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An electron confined in a quantum dot interacts with its local nuclear spin environment through the hyperfine
contact interaction. This interaction combined with external control and relaxation or measurement of the electron
spin allows for the generation of dynamic nuclear polarization. The quantum nature of the nuclear bath, along
with the interplay of coherent external fields and incoherent dynamics in these systems renders a wealth of
intriguing phenomena seen in recent experiments such as electron Zeeman frequency focusing, hysteresis, and
line dragging. We develop in detail a fully quantum, self-consistent theory that can be applied to such experiments
and that moreover has predictive power. Our theory uses the operator sum representation formalism in order to
incorporate the incoherent dynamics caused by the additional, Markovian bath, which in self-assembled dots
is the vacuum field responsible for electron-hole optical recombination. The beauty of this formalism is that it
reduces the complexity of the problem by encoding the joint dynamics of the external coherent and incoherent
driving in an effective dynamical map that only acts on the electron spin subspace. This, together with the
separation of time scales in the problem, allows for a tractable and analytically solvable formalism. The key role
of entanglement between the electron spin and the nuclear spins in the formation of dynamic nuclear polarization
naturally follows from our solution. We demonstrate the theory in detail for an optical pulsed experiment and
present an in-depth discussion and physical explanation of our results.
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I. INTRODUCTION

The electron-nuclear spin dynamics in quantum dots (QDs)
have attracted intense experimental and theoretical attention
in recent years [1–16]. This is both because of the role of
the nuclear environment in potential applications in quantum
information and because this is an inherently interesting
system that exhibits rich physics, especially in the presence
of external coherent and incoherent driving.

From a practical point of view, the nuclear spins comprise
the main source of electron spin decoherence that limits
the quality of spin qubits. On the other hand, the ability to
polarize the nuclear spins allows them to be used as an asset
instead of a liability. For example, in the singlet-triplet qubit
in electrostatically defined QDs, the nuclear polarization is
used as an effective magnetic field to implement (psuedo)spin
rotations [17]. An ambitious role of the nuclear spins that
would take advantage of their long coherence times is their use
as a quantum memory, an idea that was proposed [18] but not
yet demonstrated experimentally in QDs. Finally, an additional
motivation for gaining control over nuclear polarization and
controlling the nuclear spins is that a polarized and/or narrowed
nuclear bath polarization distribution would have less of a
detrimental effect on the electron spin coherence due to a
reduction of fluctuations originating from a reduced available
phase space to which quantum information can be lost [19,20].
In the case of gate-defined QDs, it was demonstrated that
significant amounts of nuclear polarization or distribution
narrowing can be generated and stabilized in a controlled
fashion [21–23] and that this can give rise to an enhancement of
the spin coherence time by nearly an order of magnitude [22].
In the context of self-assembled QDs, a similar effect was
achieved via coherent population trapping, with an improve-
ment in coherence time by a factor of several hundred [6].

From a fundamental science point of view, the open
and driven electron-nuclear spin system is of great interest,
as it has yielded a number of unexpected and intriguing
phenomena [24,25]. These arise from the fact that driving
the electron when it is coupled to a reservoir (this can be,
for example, a photon or phonon bath or cotunneling with
the leads) can produce dynamic nuclear spin polarization
(DNP), which in turn feeds back to the electron dynamics. This
often causes a reduction in nuclear spin fluctuations, which
manifests in a variety of effects depending on the experimental
setup. Noteworthy phenomena include synchronizing of the
electron spin frequency to that of a periodic train of pulses,
which can effectively homogenize an ensemble of spins with
a distribution of g factors [4], locking of a driven optical
transition to the laser [5,26], and hysteresis in the spectra
due to memory effects [5,6,8,26,27]. There exist several
theoretical works that analyze DNP processes in various
experimental contexts. In the case of gate-defined QDs, a
range of phenomena has been studied, such as DNP formation
and feedback [28–30], nuclear spin squeezing [31], dark state
formation [29,32], entanglement dynamics [31,33], and dy-
namical self-quenching [34]. In the context of self-assembled
QDs, there exist several works that treat the problem of driving
with a single continuous laser that showed nuclear feedback
effects and hysteresis [35,36], as well as for driving with two
phase-locked pulses to achieve tunable polarization [37] and
nuclear spin cooling [38].

II. OVERVIEW OF OUR APPROACH

Many of the experimental signatures of DNP repeat
across different setups in terms of driving sequences and
charge configurations in the QD. It is thus natural to seek
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a common theoretical framework which can be adapted to
explain any such type of experiment. In addition to the need
for understanding existing experimental results, a successful
theory should also have predictive power. The difficulty in
setting up such a theory for this system is the complexity of
the problem: It is an open and driven system which involves
many degrees of freedom, namely the electron spin, excited
electronic states outside the electron spin subspace, the nuclear
spins, and the reservoir that causes the nonunitary dynamics.
Moreover, there are feedback effects: The generated nuclear
spin polarization acts as an effective magnetic field on the
electron spin. Thus, the state of the latter changes based on
this updated magnetic field. The problem clearly has to be
solved self-consistently.

In this paper, we lay the foundations of such a theory
by expanding on the formalism introduced in our earlier
work [39]. Our theory is based on the use of dynamical maps.
This is a powerful tool that describes nonunitary evolution
through operators that act on the density matrix of the electron
spin and evolve it in a nonunitary fashion while preserving its
trace. These operators are found by solving for the dynamics
of the electron system driven by external fields and interacting
with the reservoir. By solving for the effect of these interactions
on the electron spin, we can eliminate any additional states
outside the qubit subspace and the degrees of freedom of the
reservoir, while in principle accounting for their effects exactly.
This can allow for an analytical approach that offers a general,
tractable, and transparent treatment of the problem.

Using the dynamical map that we find for the elec-
tron spin evolution under the driving and coupling to the
reservoir, we calculate the steady-state electron spin vector,
which constitutes our zeroth-order solution (i.e., no coupling
to nuclear spins). To include nuclear effects, we perform
a perturbative treatment on this zeroth-order solution by
finding the response of a single nuclear spin to the motion
of the electron spin under the external control. We thus make
the independent nuclear spin approximation. By including the
hyperfine coupling between the nucleus and electron, we find
the joint state of the two spins, which now includes quantum
correlations.

In this paper, we focus primarily on a large class of
experiments in which the driving is sufficiently fast that the
electron spin reaches its dynamical equilibrium steady state
quickly compared to both the electron spin decoherence time
and the time scale of nuclear spin evolution. The so-called
mode-locking experiments [4,40,41] are examples from this
class, as is demonstrated in the present work [42]. For these
types of experiments, we can employ a Markovian approxima-
tion to separate the nuclear spin degrees of freedom from those
of the electron, which gives us an effective dynamical map for
the nuclear spin. The Markovian approximation is not only
valid when the electron dynamics are fast; it is also physically
well motivated by noting that when the relaxation to the steady
state is fast compared to decoherence, which is in turn fast
relative to nuclear dynamics, the electron spin will tend to
remain in the steady state it attains in the absence of the nuclear
spin. While the electron spin steady state is approximately
unaffected by a single nuclear spin, it will change significantly
when the full nuclear spin ensemble is taken into account. This
is explained in detail in the next paragraph. Working in this

Markovian limit, we obtain an expression for the steady state
of the nuclear spin which explicitly involves all the parameters
of the problem, as well as the electron steady state. To describe
continuous wave driving and similar types of experiments, it
may be necessary to go beyond the Markovian limit. However,
the theory presented in this work can still be adapted to these
cases as well, as was done recently to explain experimental
data for Ramsey fringes of hole spins; see Ref. [44].

To take into account many-body multinuclear effects, we
perform a shift of the Zeeman frequency of the electron by the
total effective magnetic field of all nuclear spins (Overhauser
shift). This is done by first finding a distribution for the nuclear
spin polarization using a mean-field approach. We do this by
solving a kinetic equation that determines the probability P (m)
that the net nuclear polarization is m. The quantity that enters
in this kinetic equation is the single-nucleus flip rate. Note that
generally the probability to flip from up to down is different
than that to flip from down to up. Both of these rates are found
by solving the equation of motion of the single nuclear spin.
With the nuclear polarization distribution at hand, we then
perform the Overhauser shift and find the average steady-state
electron spin vector self-consistently.

To explicitly demonstrate our formalism, in the second
part of the paper we focus on the spin mode-locking ex-
periments [4,40] in which a train of fast circularly polarized
pulses is applied to the electron. We show that our theory
reproduces the main experimental features, including the
buildup of nuclear spin polarization and its role in electron spin
frequency synchronization [4] and antisynchronization [40]
with the pulse train. Furthermore, in this work we go beyond
the high magnetic field approximation of Ref. [39] by taking
into account the so-called spontaneously generated coherence
phenomenon [45], which strongly modifies the generation of
electron spin polarization at low magnetic fields [46,47]. We
find that in this regime there is larger nuclear spin polarization
compared to the higher magnetic field case, but that it takes a
longer time to reach the steady state.

We also examine modifications to the mode-locking ex-
perimental setup. In particular, we calculate the dynamics
when an additional, coherent spin-echo pulse is included in
each period. Such pulses are important in the context of
quantum information as they constitute the simplest form of
dynamical decoupling. We show that this pulse sequence leads
to strong electron spin polarization in the plane transverse to
the magnetic field, modifies the synchronization effect, and
overall reduces the average nuclear spin polarization.

This paper is organized as follows. In Sec. III we give
an intuitive explanation of DNP in terms of electron-nuclear
spin entanglement. In Sec. IV we present a brief review of the
operator sum formalism, and in Sec. V we motivate and review
our general formalism. Section VI is devoted to analyzing and
explaining the pulsed mode-locking experiments [4,40].

III. DYNAMIC NUCLEAR POLARIZATION
IN QUANTUM DOTS

Dynamic nuclear polarization is nuclear polarization gen-
erated through dynamic processes, most commonly external
driving fields and some kind of incoherent dynamics of the
electron spin, instead of by simple nuclear spin relaxation
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(cooling) to a polarized ground state. Overhauser was the
first to predict such an effect in the early 1950s [48], and
his prediction was originally met with skepticism until it was
verified by Slichter and Carver [49]. Since then, there has been
a huge number of DNP experiments conducted in a variety
of diverse systems and based on various nonunitary physical
processes. A key component of DNP is clearly a mechanism
that removes entropy from the system. Such nonunitary
mechanisms may correspond to relaxation or measurement.
In the case of self-assembled QDs the experiments are optical
and involve an excited state outside the electron spin subspace,
typically a charged exciton, created by a (quasi) resonant
laser focused on the band gap. The extraction of entropy
from the system happens through optical excitation followed
by recombination and spontaneous emission of a photon.
The emitted photon generally carries information about the
system and can therefore lower the entropy of the net electron-
nuclear state. Experimentally, this can coincide with the actual
measurement of the system, but this is not necessarily always
the case.

