG. VSSG is different at each
point: from left to right, VSSG = −3.61,−3.65,−3.70, and −3.75 V.
The error bars are calculated by using a confidence interval for the
Poisson distribution.

disturbed. The mechanism of the errors induced by the trap
levels deserves further experimental and theoretical study.

Next, we focus on the 2-SE ejection, in which the error
at operating point C can be neglected because the ejection
can be performed at a position far from the red lines in
Fig. 3(a). To investigate the effect of the potential in the node,
we counted the number of 2-SE ejections (NEJ) when the
node contained Nnode = N ± i (i = −3,−2, . . . ,4) electrons
at operating point D, where Nnode is assumed to be N at
maximum NEJ [Fig. 4(b)]. Note that this distribution is mainly
dominated by the errors that occur during the 2-SE injection
because there are many injection errors. Nnode is also shown
in Fig. 4(a) by dashed lines. The spikelike changes in the
sensor current at Nnode = N ± 2 in Fig. 4(a) indicate that
Nnode tends to return to N ± 1. In addition, the 2-SE ejection
at Nnode = N + 4 occurred only after the start of the 2-SE
shuttle transfer [Fig. 4(c)] (probably due to incomplete initial-
ization). These facts suggest that with increasing (decreasing)
Nnode, the potential in the node increases (decreases) and
thereby the errors in relation to increasing (decreasing)
NIS2 increase, resulting in a tendency for Nnode to decrease
(increase). This feedback (similar feedback has been observed

with a GaAs pump [23]) indicates that the ejection errors at
the operating points with maximum NEJ (Nnode = N ) should
have low error rates, which corresponds to the operating points
being located near the center of the 2ef plateau. In addition,
since the quantum current standard does not have such a node,
we should disregard the effect of the charging in the node.
Thus, we estimated the ejection error at Nnode = N , which is
defined as the number of ejection errors divided by NEJ, and the
best value is around 100 ppm [Fig. 4(d)]. The error rate is about
200 times better than that of the previously reported turnstile
with a similar Si island [18]. Since the observed error rates
correspond to those at operating point D and the rise time of
the pulse voltage is fast (trise ∼ 2 ns), this result indicates that
current with an error rate of about 100 ppm can be generated
at f ∼ 100 MHz.

Note that when we changed VUG and estimated the 2-SE
ejection errors in the same way as shown in Fig. 4(d), the error
rates were almost constant despite the different VUG. This is
because we have to tune the voltages applied to SSG to set
the condition of the sensor to the most sensitive point for
SE detection. This inevitably changes the node potential and
thereby cancels out the effect of VUG.

D. Theoretical model of SE transfer: Crossover
of two mechanisms

We consider theoretical models to investigate the error
mechanism and theoretically estimate the lower bound of the
error rate. The mechanism of the SE transfer is based on a
simple SE box model in thermal equilibrium [18,24] and/or
the nonequilibrium decay cascade model [13,25]. In the former
model [see Fig. 5(a)], the average number of electrons captured
in the island is determined by the grand canonical distribution
with the electrostatic energy En in the island, which is
given by

〈n〉 = �nexp(−En/kT )/�exp(−En/kT ), (1)

En = (−ne + CUGVUG)2/2C� + const., (2)

where k is the Boltzmann constant, T is the temperature,
n is the number of electrons in the island, C� is the total
capacitance of the island, and the Fermi level in the lead
EF ≡ 0 [24]. With this model the plateaus of the SE transfer
current have a symmetric rise shape. In the latter model [see
Fig. 5(b)], the escape dynamics of the SEs from the island
to the lead during the rise of the potential barrier determines
the number of electrons captured in the island. First, many
electrons stay in the island when the potential barrier induced
by LG1 or LG2 is low. Then, as the potential barrier rises,
some electrons return to the lead because the potential of the
island also rises simultaneously due to capacitive coupling CC

between the lower gates and the island. The escape rate of the
nth SE is much lower than that of the (n + 1)th SE because the
electrochemical potential of the nth SE is lower than that of
the (n + 1)th SE due to Eadd and therefore the potential barrier
height and width for the nth SE are both larger than those for
the (n + 1)th SE. Thus, n SEs can be captured in the island in
a particular VUG range, yielding the nef plateau. By solving
the master equation, the formula of the decay cascade model
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(c) Schematic diagram of the rate at which the nth SE enters the
island (�in