Optical experiments in QDs have revealed a distinct
incarnation of the DNP effect and rich physics based on the
interplay of the optical driving, the spontaneous recombina-
tion, and of course the quantum many-body nuclear bath. It
is perhaps useful at this point to discuss what distinguishes
these DNP experiments with QDs from more conventional
DNP demonstrations. One feature of the QD is that it involves
a large number of nuclear spins, about 104–106, depending on
dot size. Therefore, the nuclear spectra can be thought of as
bands instead of discrete energy levels and generally cannot
be resolved by the external fields.

A more important feature, however, is the role of nuclear
feedback. As mentioned above, nuclear polarization acts as an
effective magnetic field that shifts the Zeeman frequency of
the electron spin. The distinctive feature in QD experiments
is that there exist selection rules which affect electron
spins differently depending on their orientation and energy.
Therefore, a shift in the Zeeman splitting is not just a small
quantitative correction, but can instead change qualitatively
the behavior of the system. For example, in the optical
mode-locking experiment an electron with a Larmor period
that is an integer multiple of the pulse repetition period will
become fully polarized and will subsequently be insensitive to
the pulse due to polarization selection rules. On the other hand,
an electron with a Larmor period that is a half-integer multiple
of the period will be minimally polarized by the pulse train.
This example demonstrates how the nuclear feedback can have
a large effect on the behavior of the electron spin and why a
self-consistent treatment is necessary.

To close this section let us present the physical picture
of DNP generation in QDs via a toy model [50]. Consider
two spins, one initialized in a pure state and the other in a
mixed state, corresponding to the electron and nuclear spin,
respectively. Now allow them to evolve under a Heisenberg
type interaction AS1 · S2. The evolution from the initial state
to the state at time t = π/A is described as

|↑〉〈↑|⊗(|↑〉〈↑|+|↓〉〈↓|) → (|↑〉〈↑|+|↓〉〈↓|)⊗|↑〉〈↑|.
In the language of quantum information, we can view this as a
SWAP gate, meaning that the two spins have swapped quantum

states. Now at t = π/A a pulse comes in which performs a
projective measurement on the first spin and collapses it, e.g.,
into state |↓〉. This process leaves both spins in a pure (i.e., fully
polarized) state even though the nuclear spin never interacted
directly with the external field. This is precisely the process
that removes entropy from the system via the measurement.
The purpose of this toy model is to demonstrate this effect in a
straightforward manner and hopefully build intuition into the
more complicated dynamics that we present below.

IV. OPERATOR SUM REPRESENTATION
(KRAUS) FORMALISM

In quantum mechanics, a closed system undergoes unitary
evolution. However, that is not the most general type of
evolution. A system generally interacts with other systems,
and energy and entropy can be exchanged with them through
this interaction. The system is then called open, and the
operator sum representation formalism can be used to describe
its nonunitary evolution. The operators that describe this
irreversible evolution are called Kraus operators [52], and they
act on a density matrix ρ in the following way:

ρ ′ =
∑

k

EkρE
†
k, (1)

where k > 1 and the relation∑
k

E
†
kEk = 1

(where 1 is the identity operator) should hold in order to
guarantee that the trace of the density matrix remains equal
to one. As a simple example, consider a two-level system
where the population can relax from the excited to the ground
state irreversibly. This is an ubiquitous scenario across physical
systems; e.g., this may be an atom in a metastable optically
excited state, or a nuclear spin, etc. The Kraus operators that
describe the decay from the excited to the ground state are (in
the basis {|g〉,|e〉})

M0 =
[

1 0

0
√

α

]
, M1 =

[
0

√
1 − α

0 0

]
. (2)

Starting from an arbitrary initial density matrix,

ρ =
[
ρ11 ρ12

ρ21 ρ22

]
, (3)

the final density matrix after the probabilistic decay process
has completed is then

ρ ′ =
[
ρ11 + (1 − α)ρ22

√
αρ12√

αρ21 αρ22

]
. (4)

It is simple to check that when α = 0 we have complete
relaxation from the excited to the ground state, while α = 1
yields the trivial solution of no decay, with the system
remaining in its initial state without evolving. It is useful to
note here that one could make α a time-dependent parameter.
In that case, the density matrix can be found at any time using
Eq. (1). For exponential decay, we would have α = α(t) =
e−t/T1 , while the decoherence, described by the decay of the
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off-diagonal density matrix component, occurs with a time
scale T2 = 2T1, as it should.

V. GENERAL FORMALISM

The total Hamiltonian of the system is

H (t) = H0,e + Hc(t) + Hres + H0,n + Hhf , (5)

where H0,e is the free part of the electron Hamiltonian in
the QD, Hc(t) is the control Hamiltonian, and Hres is the
interaction with the reservoir. We focus on the case where
Hc(t) = Hc(t + TR) describes a periodic sequence of finite-
duration pulses with a period TR . In general, these pulses will
couple the electron spin states to higher excited levels. All the
population decays back to the electron spin subspace through
the interaction with the reservoir, Hres, with characteristic
rate γ . In self-assembled dots, Hc(t) describes optical pulses
coupling the electron spin states to additional levels that are
charged excitons, also called trions, and Hres is the photon bath.
In electrostatically defined QDs, Hc(t) is a gate voltage, the
additional states can be, for example, the two polarized triplet
states that lie outside the singlet-triplet qubit subspace, and
Hres represents the interaction with the leads. The remaining
two terms are the nuclear spin Hamiltonian in the presence of a
magnetic field, H0,n = ωn

∑
i Î

i
z , and the hyperfine interaction

between the electron and N nuclei,

Hhf =
N∑

i=1

AiŜzÎ
i
z +

N∑
i=1

Ai/2(Ŝ+Î i
− + Ŝ−Î i

+). (6)

The first term in Hhf is referred to as the Overhauser term,
while the second is known as the flip-flop term. The hyperfine
couplings are determined by the magnitude of the electronic
wave function at the locations of the nuclear spins: Ai =
Av0|�(ri)|2, where A is the total hyperfine energy, v0 is the
volume per nucleus, � is the electronic wave function, and ri

is the location of the ith nucleus.
There are two features of the open electron-nuclear spin

system that are advantageous toward the development of a
formalism to treat this problem. The first feature is that the
control Hamiltonian, Hc(t), acts solely on the electron spin
subsystem and does not directly affect the nuclear spins. This
fact, combined with the smallness of the hyperfine couplings
compared with the electron Zeeman frequency, allows us
to first solve for the electron evolution in the absence of
the nuclei and to then compute the response of the nuclear
spins to the electron dynamics. Specifically, we employ a
perturbative expansion in the hyperfine flip-flop interaction
to obtain analytical expressions for the nuclear steady state
and relaxation rate.

The second useful feature is a hierarchy of time scales.
In particular, we primarily focus on experiments in which
the reservoir-induced relaxation from auxiliary excited states
to the electron spin subspace is fast compared to the driving
period: γ TR 
 1. This allows us to describe the evolution over
one period in terms of a dynamical map that acts only on the
2 × 2 electron spin subspace instead of a larger dimensional
Hilbert space. This in turn enables us to coarse-grain the
electron spin evolution by piecing together copies of this
dynamical map, leading to a substantial simplification of the

analysis, and allowing for greater insight into the physics.
We also take advantage of a second time scale hierarchy,
namely τe � T2 � τn, where τe is the time it takes for the
electron to reach its steady state, T2 is the decoherence time
of the electron spin, and τn is a characteristic time scale
for nuclear dynamics. In this regime, decoherence works to
keep the electron spin in the steady state it would have in
the absence of nuclei, although the nuclear Overhauser field
will still induce a shift in the electron Zeeman frequency.
This indicates that a Markovian approximation in which
electron-nuclear correlations are discarded after each driving
period is not only justified but physically well motivated. Note
that, even in systems where these time-scale hierarchies do
not hold (such as in singlet-triplet qubits), so long as there is a
nonunitary process that resets the qubit, we would still expect
a Markovian approximation to apply. One difference, however,
is that instead of first calculating the electron spin steady state
alone, one may need to calculate the total electron-nuclear spin
(nonunitary) evolution per cycle.

In the following sections, we describe in detail our general
formalism as it applies to the large class of experiments
exhibiting the time scale hierarchies described above. The first
step is to derive the dynamical map describing the evolution
of the electron system without the hyperfine interactions
and to use this result to compute the electron spin steady
state. We then couple a single nuclear spin to the electron
and calculate its resulting steady state and relaxation rate.
These quantities are the ingredients needed to construct the
multinuclear flip rates that enter into a kinetic equation for
the nuclear spin polarization distribution of the entire nuclear
spin ensemble. The solution of this kinetic equation then
gives the polarization distribution generated by a particular
driving sequence. Finally, we obtain the nuclear feedback on
the electron spin steady state by performing an Overhauser
shift in the Zeeman frequency and averaging the resulting
modified steady state over the polarization distribution. In
the second half of the paper, we apply our formalism to the
particular case of the mode-locking experiments [4,40]. We
demonstrate explicitly the requisite hierarchy of time scales,
and we show that our formalism reproduces the salient features
of the experimental findings.

A. Electron spin Kraus operators

To find the zeroth-order solution as a 2 × 2 operation on
the electron spin only, we first take the standard approach of
treating the reservoir to second order under the Markovian
approximation, which gives rise to decay and decoherence
terms in the Liouville-von Neumann equation. These terms can
be described by Lindblad operators so that, ignoring nuclear
terms and defining He(t) = H0,e + Hc(t), the total evolution
for the electron subsystem is described by

Ṙ = i[R,He(t)] + L(R), (7)

where the symbol R is used to stress that this density matrix
includes the two spin states and the excited states that couple
to the spin subspace via Hc(t). It is important to note that the
initial condition for (7) is an arbitrary density matrix in the spin
subspace, i.e., only a 2 × 2 block of nonzero matrix elements.
Since we are interested only in the spin subspace, we would

165301-4



THEORY OF DYNAMIC NUCLEAR POLARIZATION AND . . . PHYSICAL REVIEW B 89, 165301 (2014)

like to use Eq. (7) to construct a dynamical map that describes
only the evolution of this subspace in terms of 2 × 2 matrices.
To facilitate this construction, we focus on the regime in which
the relaxation is fast compared to the pulse period (γ TR 
 1).
Since the theory can be applied for multiple pulses per period,
a more precise condition would, in fact, be that 1/γ should be
small compared to the largest time delay between pulses that
occurs in the pulse sequence. In this case, the density matrix R

after one period is such that the components outside the 2 × 2
spin subspace block are negligibly small, and we can derive a
dynamical map that evolves the spin subspace over one period
TR . For one or even two excited states, this can often be done
analytically. Otherwise, a perturbative or numerical approach
is needed. The solution either way will provide an expression
for ρ ′, the density matrix of the electron spin after one period,
as a function of the initial density matrix ρ. From this we can
extract the Kraus operators {Ek} since they are used to relate
ρ ′ to ρ:

ρ ′ =
∑

k

EkρE†
k . (8)

Note that the {Ek} contain the evolution of the whole period,
including both the unitary part due to the free Hamiltonian and
the coherent control effects and the nonunitary part due to the
reservoir. The explicit form of the Kraus operators for pulsed
experiments are given in Sec. VI.

B. Spin-vector representation

For the present problem, the density matrix is not a
convenient representation of the spin state. The reason is
that to find the steady state of the electron spin, we need to
operate on it with the appropriate Kraus operators an infinite
number of times, and since these operators act on both sides of
the density matrix, this quickly becomes intractable. A much
more convenient way to solve this problem is to transform
to the spin-vector (SV) representation, which is a completely
equivalent way of representing the state of the system, but
with the important property that the operators describing
the evolution act on the left only [52]. In addition, the SV
representation offers a compelling geometric visualization of
the dynamics.

Before we proceed with the derivation of the SV represen-
tation from Eq. (8), let us first discuss what kind of physics
the dynamical map of the spin should describe. Obviously, the
evolution will generally be nonunitary, but what does that mean
for an input state? Clearly, a pure state undergoing nonunitary
evolution will generally lose purity and will become (partially
or fully) mixed. Note, however, that a mixed state may either
become more or less mixed under nonunitary evolution. The
latter case, where the system gains purity, is equivalent to
increasing the spin polarization in the system. In the special
case of zero initial polarization, the pulse and subsequent
reservoir-induced relaxation will generate a nonzero SV after
one driving period. We thus expect the general form of the
evolution of the SV S over one period to be given by

S ′ = YS + K, (9)

where S and S ′ correspond to density matrices ρ and ρ ′,
respectively, in Eq. (8). We define the SV to be normalized to

unity; i.e., its components are given by Sm = Tr(ρσm), where
σm denotes the Pauli matrices. In general, the matrix Y both
rotates and shrinks the SV due to population loss, while K

restores the population to the electron spin Hilbert space. To
find Y and K we start from the general equation

ρ ′ =
∑

j

Ej ρE†
j (10)

and multiply both sides by the Pauli matrix σ
 and take the
trace:

Tr(σ
ρ
′) = Tr

⎛⎝∑
j

σ
Ej ρE†
j

⎞⎠ . (11)

The left-hand side is just S
, and we express ρ on the right-
hand side in terms of the SV; i.e., we make the substitution
ρ = 1/2 + 1/2

∑
m σmSm to obtain

S ′

 = K
 +

∑
m

Y
,mSm, (12)

where

K
 = 1

2
Tr
∑

j

σ
EjE†
j = Tr

∑
j

s
EjE†
j , (13)

Y
,m = 1

2
Tr
∑

j

σ
Ej σmE†
j = 2Tr

∑
j

s
Ej smE†
j , (14)

where we define sj = 1
2σj .

C. Zeroth-order solution: The steady-state electron spin vector

An unpolarized spin undergoing the evolution described by
Y and K will obtain some polarization. The spin right after the
first, second, and nth driving period will be, respectively,

S1 = K, S2 = YS1 + K = YK + K,
(15)

Sn = YSn−1 + K = (Yn−1 + · · · + Y + 1)K.

Equation (15) is a geometric series; we can therefore readily
write down the expression for the steady-state SV at the end
of a driving period as

S∞ = (1 − Y )−1K. (16)

The inverse in the above equation in general exists because the
eigenvalues of Y are all less than unity, as follows from the
fact that Y includes the loss of population to the excited
state. Before we proceed to the inclusion of the nuclear spin,
we consider a slightly modified, but equivalent, version of
this formalism, where the vector K and the matrix Y are
represented by a single 4 × 4 matrix:

Ye =

⎡⎢⎢⎢⎣
1 0 0 0

Kx Yxx Yxy Yxz

Ky Yyx Yyy Yyz

Kz Yzx Yzy Yzz

⎤⎥⎥⎥⎦ . (17)

It is easy to check that in this four-dimensional (4D) represen-
tation, the steady-state SV S (∞)

e = (1,S(∞)
e,x ,S(∞)

e,y ,S(∞)
e,z ) is the

eigenvector of 1 − Ye with eigenvalue zero. It is generally the
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case that the first component of the 4D SV must remain fixed at
1 in order for Ye to evolve the remaining three components of
the SV appropriately. This more compact representation will
prove very useful when we introduce the nuclear spin.

D. Including a single nuclear spin

The next goal is to find an equation similar to Eq. (9) for
the nuclear spin and from that derive the steady-state nuclear
SV along with the relaxation rate. These quantities will later
be used as inputs into the equation that determines the nuclear
polarization distribution for the entire ensemble of N nuclear
spins. For simplicity, we focus on the case of spin- 1

2 nuclei
throughout the paper, but the formalism could be extended to
consider other species of nuclei as well.

We begin by finding the appropriate Kraus operators for
the two-spin system. Here we are keeping them arbitrary since
we are interested in presenting the general method, but in
Sec. VI we derive the Kraus explicitly for the pulsed problem.
Defining the two-spin Kraus operators as Fj , we evolve the
density matrix P describing the total electron-nuclear spin
state over one driving period according to

P ′ =
∑

j

FjPF†
j . (18)

Let us now define generalized Pauli matrices for the
two-spin system, which are tensor products of the usual Pauli
matrices, including unity,

G4k+
 = sk ⊗ s
, (19)

where k,
 run from 0 to 3, with s0 ≡ 1
21. Using these operators,

we can define the SV for the joint system. There are 16 different
G’s, but only 15 numbers are needed to specify the state
due to the normalization constraint. However, in analogy to
the 4D SV representation defined above, we work in a 16D
representation in which S denotes the two-spin SV containing
both the electronic and nuclear spin degrees of freedom, i.e.,
Si = 4Tr(PGi). In general, S is not simply a tensor product
of the two individual SVs, but contains quantum correlations
between the electron and nuclear spins. In this representation,
the evolution operator over one period is given by

Yij = 4
∑




Tr[GiF
GjF†

 ], (20)

with the total SV evolving according to

S ′ = YS. (21)

In principle, we could obtain the two-spin steady state by
finding the eigenvector of 1 − Y with vanishing eigenvalue in
direct analogy with the single electron spin case treated above.
However, we instead perform a Markovian approximation
which amounts to keeping only the separable (tensor product)
part of S, i.e., S ≈ S (∞)

e ⊗ Sn. As discussed above, this
approximation is valid when there is a separation of time
scales, in particular when the electron reaches its steady
state, S (∞)

e , quickly compared to the nuclear dynamics and
the electron spin decoherence time. When this is the case,
the electron tends to remain in the steady state it would
have without interactions with the nuclei, suggesting that the
Markovian treatment is, in fact, more physical. We then obtain

the effective nuclear spin evolution Yn by acting with Y on
the tensor product S (∞)

e ⊗ Sn and reading off the coefficients
of the components of Sn from the resulting S ′. This procedure
can be summarized by the equation

(Yn)αβ = d

dSn,β

[
Y
(
S (∞)

e ⊗ Sn

)]
α
, (22)

where the resulting Yn explicitly contains electron SV com-
ponents. From Yn we find the nuclear spin steady state
S (∞)

n = (1,S(∞)
n,x ,S(∞)

n,y ,S(∞)
n,z ) as the eigenvector of 1 − Yn with

eigenvalue equal to zero.
Next, we explain how to derive the nuclear relaxation rate.

The evolution of the 4D nuclear SV is described by

Sn(t + TR) = YnSn(t). (23)

Since the nuclear evolution is much slower than TR , we can
coarse grain this equation to obtain a differential equation for
the nuclear SV,

d

dt
Sn = 1

TR

(Yn − 1)Sn, (24)

which gives

Sn(t) = e(Yn−1)t/TRSn(0). (25)

It is clear from this result that the smallest nonzero eigenvalue,
λ2, of 1 − Yn will determine the relaxation rate of the nuclear
spin: γn = λ2/TR .

E. Nuclear spin steady state and relaxation
rate in the perturbative regime

In the previous section, we showed that in the Markovian
limit, the nuclear steady state and relaxation rate can be
obtained from the effective evolution operator (in the SV
representation) for a single nuclear spin over one period,
Yn. Specifically, the steady state is given by the eigenvector
of 1 − Yn with eigenvalue zero, while the relaxation rate is
inversely proportional to the smallest nonzero eigenvalue of
1 − Yn. In order to obtain explicit analytical results, we make
use of the fact that the hyperfine couplings are small compared
to the electron Zeeman energy and perform a perturbative
expansion in the hyperfine flip-flop interaction. We keep the
Overhauser part of the interaction to all orders in the coupling
[see Eq. (6)]. In Appendix A, we show that to leading order in
this perturbative expansion, the nuclear spin steady state has
the form

S (0)
n = (1,0,0,ξ ∗), (26)

where the nuclear spin components transverse to the magnetic
field vanish to leading order. It is further shown in the appendix
how to explicitly calculate ξ ∗ as well as the smallest nonzero
eigenvalue, λ∗

2, of 1 − Yn. These quantities are used below to
determine the nuclear spin-flip rates.

F. Driving with a simple periodic pulse train

An important class of driving sequences involves a periodic
pulse train with a single pulse per period. This includes,
but is not limited to, the case of mode locking, which is
analyzed in depth below. For this class of driving sequences,
the explicit expressions for each term in the perturbative
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hyperfine expansion of Yn up to second order are given in
Appendix B, and the full expressions for ξ ∗ = S(∞)

n,z and λ∗
2 are

given in Appendix C. In the remainder of the paper, we denote
the nuclear spin steady state by S(∞)

n . In the limit ωn → 0, the
expressions for S(∞)

n,z and λ∗
2 reduce to the results quoted in

Ref. [39]:

S(∞)
n,z = Se,z

[(
S2

e − 1
)

cos
(

ATR

2

)+ S2
e + 1

]
S2

e,z + (
S2

e − 1
)

cos
(

ATR

2

)+ 1
, (27)

λ∗
2 = A2

ω2
e

1 + S2
e,z + (

S2
e − 1

)
cos

(
ATR

2

)
1 + S2

e,z + (
S2

e,z − 1
)

cos
(

ATR

2

) sin2 ωeTR

2
. (28)

In the above expressions, we have compressed the notation for
the electron steady state S

(∞)
e,i → Se,i for the sake of brevity,

and we have defined S2
e ≡ S2

e,x + S2
e,y + S2

e,z.
Given the generality of Eqs. (27) and (28) it is worth

pausing for a moment to examine the physical content of these
expressions. First, the fact that S(∞)

n,z is proportional to S(∞)
e,z

is a reflection of conservation of angular momentum, which
requires that S(∞)

n,z = 0 when S(∞)
e,z = 0. Second, it can be seen

from Eq. (28) that when ATR � 1 (as is typically necessary
for the validity of the Markovian approximation) and when
the electron spin is polarized primarily along the directions
transverse to the magnetic field (e.g., S(∞)

e,x ≈ 1), λ∗
2 and hence

γn become very large, leading to rapid flipping of the nuclear
spin. This behavior can be attributed to the fact that the electron
spin flips more easily when it is polarized transversely to the
B field since in this case hyperfine flip-flops do not violate
energy conservation. On the other hand, when the electron spin
is polarized along the magnetic field direction, flip-flops are
suppressed due to the large Zeeman energy mismatch between
the electron and nuclear spins.