n ) and escapes from it (�out
n ) as a function of time. In this

case, the decay cascade model is valid. (d) Diagram for the crossover
of the transfer mechanism as a function of g (defined in the main
text) and temperature (T ). (e) Calculated probability Pn of capturing
the nth SE in the island at t = trise and second derivative of Pn as
a function of VUG. R is defined as the ratio of the two peak heights
A+ and A−. (f) Calculated R as a function of temperature, where
g is 0.25 and 9. The parameters used in the calculation are given in
Appendix A. The two horizontal dotted lines indicate R = 1 (thermal
equilibrium model) and R = 1.92 (decay cascade model). The two
vertical dotted lines indicate T0 = 20 K and gT0 = 5 K (g = 0.25).

is given as

〈n〉 = n − 1 + �n+1
k=nexp[−exp(−αUGVUG + �k)], (3)

where αUG and �k are fitting parameters [13,25]. Note that
we assume that the escape rates of the nth and (n + 1)th SEs
(�out

n and �out
n+1, respectively) have the same time dependence.

The parameters �n and �n+1 are related to �out
n and �out

n+1
as �n+1 − �n = ln(�out

n+1/�out
n ) ≡ δn+1, which corresponds to

the width of the nth plateau as a function of VUG. This indicates
that the error rate of the SE transfer, which is determined by
the width of the plateau, should be low when the difference
between the escape rates of the nth and (n + 1)th SEs is large.
In addition, this model yields an asymmetric rise shape of the
plateaus of the SE transfer current.

To clarify the crossover point of the two models, we
consider how the nth SE is captured in the island using the
master equation. When Eadd is much larger than kT , it is
sufficient to take the nth and (n − 1)th electrons into account.
Thus, the general master equation for the probability Pn(t) of

capturing the nth SE in the island is

dPn(t)

dt
= −�out

n (t)Pn(t) + �in
n (t) [1 − Pn(t)] , (4)

where �in
n (t) is the rate at which the nth SE enters the island

from the lead. When we assume parabolic potential barriers
with a much larger barrier height than kT under a lower gate,
�out

n (t) = �n0exp[−β(t − t0)] and �in
n (t) = �out

n (t)exp(−UIS
kT

),
where �n0 and β are time-independent constants (β is detailed
later) and UIS is the electron potential in the island and
is aligned with the Fermi level in the lead at t = t0. With
linear ramping of the pulse voltage −�VLGt/trise applied to
LG1 or LG2, UIS = eαI�VLG(t − t0)/trise, where �VLG is the
amplitude of the pulse voltage, and αI = CC/C� . �out

n (t) can
be divided into two terms: thermal hopping (β = βh) and
tunneling (β = β t). We define the transition temperature T0

from the thermal hopping to the tunneling; T0 (= �ω/2kπ )
is determined by the curvature of the parabolic potential
barrier U (x) = U − m∗ω2x2/2, where � is Planck’s constant,
U is the potential barrier hight, and m∗ is the effective
mass of an electron in Si [26]. In both thermal hopping and
tunneling, β is related to the potential barrier height with
respect to the island electron potential [see also Fig. 5(b)]: U −
UIS = e(αLG − αI)�VLG(t − t0)/trise + const., where eαLG is
a conversion factor from VLG to the corresponding energy.
When CC = 0, �in

n (t)/�out
n (t) is independent of time and

Eq. (4) is solved exactly on condition that the system initially
follows the thermal equilibrium. This simply results in the
final (t → ∞) probability distribution also reaching thermal
equilibrium. With finite CC, �in

n (t)/�out
n (t) depends on time.