Third, we point out the factor sin2 ωeTR

2 in Eq. (28), which
indicates the importance of the driving period relative to the
Zeeman frequency. In particular, we would like to address
why the rate is zero when the electron spin has a precession
period that is commensurate with the driving period, while
it is maximized when the precession period is a half-integer
multiple of the driving period. To understand this, we consider
a simple model in which the driving is a train of pulses, each
acting on one of the two electron spin states along the magnetic
field, i.e., the eigenstates of the free electron Hamiltonian, and
exciting that state to an auxiliary, trion level. For concreteness
we choose to drive the spin-down state, |↓〉. We consider the
simplest case of an instantaneous, resonant pulse, such that the
electron spin steady state in the absence of nuclei is simply
the other spin state, |↑〉, i.e., Se,z = Se = 1. Plugging these
values into Eq. (28) we obtain the simple expression λ∗

2 =
A2

ω2
e

sin2 ωeTR

2 . Now we consider adding a nuclear spin in order
to see physically the origin of this expression. In particular,
under the Heisenberg-type interaction, the evolution operator
of the two-spin system (electron and nuclear spin) after one
period is Uhf (TR) = e−i(H0,e+Hhf )TR .

We consider the two limiting cases mentioned above, TR =
2nπ/ωe and TR = (2n + 1)π/ωe. Expanding the correspond-
ing evolution operators to second order in A/ωe, and applying
them to a state with Se,z = Se = 1 and an arbitrary nuclear spin
state, i.e., |↑〉(c↑|↑〉 + c↓|↓〉) we obtain the following. When

TR = 2nπ
ωe

,

|↑〉(c↑e−iπ A
ωe |↑〉 + c↓eiπ A

ωe |↓〉), (29)

and when TR = (2n+1)π
ωe

,

c↑e−iπ A
2ωe |↑〉|↑〉 + c↓eiπ A

2ωe |↑〉|↓〉 + A

ωe

c↓eiπ A
2ωe |↓〉|↑〉.

(30)

Comparing Eqs. (29) and (30) we see that the first is a separable
state of the electron and the nuclear spin, while the second
contains entanglement. This showcases the importance of
entanglement in DNP, as discussed in Sec. III, and how it
manifests itself in the actual calculated nuclear relaxation rate.
Therefore, we can directly link the sine factor in Eq. (28)
to electron-nuclear entanglement and its crucial role in the
nuclear spin dynamics.

G. Nuclear polarization distribution

Once we have found the nuclear spin relaxation rate
and steady state, the nuclear spin-flip rates are given by
(see Appendix D for derivation and assumptions)

w± = γn

(
1 ± S(∞)

n,z

)/
2, (31)

where w+ (w−) is the rate to flip from down (up) to up (down).
More precisely, for a single nucleus we may write

dP↑
dt

= −w−P↑ + w+P↓, (32)

where P↑ is the probability that the nucleus is aligned with
the magnetic field and P↓ = 1 − P↑ is the probability that
it lies antiparallel to the magnetic field. The flip rates will
generally be different, and they will be functions of the various
parameters in the problem, including the electron Zeeman
frequency ωe.

Defining the difference in the number of spins pointing up
and down as m, the kinetic equation for the distribution of the
net multinuclear polarization m/2 is

dP (m)

dt
= −

∑
±

[
w±(m)

N ∓ m

2

]
P (m)

+
∑
±

P (m ± 2)w∓(m ± 2)

[
N ± m

2
+ 1

]
, (33)

where w±(m) are the rates in the presence of nuclear polariza-
tion m/2. These are found by implementing the Overhauser
shift, i.e., taking

w±(m) = w±(ωe → ωe + mA/2). (34)

In Eq. (34) we have made the so-called “box model” approxi-
mation, which amounts to taking all the hyperfine couplings to
be equal. This approximation is valid when the electron spin
dynamics are rapid relative to the hyperfine scale N/A [39,53].
This condition is automatically satisfied whenever the driving
is fast compared to the electron spin decoherence, which is the
experimental regime we are considering. Note that although
we are setting all the hyperfine couplings equal, we are not
imposing the angular momentum symmetries associated with
the box model, which would restrict the nuclear state to
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its original total angular momentum subspace, limiting the
amount of nuclear polarization that can be generated. Here no
such limitation is present, and thus larger nuclear polarization
can be generated.

The steady state corresponds to having dP (m)/dt = 0,
which gives an equation connecting P (m) with P (m ± 2).
Rearranging terms, we can see that

N−m

2
w+(m)P (m)−

[
N+m

2
+1

]
w−(m+2)P (m+2)

=
[
N−m

2
+1

]
w+(m−2)P (m−2)−N+m

2
w−(m)P (m)

holds, which implies that the expression

N − m

2
w+(m)P (m) − N + m + 2

2
w−(m + 2)P (m + 2)

is a constant. Since the full relation above is invariant with
respect to rescalings of P (m), we conclude that this constant
is zero. We then have

P (m) = N − m + 2

N + m

w+(m − 2)

w−(m)
P (m − 2), (35)

which can be solved iteratively by setting the first nonzero
entry, P (−N ) to some arbitrary value and normalizing the
final result:

∑
m P (m) = 1.

H. Feedback on electron spin

Having obtained the nuclear polarization distribution for
the net multinuclear spin system, we can calculate the updated
electron SV by performing the Overhauser shift, i.e., shifting
the Zeeman frequency by mA/2 and averaging over m:

Se,i =
N∑

m=−N

dmP (m)Se,i(ωe + mA/2). (36)

In Eq. (36) it is understood that Se,i ≡ S
(∞)
e,i . The quantity

that is usually measured experimentally in self-assembled
QDs is the component of Se that is parallel (or antiparallel)
to the pulse propagation direction. Below we derive an
explicit form for this quantity for the pulsed mode-locking
experiment.

VI. APPLICATION TO MODE-LOCKING EXPERIMENT

In this section we apply the formalism developed above to
the case where there is one fast circularly polarized pulse per
period, as depicted in Fig. 1. There is a magnetic field pointing
in the plane of the QD, perpendicular to the pulse propagation
direction (the so-called Voigt geometry). This is the experiment
by Greilich et al. [4], where the periodic pumping of an
ensemble of singly charged electron dots was shown to modify
the nuclear spin environment in these dots, an effect manifested

FIG. 1. (Color online) Pulse sequence for the mode-locking
experiment.

in the measurement of the electron spin. In particular, there was
a nuclear-induced “push” of the electron Zeeman frequency
towards those frequencies that were commensurate with the
pulse train period. As a result, the ensemble obtained higher
electron spin polarization than what one would expect in the
absence of the nuclear feedback. In this experiment, resonant
pulses of approximately π area were used, meaning that the
population transfer from the electron spin state to the optically
excited trion state by the pulse was maximal. It was later shown
by Carter and collaborators [40] that when detuned pulses are
used instead, richer physics emerges as a result of the interplay
between coherent and incoherent pulse-induced dynamics. In
particular, the detuning causes a nonzero steady-state electron
spin component along the magnetic field axis, which in turn
renders the nuclear flip rates directional, an effect absent in the
resonant case of Ref. [4]. Here we treat the general case, where
there is a nonzero detuning. We follow the steps analyzed in
the sections above for this particular example.

A. Electron spin Kraus operators

The first step is to find the Kraus operators describing the
electron spin evolution due to a single pulse and the subsequent
spontaneous emission. The Hamiltonian for an electron in a
magnetic field along the z axis, in the absence of nuclear spin
interactions and in the presence of a train of left-circularly
polarized pulses is

He = ωeŜz + εT̄ |T̄ 〉〈T̄ | +
∑

k

�(t − kTR)|x̄〉〈T̄ | + H.c.

(37)

Since the g factor of the hole along the z axis is negligible,
the trion state with the opposite spin is ignored. Note that
as a result of polarization selection rules, the pulse only
couples state |x̄〉, the state with the electron spin pointing
antiparallel to the pulse propagation direction, to the trion
state |T̄ 〉 with angular momentum projection −3/2 along the
x axis. In the rotating wave approximation, the coupling to
the pulse is �(t − to) = �of (t − to)eiω(t−to). The radiation
field will be included in the form of Lindblad operators. We
take the pulses to be the fastest time scale in the system,
i.e., much faster than the Zeeman precession period and the
spontaneous emission time scale. This allows us to treat
the pulse as acting instantaneously on the two-level system
(composed of |x̄〉 and |T̄ 〉) only. This is a good approximation
for these types of ultrafast experiments, where picosecond,
or even subpicosecond, pulses are used. Then we find the
Kraus operators in two steps. First we consider the coherent
effects, i.e., the excitation (and possibly stimulated emission)
by the pulse, and treat the resulting state in the three-level
Hilbert space as the input to the remaining terms describing
spontaneous emission in the presence of the external magnetic
field. Defining the evolution operator due to the pulse in the
|x〉, |x̄〉, |T̄ 〉 basis as

Up =

⎡⎢⎣1 0 0

0 ux̄x̄ −u∗̄
T x̄

0 uT̄ x̄ u∗
x̄x̄

⎤⎥⎦ , (38)
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the density matrix of the three-level system right after the pulse
is

R = UpR0U
†
p =

⎡⎢⎣ ρxx ρxx̄u
∗
x̄x̄ ρxx̄u

∗̄
T x̄

ρx̄xux̄x̄ ρx̄x̄ |ux̄x̄ |2 ρx̄x̄u
∗̄
T x̄

ux̄x̄

ρx̄xuT̄ x̄ ρx̄x̄u
∗
x̄x̄uT̄ x̄ ρx̄x̄ |uT̄ x̄ |2

⎤⎥⎦

≡

⎡⎢⎣R′
xx R′

xx̄ R′
xT̄

R′
x̄x R′

x̄x̄ R′
x̄T̄

R ′̄
T x

R ′̄
T x̄

R ′̄
T T̄

⎤⎥⎦ . (39)

Note that the expressions in Eq. (39) are in the pulse
propagation direction basis, x, and not in the energy eigenbasis.
We make this choice due to the simplicity of the expressions
coming from the optical selection rules. Subsequently, R

evolves under the magnetic field and the vacuum radiation
field as

Ṙ = i[R,ωeSz] + L(R). (40)

Switching to the interaction picture with respect to the Zeeman
Hamiltonian, the following equations describe the evolution of
the relevant matrix elements for the 2 × 2 spin subspace [46],

˙̃Rxx = γRT̄ T̄ (1 − cos ωet),

˙̃Rx̄x̄ = γRT̄ T̄ (1 + cos ωet), (41)

˙̃Rxx̄ = iγRT̄ T̄ sin ωet, ṘT̄ T̄ = −2γRT̄ T̄ ,

where R̃ is the density matrix in the interaction picture.
Equations (41) include the so-called spontaneously generated
coherence effect [45–47], which results from the fact that due
to polarization selection rules, spontaneous emission couples
state |T̄ 〉 to |x̄〉 only [although spontaneous emission together
with precession leads to some population decaying to |x〉 as
well, as seen in the topmost equation of Eqs. (41)]. This effect
is significant when the Zeeman frequency, ωe, is smaller or
comparable to the relaxation rate, γ . From the last equation
we readily obtain

RT̄ T̄ = R ′̄
T T̄

e−2γ t , (42)

which then allows us to find the matrix elements in the spin
subspace by a simple integration. Doing that and taking the
limit t 
 γ −1 we find

R̃xx = R′
xx + ω2

e

2
(
4γ 2 + ω2

e

)R ′̄
T T̄

, (43)

R̃x̄x̄ = R′
x̄x̄ +

[
2γ 2

4γ 2 + ω2
e

+ 1

2

]
R ′̄

T T̄
, (44)

R̃xx̄ = R′
xx̄ + i

γ ωe

4γ 2 + ω2
e

R ′̄
T T̄

. (45)

Notice that the degree of spin polarization depends on the ratio
ωe/γ , as was discussed in detail in Ref. [46]. In our previous
work [39], we considered the high magnetic field limit; i.e.,
we assumed ωe/γ 
 1. In that limit Eqs. (43)–(45) above
simplify and the coefficients of R ′̄

T T̄
are 1/2 for (43) and (44)

and zero for (45). Here we relax that assumption to account
for low-B fields.