As time increases, �in
n (t) becomes smaller than �out

n (t). When
�in

n (t) 	 �out
n (t), the second term on the right-hand side

of Eq. (4) is neglected, corresponding to the pure decay
cascade model. We define the boundary as �in

n (ta)/�out
n (ta) =

e−1. This condition yields the characteristic time ta − t0 =
kT trise/eαI�VLG. When the decay cascade model is applied
soon after t = t0 (i.e., ta − t0 is very small), the solution of the
master equation is

Pn(t) = exp

(
−�n0

β
[1 − exp {−β(t − t0)}]

)
. (5)

From this equation, the characteristic time tb for capturing
the nth SE can be defined as tb − t0 = 1/β. This must be
valid because Pn(tb) ∼ [Pn(∞)]0.63; the system approaches the
final state at t = tb. This situation is depicted schematically in
Fig. 5(c).

In high-temperature regimes (T 
 T0), �out
n (t) can be

expressed by the thermal hopping model, where tb − t0 ∼
1/βh ∼ kT trise/e(αLG − αI)�VLG. When Eq. (5) is valid, ta 	
tb because ta − t0 is sufficiently small, yielding g ≡ αI/(αLG −
αI) 
 1. This indicates that the mechanism of the SE transfer
approaches the decay cascade model when αI (<αLG) is
sufficiently large, which is achieved by increasing CC. Note
that g is a similar function to the plunger-to-barrier ratio in
Ref. [27]. The opposite limit, g 	 1, can be achieved when
CC approaches 0. Since the thermal equilibrium model is valid
when CC = 0, as discussed above, the mechanism of the SE
transfer approaches thermal equilibrium when g 	 1. Thus,
the comparison between ta and tb can be used to distinguish
the thermal equilibrium model and the decay cascade model.
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Then, we consider the low-temperature regimes (T 	 T0),
where �out

n (t) can be expressed by the tunneling model,
where tb − t0 ∼ 1/β t ∼ kT0trise/e(αLG − αI)�VLG. The decay
cascade model and the thermal equilibrium model are valid
when ta 	 tb and ta 
 tb, respectively, corresponding to T 	
gT0 for the decay cascade model and T 
 gT0 for the thermal
equilibrium model. Note that gT0 is only valid as the crossover
point at T 	 T0. The above discussion is summarized in the
diagram in Fig. 5(d).

To verify the above qualitative discussion, we numerically
calculated the master equation and plotted Pn(trise) as a
function of VUG [Fig. 5(e)] (see Appendix A for further
information about the model). Then we estimated the ratio R

of the two peak heights A+ and A− in the second derivative of
Pn as shown in Fig. 5(e) (R = |A+/A−|). Since R is constant
for the thermal equilibrium model (R = 1: the symmetric rise
shape of the current plateaus) and the decay cascade model
(R ∼ 1.92: the asymmetric rise shape of the current plateaus),
R is a useful parameter for exploring which mechanism
dominates the SE transfer. The circles and triangles in Fig. 5(f)
show estimated R as a function of temperature, where g is
0.25 and 9, respectively, and T0 is 20 K. When g is large,
corresponding to a large CC, R has a slight dependence on
temperature and is close to the value in the decay cascade
model. On the other hand, when g is small, corresponding to
a small CC, R is close to the value in the thermal equilibrium
model at high temperature and approaches the value in
the decay cascade model below T ∼ gT0. These results are
consistent with the above qualitative discussion.

E. Experimental observation of mechanism crossover and
prospects for high-accuracy SE transfer

Figure 6(a) shows a magnified plot of the 2ef plateau for
an SE ejection (red dots), in which the voltage conditions
are the same as those in the shuttle error measurements
[28]. Data with a wide VUG range are shown in the inset.
We fit the plateau by using the thermal equilibrium and
decay cascade models. Despite the low base temperature,
the fit obtained by using the former agrees better with the
experimental data than that obtained with the latter, which is
validated by comparing the reduced χ2 values of the fit [R-χ2

in Fig. 6(a)]. From the fit obtained with the thermal equilibrium
model, we extracted Eadd/kT , which determines the error
rate. Then, we estimated the theoretical lower bound of the
error rate, P thermal

error = e−Eadd/2kT /(1/2 + e−Eadd/2kT ), which was
about 24 ppm. This error rate corresponds to that at the center
of the 2ef plateau. The order of the error rate extracted from the
fit is similar to that of the experimental value (about 100 ppm),
indicating that thermal fluctuation may limit the error rate
in the shuttle error measurements. The small difference in
the error between the fit and the experiment could be due
to the charging effect in the node; the operating point may not
be located at the point with the theoretically minimum error
rate. Note that the current fluctuation in Fig. 6(a) (measurement
uncertainty ∼10−2) is not related to the error of the 2-SE
transfer but to the measurement noise because the actual error
rate at this voltage is around 100 ppm, which is determined by
the shuttle error measurement.

Cascade
R-χ2 ~ 1.62

Thermal
R-χ2 ~ 1.07T = 30 mK

f = 10 MHz
Vamp = 3.5 V

Vamp
= 3.5 V

Vamp
= 0.75 V

Teff
~ 7 K

Teff
~ 5 K

Symmetric rise shape
(Thermal equilibrium)

Asymmetric rise shape
(Decay cascade)

(a)

(b) (c)

FIG. 6. (Color online) (a) Current, which is normalized by ef ,
passing through the SE transfer device (red dots) as a function of
VUG (VLG3 = 1.5 V, VS = 0.5 V, VD = 0.9 V). VLG1 and VLG2 are
modulated between −3 and 0.5 V. Vamp is the amplitude of the pulse
voltage. The purple and green curves are theoretical fits obtained
with the thermal equilibrium model and the decay cascade model,
respectively. The range of the fit is between ∼1.5ef and ∼2.5ef . R-χ2

is the reduced χ 2 value of the fit. (Inset) Current normalized by ef as a
function of VUG, where the 2ef plateau corresponds to that in the main
panel. The blue curve is the fit obtained with the thermal equilibrium
model. (b),(c) The first derivative of the SE-transfer current as a
function of VUG with the fit obtained with the thermal equilibrium (b)
and decay cascade (c) models, where Vamp = 3.5 and 0.75 V in (b)
and (c), respectively. The remaining voltage conditions are the same
as those in (a).

To investigate the influence of the thermal fluctuations, we
changed the base temperature to 1 K, but the plateau shape did
not change, indicating that there is another heat source. Then,
we reduced the amplitude of the pulse voltage applied to LG2
(Vamp) at the base temperature. As Vamp was reduced from 3.5
to 0.75 V, the symmetric rise shape of the plateaus became
asymmetric as shown Figs. 6(b) and 6(c), indicating that the
SE-transfer mechanism changed from the thermal equilibrium
model to the decay cascade model [29]. Thus, we speculate that
heating is induced by the pulse power. Note that similar heating
has been reported in an Si SE transfer device [30]. To estimate
the effective temperature Teff in the thermal equilibrium model,
we used the electron addition energy estimated from a device
with the same geometry [18] (∼14 meV) and obtained Teff ∼ 7
and 5 K at Vamp = 3.5 and 0.75 V, respectively. Note that this
is a crude estimation at Vamp = 0.75 V because the SE transfer
is explained well with the decay cascade model. Since these
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FIG. 7. (Color online) (a) Error rates estimated from Eadd/kT or
δ3, which are extracted from the fits to the 2ef plateau with the thermal
equilibrium (red dots) or decay cascade (blue squares) models,
respectively, as a function of Vamp. The error bars are calculated
from the standard deviations of Eadd/kT and δ3 extracted from the
fits. (b) The reduced χ 2 values obtained by the fits performed in
(a) as a function of Vamp, where the circles and squares correspond
to the thermal equilibrium and decay cascade models, respectively.
(c) Theoretically expected error rate for three different conditions
of g as a function of temperature (the scale of the vertical axis is
logarithmic).

temperatures are much higher than the base temperature, a
further decrease in Teff might be possible by optimizing Vamp.

We then estimated the theoretical lower bound of the error
rate from Eadd/kT or δ3 ≡ �3 − �2, which was extracted
from the fit to the 2ef plateau by the thermal equilibrium or
decay cascade models, respectively. Note that the error rate
at the 2ef plateau for the decay cascade model is determined
by δ3 and we define the theoretical lower bound of the error
rate for the decay cascade model as the error rate at the point
of inflection in the fitting curve [16] (details are discussed in
Appendix B). For a proper comparison, the range of the fit was
fixed at between ∼1.5ef and ∼2.5ef , which is the same as
that in Fig. 6(a). Figure 7(a) shows the error rate as a function
of Vamp. When plotting these results, we compared the reduced
χ2 values of the two fits by the two models at the same Vamp

[Fig. 7(b)] and selected the result with the smaller reduced χ2

value. At Vamp = 1.25 V, the reduced χ2 values cross over [see
the arrow in Fig. 7(b)]. This indicates that the actual error rate
should be close to the value extracted by the decay cascade
model at a low Vamp.