Combining Eqs. (39) and (43)–(45) we obtain for the spin
density matrix in the laboratory frame after the pulse and
spontaneous emission

ρ ′
xx = ρxx + ω2

e

2
(
4γ 2 + ω2

e

) |uT̄ x̄ |2ρx̄x̄ , (46)

ρ ′
x̄x̄ = ρx̄x̄ |ux̄x̄ |2 +

[
2γ 2

4γ 2 + ω2
e

+ 1

2

]
|uT̄ x̄ |2ρx̄x̄ , (47)

ρ ′
xx̄ = ρxx̄u

∗
x̄x̄ + i

γ ωe(
4γ 2 + ω2

e

) |uT̄ x̄ |2ρx̄x̄ , (48)

where we have used that ρ̃ ′
ij = ρ ′

ij . Using the unitarity of
Up, i.e., setting |uT̄ x̄ |2 = 1 − |ux̄x̄ |2 and by inspection of
Eqs. (46)–(48), we obtain the Kraus operators in the laboratory
frame (x basis),

E1 =
[

1 0

0 q

]
, E2 =

[
0 a1

0 −a2

]
, E3 =

[
0 0

0 κ

]
, (49)

where

q = ux̄x̄ ≡ qoe
iφ, (50)

a1 = ωe

√ (
1 − q2

o

)
2
(
4γ 2 + ω2

e

) , (51)

a2 = iγ
√

2

√
1 − q2

o

4γ 2 + ω2
e

, (52)

κ =
√

1 − q2
o − a2

1 − |a2|2. (53)

In the limit ωe 
 γ , where the spontaneously generated
coherence effect is negligible, we have a2 → 0 and a1,κ →√

(1 − q2
o )/2, so that we recover the Kraus operators from

Ref. [39].
Here it is important to clarify a point of potential confusion.

In deriving the above Kraus operators, we assumed γ TR 
 1,
so that the trion decays completely back to the electron spin
subspace within a single period. Therefore, setting γ = 0 in
the Kraus operators does not correspond to the absence of
spontaneous emission, but instead it corresponds to neglecting
spontaneously generated coherence, i.e., to the case of equal
decay to both electron spin states. In what follows, we see that
the ratio γ /ωe plays an important role in the generation of
DNP.

The matrix elements of Up are functions of the pulse-system
parameters, namely the Rabi frequency, the detuning, the
bandwidth and the pulse shape. For example, in the case where
the pulse has the shape of the hyperbolic secant, which is
analytically solvable, the matrix element ux̄x̄ has the explicit
form [54]

ux̄x̄ = F (a,−a,c∗,1) = �(c)2

�(c − a)�(c + a)
, (54)
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where F is Gauss’s hypergeometric function, � is the �

function, and a = �o/σ and c = 1/2(1 + i�/σ ), with �o,
�, and σ denoting the Rabi frequency, pulse detuning, and
bandwidth, respectively. In this case, the Kraus parameter qo

can be expressed as

qo = |ux̄x̄ | =
√

1 − sin2(π�o/σ )sech2(π�/2σ ). (55)

In principle, qo and φ can be computed for any pulse shape;
thus we continue to express results in terms of these parameters
for the sake of generality.

The quantities qo and φ are two of the key parameters of
the theory. Physically, 1 − q2

o is the fraction of population that
moves from the electron spin state |x̄〉 to the trion state |T̄ 〉,
while φ is the angle about the x axis by which the pulse rotates
the electron spin, with its sign coinciding with that of the
detuning, �.

B. Electron and nuclear spin steady states
and nuclear relaxation rate

Transforming the Kraus operators of Eq. (49) to the z basis
and using Eqs. (13) and (14), we find

Ke = [
a2

1 −ia1a2 0
]
,

(56)

Ye =
⎡⎣1 − a2

1 0 0
ia1a2 qo cos φ −qo sin φ

0 qo sin φ qo cos φ

⎤⎦ .

Combining these results with the evolution operator describing
precession between pulses,

Ypr =
⎡⎣cos(ωeTR) − sin(ωeTR) 0

sin(ωeTR) cos(ωeTR) 0
0 0 1

⎤⎦ , (57)

we obtain the electron steady state right after each pulse from
the formula, S(∞)

e = (1 − YeYpr )−1Ke, with

S(∞)
e,x = a1[a1qo(qo − cos φ) cos(ωeTR) − ia2(qo cos φ − 1) sin(ωeTR) − a1qo cos φ + a1](

a2
1 + q2

o − 1
)

cos(ωeTR) − a1qo cos φ[ia2 sin(ωeTR) + a1 cos(ωeTR) + a1] + ia1a2 sin(ωeTR) + (
a2

1 − 1
)
q2

o + 1
,

S(∞)
e,y = a1(a1qo(cos φ − qo) sin(ωeTR) − ia2(qo cos φ − 1)[cos(ωeTR) − 1])(

a2
1 + q2

o − 1
)

cos(ωeTR) − a1qo cos φ[ia2 sin(ωeTR) + a1 cos(ωeTR) + a1] + ia1a2 sin(ωeTR) + (
a2

1 − 1
)
q2

o + 1
,

S(∞)
e,z = a1qo sin φ(a1 sin(ωeTR) − ia2(cos(ωeTR) − 1))(

a2
1 + q2

o − 1
)

cos(ωeTR) − a1qo cos φ[ia2 sin(ωeTR) + a1 cos(ωeTR) + a1] + ia1a2 sin(ωeTR) + (
a2

1 − 1
)
q2

o + 1
.

(58)

Note that the steady state undergoes Larmor precession during
each period and that the state at any point during the period can
be obtained by evolving the above expressions using Eq. (57).

At this point it is useful to verify the separation of
time scales necessary for the validity of the Markovian
approximation discussed in Sec. V D. In particular, we want
to show that the time it takes for the electron spin to reach this
steady state, which we define as τe, is small compared to the
typical decoherence time. As in the case of the nuclear spin
(discussed in Sec. V D), we can obtain τe from the eigenvalues
of 1 − Ye. In the special case of resonant π pulses, qo = 0, we
obtain the analytical expression

τe = 2TR

(
ω2

e + 4γ 2
)

2
(
ω2

e+4γ 2
)−(ω2

e+8γ 2
)

cos(ωeTR)+2γωe sin(ωeTR)
.

From this expression, it is clear that the slowest relaxation
times occur when the frequency is commensurate with
the pulse train period. In that case we obtain τe → (2 +
8γ 2/ω2

e )TR . We have also checked that a similar time scale
holds for other values of qo � 0.5. In Fig. 2 we plot the
SV components as functions of the coarse-grained time for
q0 = 0.3 and also show the trend for the coarse-grained
evolution of the electron spin x component as a function of
qo. From these figures, it is evident that the electron spin
reaches its steady state after only a few periods. For typical
pulse periods TR ∼ 10 ns, we have τe � 100 ns, which is well
below typical decoherence times of several microseconds,
justifying the use of a Markovian approach. For values of

qo � 0.5, it is apparent from the bottom panel of Fig. 2 that
the electron spin reaches its steady state sufficiently slowly
that the validity of the Markovian approach is questionable.
This highlights the intrinsic connection between the smallness
of qo and Markovianity, which was pointed out in Ref. [39].
For the numerical results we present below, we use qo = 0.3,
a value which is both well within the Markovian regime and
also large enough that coherent effects due to the pulses are
significant.

C. Nuclear steady state and relaxation rate

Given expressions (58) for the electron steady state, we
can compute the nuclear spin steady state and relaxation
rate from Eqs. (27) and (28). The nuclear relaxation rate
γn = λ∗

2/TR is shown in Figs. 3(a) and 3(b) as a function
of the electron Zeeman energy. It is apparent from the figures
that this rate becomes larger as the Zeeman energy decreases.
This trend is due to the fact that the electron spin flips
more easily with nuclear spins when its Zeeman energy is
smaller, leading to faster relaxation. Figures 3(c)–3(f) reveal
that this feature of γn carries over to the difference of the
single-nucleus spin flip rates, w±, even though the nuclear
steady state is larger at higher magnetic fields. As we see
in the next section, this difference in flip rates leads to a
nonzero average nuclear spin polarization at lower magnetic
fields. Note that in Fig. 3, we have taken the rotation angle
to be φ = −π/2. Reversing the sign of φ changes the sign
of S(∞)

e,z and hence the sign of w+ − w−. Thus, the sign of
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FIG. 2. (Color online) Coarse-grained electron spin evolution for
TR = 13.2 ns, γ = 0.5 GHz, φ = −π/2. (Top) All three components
(lines, top to bottom: Se,x,Se,y,Se,z) for qo = 0.3; (bottom) Se,x for
qo = 0,0.1, . . . ,0.9 (lines, top to bottom).

the nuclear spin polarization depends directly on the sign
of φ.

It is also apparent from Fig. 3 that γn and hence the flip-rate
difference periodically go to zero. This behavior stems directly
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FIG. 3. (Color online) (a), (b) Nuclear relaxation rate, (c), (d)
steady state, and (e), (f) difference of single-nucleus flip rates versus
electron Zeeman energy for TR = 13.2 ns, NA = 12.5 GHz, N =
3000, γ = 0.5 GHz, q0 = 0.3, φ = −π/2, ωn = 0. The expression
(GHz/2π ) in the units of ωe is equivalent to radians per nanosecond.

from the sine factor in Eq. (28), which vanishes when the
Zeeman precession period is commensurate with the pulse
period. When this condition is satisfied, the electron spin is
polarized along the x direction when the pulse arrives and
is thus unaffected by the pulses, removing the mechanism
through which the nuclear spin attains its steady state and
leading to γn = 0. This feature of γn plays a central role in the
frequency focusing effect, as is explained in the next section.