Figure 7(c) shows the theoretically expected error rate as a
function of temperature. When g = 0 (thermal equilibrium),
the error rate decreases exponentially with decreasing tem-
perature. The opposite limit is sufficiently large g (decay
cascade), where the error rate decreases exponentially at
T > T0 and saturates at T < T0 with decreasing temperature.

This saturation is due to the temperature-independent tunnel-
ing rate. Note that the decay cascade model yields lower error
rates than the thermal equilibrium model at T > T0 because
of the asymmetric probability of the SE capture into the island
as a function of VUG [see Eq. (3)]. When g is small, the
temperature dependence of the error rate is similar to that
in the thermal equilibrium model at T 
 gT0 (red line), the
mechanism changes at T ∼ gT0 (yellow line), and the error
rate saturates at T 	 gT0 (blue line). Since the reduced χ2

values cross over in Fig. 7(b), the region indicated by the
black circle in Fig. 7(c) may correspond to the temperature
regime in Fig. 7(a).

The lowest estimated error rate is about 0.04 ppm at
Vamp = 0.75, demonstrating the potential of the Si SE transfer
device for metrological applications [31]. Moreover, it should
be possible to further reduce the theoretical lower bound of
the error rate by optimizing the voltage condition because we
did not observe the error saturation. As a next step, we will
investigate the error saturation to know maximum performance
of the device. In addition, the error rate may increase at a higher
frequency due to negligible effects at the low frequency. The
most important effect would be the nonadiabatic excitation
effect, by which the SE captured in the island escapes to the
lead through the excited state [17]. Thus, the error estimation
at a higher frequency is the most important future work.

Finally, we suggest ways to achieve SE transfer with higher
accuracy. Since δn+1 = Eadd/kT0 at T 	 T0 determines the
error rate, Eadd and T0 should be large and small, respectively.
The former can be achieved by scaling down the island size.
Since T0 = �ω/2kπ , the slope of the potential barrier should
be gentle to reduce T0. This indicates that the gate should
be sufficiently long, although the influence of the trap level
and the surface roughness may increase. Alternatively, by
using one more pulse voltage that fixes the island potential
(effectively αI → 0), the thermal equilibrium model can hold
at low temperature and the saturation of the error rate by the
decay cascade model with the tunneling can be ignored. This
could yield a much lower error rate than that in the above
estimation with decreasing temperature.

IV. CONCLUSION

We used single-shot shuttle error measurements to estimate
an error rate of about 100 ppm in Si SE turnstiles at a
base temperature of 30 mK. The charging effect in the node
influences the error rate in this measurement; the error rate
of the 2-SE ejection was estimated while Nnode remained
the same during each cycle of the 2-SE shuttle transfer. In
addition, a heating effect caused by the pulse voltage may
degrade the error rate because the current plateau, which
has the same voltage condition as that in the shuttle error
measurements, is fitted well by the thermal equilibrium model
and the extracted error rate is in reasonable agreement with
the experiment. Moreover, as the pulse voltage amplitude
decreases, the transfer mechanism changes from the thermal
equilibrium model to the decay cascade model. We discussed
the crossover point of the transfer mechanism; it is the
transition temperature T0 or gT0, which mainly depends on
the capacitive coupling between a lower gate and the island
and on the potential barrier shape. The lower bound of the
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error rate estimated by the theoretical fit is about 0.04 ppm at
the minimum pulse amplitude and it should be further reduced
by optimizing the voltage condition, which implies that the Si
SE transfer device has the potential to satisfy the criteria for
quantum current standards.
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APPENDIX A: MODEL OF NUMERICAL CALCULATION

We assume that the island has a single energy level for
the nth electron and the shape of the electrostatically induced
barrier (the height is much higher than kT ) is parabolic. For
simplicity, we assume a single energy level for the thermal
hopping. We need to explicitly express the effect of the change
in UIS caused by VUG, which is included in t0 in the main text.
Then, �out

n (t) and �in
n (t) are modeled as

�out
n (t) = �h

n0exp

(
−βht − eαUGVUG

kT

)

+�t
n0exp

(
−β tt − eαUGVUG

kT0

)
(1 − f ), (A1)

�in
n (t) = �out

n (t)exp

(
−eαI�VLGt/trise − eαUGVUG

kT

)
, (A2)

f =
[

1 + exp

(
eαI�VLGt/trise − eαUGVUG

kT

)]−1

, (A3)

where αUG = CUG/C� and f is the Fermi-Dirac distribution
of the lead. �h

n0 and �t
n0 are the initial escape rates for

the thermal hopping mechanism and the tunneling mecha-
nism, respectively; in the initial state (t = 0, VUG = 0), the
electrochemical potential in the island is aligned with the
Fermi level in the lead and �t

n0 and �h
n0 can be expressed

using the initial potential barrier hight �i and constant �0

as �t
n0 = �0exp(−�i/kT0) and �h

n0 = �0exp(−�i/kT ). In
addition, we assume that the occupation probability in the
lead is 0 for the hopping mechanism (f ∼ 0) because the
potential barrier height should be sufficiently large in the range
of parameters discussed below.

To observe the change in R at T ∼ T0 and gT0, we set
T0 ∼ 20 K (a typical value in MOSFETs) and g = 0.25
(weak coupling) or g = 9 (strong coupling). From a measured

subthreshold slope S in a MOSFET similar to that comprised
of a lower gate (S ∼ 100 mV/decade at T = 100 K), we
extract αLG = ln10 × kT /eS ∼ 0.2. Note that g = 0.25 and
9 correspond to αI = 0.04 and 0.18, respectively. We assume
that �t

n0 can be estimated by the quantized resistance RQ ∼
26 k� and the island capacitance C� ∼ 11 aF (corresponding
to Eadd ∼ 14 meV [18]) as �t

n0 = 1/2πRQC� ∼ 5 × 1011.
Although it is difficult to ascertain �i exactly, we roughly
estimate it as follows. Since an energy of T0 = 20 K cor-
responds to about 2 meV and the maximum barrier height
at which we could measure the current in the subthreshold
region is about 20 meV, �i should fall between these two
values. Thus, we use �i = 10 meV, corresponding to a barrier
width d of about 7 nm estimated by the parabolic potential
model �i − m∗ω2d2/2 and T0 = �ω/2kπ = 20 K. Since the
gate length L of the lower gate is about 30 nm, the order
of the barrier width is reasonable (L > d). Then we obtain
�h

n0 = �t
n0exp(�i/kT0)exp(−�i/kT ). Furthermore, we set

�VLG = 0.75 V, trise = 2 ns, and αUG = 0.1. Note that the
correspondence between the parameters in the appendix and
those in the main text is as follows: t0 = αUGVUGtrise/αI�VLG

and �n0 = �0exp[−(�i + eαLG�VLGt0/trise)/kT ].

APPENDIX B: ERROR RATE FOR DECAY
CASCADE MODEL

The error rate P cas
error(VUG) at the 2ef plateau for the decay

cascade model is given by [25]

P cas
error(VUG) = 1 − P2(VUG) (B1)

= 1 − exp[−exp(−αUGVUG + �2)]

+ exp[−exp(−αUGVUG + �3)], (B2)

where P2(VUG) is the capture probability of two SEs. Since
the plateau is flattest at the point of the inflection (VInf), we
define the theoretical lower bound of the error rate as the error
rate at VUG = VInf . We extracted VInf from the derivative of
the fitting curve. By using constant γInf , VInf is determined
as VInf = �2/αUG + γInf(�3/αUG − �2/αUG), where �2/αUG

and �3/αUG are the respective positions at which the 2ef and
3ef plateaus rise. As a result, we find

P cas
error(VInf) = 1 − exp[−exp(−δ3γInf)]

+ exp{−exp[δ3(1 − γInf)]}, (B3)

where δ3 ≡ �3 − �2. Once δ3 is extracted from the fit to the
2ef plateau, the error rate at the point of inflection is estimated
from Eq. (B3).
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