It should be mentioned that since the results shown in
Fig. 3 were obtained using a perturbation theory that assumes
A/ωe 
 1, we cannot trust the results for values of ωe very
close to zero. For the parameters used in the plots, this implies
that perturbation theory is valid for ωe 
 0.026 rad/ns. This
condition should also be kept in mind below when we include
the Overhauser shift to obtain the effective electron Zeeman
frequency, which must satisfy the same condition. For the
external magnetic fields we consider and Overhauser shifts
we calculate, this condition is satisfied for all the results we
obtain in the paper.

D. Incorporating multinuclear effects:
Self-consistent Overhauser shift

Using the flip rates for a single nuclear spin obtained in
the previous section, we shift the electron Zeeman frequency
by the Overhauser field as described by Eq. (34) to obtain flip
rates that take into account the effect of the full nuclear spin
bath. We then feed these flip rates into the recurrence relation,
Eq. (35), that defines the steady-state solution of the nuclear
polarization rate equation (33). We solve this recurrence
relation numerically for small (B = 0.1 T) and large (B = 6 T)
values of the magnetic field and for three different values of
the pulse rotation angle φ (0, ± π/2). We choose the electron
g factor to be such that ωe/B = 7.14 GHz/T, so that the two
values of B we consider correspond to ωe = 4.5 rad/ns and
ωe = 269.2 rad/ns. The results are shown in Fig. 4.

Each panel of the figure clearly shows that the polarization
distribution generally exhibits a series of equally spaced
peaks. The spacing is given by �m = 4/(ATR) and is a
direct manifestation of the frequency focusing phenomenon
described in Ref. [4] in which the nuclear polarization builds
up in such a way as to shift the electron Zeeman frequency to
values commensurate with the pulse frequency. In particular,
the polarization peaks are located at values of m such that
(ωe + Am/2)TR is an integer multiple of 2π . The physics
leading to this effect is as follows: An electron spin with
Zeeman frequency ωe �= 2πn/TR will undergo dynamics that
cause the nuclear spins to flip; see Eq. (28). Through this
process, the Overhauser shift will alter the dynamics of the
electron spin itself, until the shifted electron Zeeman frequency
satisfies the relation ωe = 2πn/TR , at which point the process
stops since the nuclear spin flip rates vanish at these values of
ωe. Therefore, there is a tendency for the system to synchronize
with the pulses, leading to the sharp, equally spaced peaks
of Fig. 4. This comblike structure can, in fact, be derived
analytically by taking the continuum limit of the kinetic
equation, as shown in Appendix E. While the variance of the
full distribution is comparable to that of a thermal state, each
peak is substantially narrower, and this should lead to longer
coherence times for the electron spin.
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FIG. 4. (Color online) (a)–(f) Nuclear spin polarization distribution for TR = 13.2 ns, NA = 12.5 GHz, N = 3000, γ = 0.5 GHz, qo = 0.3,
ωn = 0 for various magnetic fields and rotation angles. Note that several of the peaks extend well beyond the vertical range displayed. (g)
Magnification of (a), (b), (c). (h) Magnification of (d), (e), (f).

This focusing effect arises directly from the sine factor
in Eq. (28) and is independent of whether w+ is larger or
smaller than w−. However, this effect can either be enhanced
or reduced depending on the behavior of w+ − w− in the
vicinity of the synchronization points:

w+ − w− = γn(2πn/TR + δωe)S(∞)
n,z (2πn/TR + δωe)

≈ A2T 4
Rqo sin φ

8π2
(
1 + q2

o − 2qo cos φ
)δω3

e . (59)

Consider first the case φ < 0. In this case, when δωe > 0,
we have w+ < w−, so that there is a tendency to generate
negative nuclear polarization. This negative polarization will
shift ωe toward smaller values via the Overhauser shift. On the
other hand, when δωe < 0, we have w+ > w−, and positive
polarization is produced, shifting ωe toward larger values.
Thus, we see that when φ < 0, the commensurate values
ωe = 2πn/TR are stable fixed points, and nuclear polarization
forms in such a way as to drive the effective electron Zeeman
frequency toward these values, further enhancing the sharp,
evenly spaced peaks in Fig. 4. This enhancement is particularly
evident in the feedback effect on the electron spin that will be
examined in the next section.

When φ > 0, we have the reverse situation, where now
positive deviations δωe > 0 lead to positive polarization and
negative deviations to negative polarization. Therefore, in
this case, the commensurate values ωe = 2πn/TR become
unstable fixed points, with a nuclear polarization-driven
repulsion of the effective ωe away from these points. This
“antisynchronization” effect is evident in Figs. 4(a) and 4(g),
where the curve corresponding to φ = π/2 exhibits additional,
broad peaks centered between the narrow peaks. This effect
was first studied theoretically and experimentally in Ref. [40].
In this regime, one might be tempted to say that there exists
a stable stationary state between two adjacent, repulsive
commensurate points; however, such a state would only be
approximately stationary. This is because the nuclear spin-flip
rates are nonzero for all values of the electron Zeeman
frequency between the two commensurate points, implying

that the state continues to evolve. Since this evolution is
constrained by the two repulsive fixed points, we envision
the state as going back and forth between them, such that
the system spends more time at the half-commensurate points
on average, leading to an approximate stationary state there.
This is to be contrasted with the truly stable fixed points
that occur at the commensurate values when φ < 0. At these
points, the nuclear flip rates are precisely zero, signifying a real
stationary state. Both synchronization and antisynchronization
peaks appear in Fig. 4(a) since the φ-independent focusing
effect in which nuclear spin fluctuations randomly shift the
electron Zeeman frequency to commensurate values is still
present.

It is also apparent from Fig. 4 that the polarization
distribution P (m) is centered around nonzero polarizations
when B = 0.1 T and φ is nonzero. Figure 4 further reveals
that the sign of the net polarization that occurs at low
magnetic fields is opposite to the sign of φ, as was anticipated
in the previous section. The values φ = ±π/2 chosen for
the figure give rise to maximal values for the polarization;
the magnitude of the polarization increases steadily up to
φ = ±π/2, and beyond these values, the polarization steadily
decreases, returning to values close to zero at φ = ±π . In
Fig. 4, it is also clear that the net polarization is significantly
reduced at large magnetic fields even for φ = ±π/2. This trend
is more explicit in Fig. 5, where we plot the average nuclear
polarization, m̄ = ∑

m mP (m), as a function of magnetic field.
This figure shows that the DNP is largest at low magnetic
fields and is suppressed at high magnetic fields. This behavior
originates from the phenomenon of spontaneously generated
coherence, which are discussed in detail in Sec. VI F.

E. DNP feedback on electron spin

Having calculated the nuclear spin distribution, we proceed
to find the feedback on the electron steady state. The total nu-
clear polarization shifts the Zeeman frequency of the electron
spin, and the features of the nuclear distribution described
in the previous section are therefore anticipated to appear
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FIG. 5. (Color online) Average nuclear spin polarization versus
magnetic field for TR = 13.2 ns, NA = 12.5 GHz, N = 3000, γ =
0.5 GHz, qo = 0.3, ωn = 0, and (a) φ = π/2, (b) φ = −π/2.

in the final electron spin steady state. Using the expressions
for the electron spin components, Eqs. (58), we average ωe

over the distribution P (m), as explained in Sec. V H. The
resulting electron SV is shown without and with feedback for
φ = 0 in Fig. 6, and for φ = ±π/2 in Fig. 7. From these
figures it is evident that the SV components oscillate rapidly
as functions of magnetic field and that the amplitude of these
oscillations is dramatically reduced when nuclear feedback is
included. Furthermore, we see that the x component of the
electron SV tends to 1, while the y,z components tend to 0.
This shows that the nuclear polarization is built up in such

0

0 1 2 3 4 5 6

0.0

0.5

1.0

B T

S e
,x

0

0 1 2 3 4 5 6

0.0

0.5

1.0

B T

S e
,y

0

0 1 2 3 4 5 6

0.0

0.5

1.0

B T

S e
, x

0

0 1 2 3 4 5 6

0.0

0.5

1.0

B T

S e
, y

FIG. 6. (Color online) Effect of nuclear feedback. Electron spin
steady state versus magnetic field for TR = 13.2 ns, NA = 12.5 GHz,
N = 3000, γ = 0.5 GHz, qo = 0.3, ωn = 0, φ = 0. (Top panels)
Without nuclear feedback [Eq. (58)]; (bottom panels) with nuclear
feedback [Eq. (36)].

a way that it synchronizes the electron spin with the pulse
so that its steady state at the time of the pulse is now fully
polarized along x. Note also the effect of synchronization and
antisynchronization (discussed in the previous section) in the
SV components. The nuclear feedback in both cases focuses
the electron Zeeman splitting through synchronization, but in
the case of φ = π/2 the effect is weaker. This can be seen
more clearly in Fig. 8, where we have magnified the spin
components for all three cases, φ = 0, ± π/2, revealing an
increasing synchronization effect as we move from positive to
negative φ. In particular, we see that in the case of positive φ the
amplitude of oscillation of the Se,x component is significantly
larger as compared to zero and negative φ’s.

F. Effects of spontaneously generated coherence

As mentioned above, our solution is valid throughout the
full range of magnetic field values, including the low magnetic
field regime, which was beyond the scope of our earlier
work [39]. This is achieved by taking fully into account the
phenomenon of spontaneously generated coherence (SGC),
which is present in these QDs and is most prominent at low
magnetic fields. The effect of SGC, first predicted theoretically
in the early 1990s [45] and about a decade later investigated
theoretically [46] and experimentally [47] in the context of
optically controlled QDs, amounts to a coherence term in the
decay equations driven by the spontaneous emission from the
excited level. Though this may seem counterintuitive at first, it
is not difficult to understand if we consider the limiting case of
zero magnetic field in our system. In that case, the only decay
process is from state |T̄ 〉 to |x̄〉 both in the laboratory and
in the rotating frame. Equations (41) then reduce to a single
nontrivial equation,

Ṙx̄x̄ = ˙̃Rx̄x̄ = 2γRT̄ T̄ . (60)

This reflects the fact that in the B = 0 limit, state |x〉 is
completely decoupled from the dynamics. When the field is
switched on, Eq. (60) still holds in the laboratory frame, and the
additional terms in Eqs. (41) arise from the transformation to
the rotating frame. We can understand intuitively the origin of
the SGC term from the fact that population terms in one basis
give rise to coherence terms in a different basis. Thus, in the
magnetic field basis z, the term Rx̄x̄ is a linear combination of
all four population and coherence terms Rij with i,j = |z〉,|z̄〉.
Therefore, there is a coherence term generated by spontaneous
emission. This effect is independent of basis, and in the x basis
and rotating frame, it can be expressed as a coherence between
states |x〉 and |x̄〉, as seen in Eqs. (41).

To discuss the effects this term has on the nuclear dynamics,
it is useful to first think of the effect on the electron spin
alone as compared to the absence of SGC. This was already
discussed at length in Ref. [46], but it is worth summarizing
that discussion here for the sake of completeness. First, by
inspecting the decay equations and their solutions, we can
immediately see that SGC has the tendency to create electron
spin polarization along the +y axis. This can also be seen
through a geometric picture of the spin as follows.The pulse
removes part of the SV pointing along −x (how much depends
on qo). The SV that remains along x precesses about the z axis
counterclockwise. For concreteness, consider a mixed initial

165301-13



SOPHIA E. ECONOMOU AND EDWIN BARNES PHYSICAL REVIEW B 89, 165301 (2014)

2

0 1 2 3 4 5 6

0.0

0.5

1.0

B T

S e
,x

2

0 1 2 3 4 5 6

0.0

0.5

1.0

B T

S e
,y

2

0 1 2 3 4 5 6

0.0

0.5

1.0

B T

S e
,z

2

0 1 2 3 4 5 6

0.0

0.5

1.0

B T

S e
,x

2

0 1 2 3 4 5 6

0.0

0.5

1.0

B T
S e
,y

2

0 1 2 3 4 5 6

0.0

0.5

1.0

B T

S e
,z

2

0 1 2 3 4 5 6

0.0

0.5

1.0

B T

S e
,x

2

0 1 2 3 4 5 6

0.0

0.5

1.0

B T

S e
,y

2

0 1 2 3 4 5 6

0.0

0.5

1.0

B T

S e
,z

FIG. 7. (Color online) Effect of nuclear feedback. Electron spin steady state versus magnetic field for TR = 13.2 ns, NA = 12.5 GHz,
N = 3000, γ = 0.5 GHz, qo = 0.3, ωn = 0. (Top row) Without nuclear feedback [Eq. (58)] for φ = π/2 (the case with φ = −π/2 is essentially
the same); (middle row) with nuclear feedback [Eq. (36)] for φ = π/2; (bottom row) with nuclear feedback [Eq. (36)] for φ = −π/2.

state and a pulse that is close to π , i.e., qo ∼ 0. There is
then a net SV component pointing along +x which begins
to precess toward +y. As the spontaneous emission occurs,

it can be thought of as contributing small vectors that point
toward −x, adding on to the “unexcited” part of the SV, which
is now in the x,y > 0 quadrant. This process continues until
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FIG. 8. (Color online) Effect of nuclear feedback. Magnification of electron spin steady state versus magnetic field including nuclear
feedback for TR = 13.2 ns, NA = 12.5 GHz, N = 3000, γ = 0.5 GHz, qo = 0.3, ωn = 0 for the three cases, φ = 0, ± π/2. In the case
φ = π/2, the antifocusing effect is evident in the x component of the electron steady state, while the case φ = π/2 gives stronger focusing
compared to the φ = 0 case.
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FIG. 9. (Color online) Checking the effect of SGC. Total electron
steady-state SV (top panel) and z component (bottom panel) for
TR = 13.2 ns, φ = −π/2, and γ = 0.5 GHz (solid), γ = 0 (dashed).
For γ = 0, there is no SGC.

the excited state has fully decayed. The spontaneous emission
in this case partially opposes the generation of coherence by
adding a coherent component along −x. However, the spin
component that is pointing along y is “protected,” and thus in
the rotating frame we can think of a net y component created
by the total process of excitation and spontaneous emission
including SGC.

The situation is more complicated when the pulse, in
addition to polarizing/depolarizing the SV, also rotates the
spin. This is the case when qo �= 0,φ �= 0. The rotation is about
the x axis, so that the y component of the SV due to SGC is
rotated to z. As a result, there is a persistent z component of the
SV in the general case when both SGC and the pulse-induced
rotation are considered. This effect is evident in the asymmetric
form of the z component shown in Fig. 9. The z component of
the nuclear spin is itself a monotonically increasing function
of the electron spin z component [Eq. (27)]. Therefore, SGC
has the effect of creating more nuclear polarization along z on
average, which in turn controls the relative size of the nuclear
spin-flip rates in the two directions (up to down vs down to
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FIG. 11. (Color online) Checking the effect of SGC. Average
nuclear spin polarization versus magnetic field for TR = 13.2 ns,
NA = 12.5 GHz, N = 3000, γ = 0, qo = 0.3, ωn = 0, and φ = π/2.

up). We therefore expect this to translate into a larger nuclear
spin polarization relative to the case of no SGC, which is what
we see when we compare Figs. 4, 5 and 10, 11.

G. Spin echo

We now examine how the nuclear feedback mechanism
is altered by the addition of an extra, unitary pulse in the
middle of each period, i.e., at a time interval TR/2 from the
nonunitary pulse of the sequence. We specifically choose this
additional pulse such that it implements a π rotation of the
electron spin around the x axis. This can therefore be thought
of as a spin-echo sequence and the pulse as an echo pulse. It
is straightforward to include this pulse into our formalism by
replacing the unitary part of the evolution Uhf (TR) between
pulses with

Uhf (TR/2)[Rx(π ) ⊗ 1]Uhf (TR/2), (61)

where Rx(π ) = e−iπs1 denotes the spin rotation implemented
by the echo pulse. In this case, the steady state of the electron
spin turns out to be

SSE
e = (1,0,0). (62)

This steady state coincides with that of the synchronized spins
in the absence of the echo pulse, so one may be tempted to
think that the dynamics is trivial in the spin-echo case and that
no nuclear dynamics occurs. This is, in fact, false; the nuclear
dynamics and subsequent feedback mechanism turn out to be
distinct and interesting in the presence of spin echo.

Following the same steps outlined in Appendix A, we find
that the nuclear spin steady state is trivial, S(∞)

n = (0,0,0),
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FIG. 10. (Color online) Checking the effect of SGC. (a)–(c) Nuclear spin polarization distribution for TR = 13.2 ns, NA = 12.5 GHz,
N = 3000, γ = 0, qo = 0.3, ωn = 0, B = 0.1 T for various rotation angles. (d) Magnification of (a),(b),(c).
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FIG. 12. (Color online) Effect of spin-echo pulse. Nuclear spin
polarization distribution for TR = 13.2 ns, NA = 12.5 GHz, N =
3000, γ = 0.5 GHz, qo = 0.3, ωn = 0, φ = 0, and (a) B = 6 T, (b)
B = 0.1 T.

while the nuclear spin-flip rates are

w+ = w− = A2 sin2(ωeTR/4)

ω2
eTR

. (63)

This result clearly differs from what would be obtained from
Eqs. (27), (28), and (31) if we were to set Se = (1,0,0), with
perhaps the most striking difference being the extra factor
of 1/2 in the argument of the sine. This indicates that the
synchronized electron Zeeman frequencies are no longer given
by 2nπ/TR but instead by 4nπ/TR . The physical origin of this
is that the evolution of the electron-nuclear spin entanglement
is modified by the echo pulse, and in particular it is no longer
the case that spins become disentangled after a time span
of 2π/ωe; instead, this disentanglement occurs after a time
interval of 4π/ωe. Therefore, if the nonunitary pulse is applied
at time t = 2π/ωe, the residual entanglement will polarize
the nuclear spin, whereas if it is applied at t = 4π/ωe, no
polarization is produced.

Using the rates from Eq. (63), we calculate the nuclear
spin polarization distribution, and the results are shown in
Fig. 12. As in the case without the echo pulse, we find that the
distribution exhibits a sequence of equally spaced peaks, this
time with a spacing period of �m = 8/(ATR), twice as large
as without echo. These peaks again indicate a focusing effect,
this time at the spin-echo-synchronized Zeeman frequencies,
4nπ/TR . Since w+ = w− regardless of the value of φ or
any other parameters, the physics of this focusing effect is
analogous to the φ = 0 case in the absence of spin echo.
The equality of the flip rates also means that the net nuclear
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FIG. 13. (Color online) Effect of spin-echo pulse. Average nu-
clear spin polarization distribution versus magnetic field for TR =
13.2 ns, NA = 12.5 GHz, N = 3000, γ = 0.5 GHz, qo = 0.3,
ωn = 0, φ = 0.

spin polarization is minimal, as shown in Fig. 13. The fact
that w+ = w− allows for an explicit analytical solution of the
polarization distribution in the continuum limit, as shown in
Appendix E.

VII. CONCLUSIONS AND OUTLOOK

The field of nuclear spin control via the combination of
coherent and incoherent driving of an electron spin confined
in a QD, while very vibrant and rapidly growing, is still
at an early stage regarding a microscopic understanding of
the key fundamental processes that occur in these systems.
In this work, we presented a general formalism to treat the
generation of DNP and its feedback effects on the electron spin
both microscopically and self-consistently. Although these
experiments are quite complex, we showed that by taking
advantage of the separation of time scales that typically occur
in these experimental setups and by employing powerful tech-
niques from the field of quantum information, the theoretical
description cannot only be rendered tractable but can yield
analytical results that permit greater insight into the underlying
physics. In particular, our formalism reveals the crucial role of
electron-nuclear entanglement in the formation of DNP.

Our theory can be adapted, in principle, to any experimental
setup where the electron is driven while interacting with the
nuclear bath and with an additional reservoir. To demonstrate
our theoretical framework, in this paper we analyzed in
detail the mode-locking experiments in which the electron
spin is driven by a periodic train of fast circularly polarized
laser pulses. We showed that our theory reproduces the
main signatures of DNP in these experiments, namely the
synchronization and antisynchronization of the electron spin
precession with the pulse repetition rate. Furthermore, our
formalism predicts an enhancement of DNP at lower external
magnetic fields due to the phenomenon of SGC, an effect
that was not included in previous treatments of the nuclear
spin/DNP problem. In addition, we applied our theory to the
case where an extra spin-echo pulse is inserted between every
adjacent pair of mode-locking pulses; this insertion constitutes
the simplest implementation of dynamical decoupling in these
experiments. Our results predict that the inclusion of the
spin-echo pulse both modifies the synchronization condition
and significantly reduces the amount of DNP generated.

In this work we made certain assumptions and approxima-
tions. First and foremost, we exploited the separation of time
scales in this problem, which enabled a Markovian approach.
We argued that because processes leading to electron spin
decoherence were ignored, the Markovian approximation here
was actually more appropriate compared to a non-Markovian
treatment in which the full electron-nuclear spin correlations
are retained. This is because the decoherence is fast compared
to nuclear spin dynamics, implying that such correlations
will decay before they become significant. Moreover, since
the electron spin reaches its dynamical steady state quickly
compared to the decoherence time scale, the electron will tend
to remain in its steady state on average. These observations
together suggest that the primary source of DNP feedback on
the electron spin is through a modification of its precession
frequency due to the Overhauser field of the nuclear spins; this
is the type of feedback we have focused on in this work.
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A complete treatment of the full dynamics of this problem
would entail going beyond the Markovian limit by properly
taking into account electron spin decoherence at a microscopic
level. If this could be done, it would constitute an important
breakthrough as it would lead to a formalism capable of
describing any DNP experiment in QDs. However, this is
a challenging problem as it would require abandoning the
independent-nucleus approximation and including the full
effect of the nuclear spin ensemble in the calculation of the
electron spin steady state. Going beyond the independent-
nucleus approximation would also allow us to investigate the
role of internuclear spin entanglement in the generation of
DNP and in nuclear feedback effects. A promising approach to
achieve this would be to incorporate techniques from the theory
of generalized master equations [53] into our formalism.
These techniques are similar in spirit to the operator sum
representation employed in this work in that they can offer
a dramatic reduction in the effective size of the Hilbert space
without invoking additional assumptions or approximations.
We leave the development and exploration of this more
complete theoretical formalism to future work.
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APPENDIX A: NUCLEAR SPIN STEADY STATE AND
RELAXATION RATE FROM PERTURBATION THEORY

As discussed in Sec. V E, we can obtain analytical expres-
sions for the nuclear spin steady state and relaxation rate by
performing a perturbative expansion in the hyperfine flip-flop
interaction (retaining the Overhauser part of the interaction to
all orders). The first step is to expand Yn in powers of the
hyperfine flip-flop interaction:

Yn = Y (0)
n + Y (1)

n + Y (2)
n + · · · . (A1)

A similar expansion can be performed for the effective 4D SV
of the nucleus:

Sn = S (0)
n + S (1)

n + S (2)
n + · · · . (A2)

The goal of this appendix is to derive a formula for the nuclear
spin relaxation rate and zeroth-order steady state in terms of
the first three terms in the expansion of Yn [Eq. (A1)]. The
key observation that facilitates this derivation is that to zeroth
order in the flip-flop term, the evolution of the nuclear spin is
simple precession, at most modified by the effective magnetic
field due to the electron spin component along the z axis (the
so-called Knight field). Thus, Y (0)

n will have the general form

Y (0)
n =

⎡⎢⎢⎢⎣
1 0 0 0

0 Y (0)
n,xx Y (0)

n,xy 0

0 Y (0)
n,yx Y (0)

n,yy 0

0 0 0 1

⎤⎥⎥⎥⎦ . (A3)

Here the first row is (1,0,0,0) because this is generally the case
for an evolution operator in the 4D SV representation. The
first column is (1,0,0,0) because no polarization is generated;

the nuclear spin evolution is unitary at zeroth order. The
remaining 3 × 3 submatrix implements (modified) precession
in the xy plane. It will turn out that this generic form is already
sufficiently restricted that we can make substantial progress
without specifying the explicit expressions for the Y (0)

n,xx , etc.,
or for Y (1)

n and Y (2)
n .

The nuclear spin steady state is defined as the solution to
the following eigenvalue equation:

(1 − Yn)Sn = λSn, (A4)

with λ = 0. We have kept λ in this equation since we will need
to consider nonzero eigenvalues as well in order to obtain
the relaxation time. Using the above expansions and equating
terms occurring at the same level, we find(

1 − Y (0)
n

)
S (0)

n = 0,(
1 − Y (0)

n

)
S (1)

n = (
Y (1)

n + λ1
)
S (0)

n , (A5)(
1 − Y (0)

n

)
S (2)

n = (
Y (2)

n + λ2
)
S (0)

n + (
Y (1)

n + λ1
)
S (1)

n .

In the first of these equations, we have taken the liberty of
setting λ0 = 0 since the relaxation time will be related to the
smallest eigenvalue of 1 − Yn. More specifically, it is apparent
from Eq. (A3) that at zeroth order, two of the eigenvalues of
1 − Y (0)

n vanish, so that we have a degenerate perturbation
theory. One of these eigenvalues will remain zero at all
orders of the perturbative expansion, and the corresponding
eigenvector is the effective steady state of the nucleus. The
second zero eigenvalue will receive corrections at higher
orders. Since these corrections will be proportional to the
hyperfine coupling, this will then correspond to the smallest
nonzero eigenvalue of 1 − Yn when the coupling is sufficiently
small.

The first equation in (A5) states that the zeroth-order
eigenvectors S (0)

n with vanishing eigenvalues live in the null
space of 1 − Y (0)

n . It is clear from Eq. (A3) that the null
space of 1 − Y (0)

n is spanned by the vectors v0 ≡ (1,0,0,0)
and v1 ≡ (0,0,0,1). Since the first component of the steady
state Sn,ss must be fixed at 1 [see the discussion following
Eq. (17)], we may write for the zeroth-order steady state

S (0)
n,ss = (1,0,0,ξ ), (A6)

where ξ is a constant. The fact that the value of ξ is not
determined by the zeroth-order equation means that in the
absence of hyperfine flip-flops, the nuclear spin steady state
is not unique and depends on the initial state. When hyperfine
flip-flops are included by taking into account the higher-order
equations in (A5), the value of ξ becomes fixed, and the steady
state is unique. To see this, we need to solve both the first-order
and the second-order equations in (A5).

Consider the first-order equation in (A5). We can dot both
sides of this equation by the vectors v0 and v1 to obtain

v0
(
Y (1)

n + λ1
)
S (0)

n = 0, v1
(
Y (1)

n + λ1
)
S (0)

n = 0. (A7)

It is generally the case that the components Y (1)
n,00 and Y (1)

n,zz are
zero, so that v0Y (1)

n v0 = v1Y (1)
n v1 = 0, implying λ1 = 0. The

reason Y (1)
n,00 vanishes is due to the requirement that Yn,00 = 1,

which must hold for all evolution operators in the 4D SV
representation, and which is already satisfied by Y (0)

n,00. The
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component Y (1)
n,zz vanishes because populations are unaltered

in first-order perturbation theory. Since λ1 = 0, the relaxation
rate will be at least second order in the hyperfine coupling. It
is not difficult to directly solve the first-order equation in (A5),
with the result

S (1)
n = p1 + bv1, (A8)

where p1 is a vector of the form p1 = (0,p12,p13,0), which
can be obtained explicitly from the formula

p1 =

⎡⎢⎢⎢⎣
1 0 0 0

0 Xxx Xxy 0

0 Xyx Xyy 0

0 0 0 1

⎤⎥⎥⎥⎦Y (1)
n (1,0,0,ξ ), (A9)

where the 2 × 2 matrix X is defined as

X ≡
[

1 − Y (0)
n,xx Y (0)

n,xy

Y (0)
n,yx 1 − Y (0)

n,yy

]−1

. (A10)

It should be noted that p1 is a function of the constant ξ . The
additional constant b appearing in Eq. (A8) is arbitrary. We
do not include a term proportional to v0 as well because this
would violate the constraint that the first component of the 4D
SV is fixed to 1 since we have already set the first component
of the zeroth-order steady state, S (0)

n,ss , to 1.
Dotting both sides of the second-order equation in (A5) by

v1 gives

v1Y (1)
n p1 + v1

(
Y (2)

n + λ2
)
S (0)

n = 0. (A11)

This equation has two solutions:

S (0)
n = (1,0,0,ξ ∗), λ2 = 0, (A12)

and

S (0)
n = (0,0,0,1), λ2 = λ∗

2. (A13)

The first solution, Eq. (A12), is the nuclear steady state SV,
while the second solution, Eq. (A13), gives the nuclear spin
relaxation rate (the rate at which the nuclear spin reaches its
steady state):

γn = λ∗
2/TR. (A14)

As we anticipated, the nuclear spin steady state is unique in
the presence of hyperfine flip-flops. The explicit expressions
for ξ ∗,λ∗

2 depend on the particular control sequence.

APPENDIX B: EFFECTIVE NUCLEAR SPIN EVOLUTION
TO SECOND ORDER IN HYPERFINE FLIP-FLOPS FOR

SINGLE-PULSE-PER-PERIOD DRIVING

As explained in the previous Appendix, the effective nuclear
spin evolution operator in the SV representation can be
expanded to second order in the hyperfine flip-flop interaction:

Yn = Y (0)
n + Y (1)

n + Y (2)
n + · · · . (B1)

In this expansion, we are working in the Markovian limit, and
we are retaining the Overhauser part of the interaction to all
orders. The explicit form of the zeroth-order evolution in the
case of a single pulse per driving period is

Y (0)
n =

⎡⎢⎢⎢⎣
1 0 0 0

0 cos
(

ATR

2

)
cos (TRωn) − sin

(
ATR

2

)
sin (TRωn) Se,z − cos

(
ATR

2

)
sin (TRωn) − cos (TRωn) sin

(
ATR

2

)
Se,z 0

0 cos
(

ATR

2

)
sin (TRωn) + cos (TRωn) sin

(
ATR

2

)
Se,z cos

(
ATR

2

)
cos (TRωn) − sin

(
ATR

2

)
sin (TRωn) Se,z 0

0 0 0 1

⎤⎥⎥⎥⎦ ,

(B2)

and the nonzero components of the first- and second-order contributions are

Y (1)
n,x0 = A sin

(
ATR

2

)
sin

[
1
2TR(ωe − ωn)

]{
Se,x cos

[
1
2TR(ωe + ωn)

]− Se,y sin
[

1
2TR(ωe + ωn)

]}
ωe − ωn

,

Y (1)
n,xz = A cos

(
ATR

2

)
sin

[
1
2TR(ωe − ωn)

]{
Se,x sin

[
1
2TR(ωe + ωn)

]+ Se,y cos
[

1
2TR(ωe + ωn)

]}
ωe − ωn

,

Y (1)
n,y0 = A sin

(
ATR

2

)
sin

[
1
2TR(ωe − ωn)

]{
Se,x sin

[
1
2TR(ωe + ωn)

]+ Se,y cos
[

1
2TR(ωe + ωn)

]}
ωe − ωn

,

(B3)

Y (1)
n,yz = −A(1 + eiATR )e− 1

2 iTR (A+ωe+ωn) sin
[

1
2TR(ωe − ωn)

]
[(Se,x + iSe,y)eiTR (ωe+ωn) + Se,x − iSe,y]

4(ωe − ωn)
,

Y (1)
n,zx = −A{−Se,x cos[TR(ωe − ωn)] + Se,y sin[TR(ωe − ωn)] + Se,x}

2(ωe − ωn)
,

Y (1)
n,zy = A(Se,x sin[TR(ωe − ωn)] + Se,y{cos[TR(ωe − ωn)] − 1})

2(ωe − ωn)
,
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Y (2)
n,xx = A2

4(ωe−ωn)2

{
Se,z sin

(
ATR

2

)
[TR(ωe − ωn) cos(ωnTR) − sin(ωeTR) + sin(ωnTR)]

+ cos

(
ATR

2

)
[TR(ωe − ωn) sin(ωnTR) + cos(ωeTR) − cos(ωnTR)]

}
,

Y (2)
n,xy = A2

4(ωe − ωn)2

{
Se,z sin

(
ATR

2

)
[TR(ωn − ωe) sin(ωnTR) − cos(ωeTR) + cos(ωnTR)]

+ cos

(
ATR

2

)
(TR(ωe − ωn) cos(ωnTR) − sin(ωeTR) + sin(ωnTR)]

}
,

Y (2)
n,yx = A2

4(ωe − ωn)2

{
Se,z sin

(
ATR

2

)
[TR(ωe − ωn) sin(ωnTR) + cos(ωeTR) − cos(ωnTR)] (B4)

+ cos

(
ATR

2

)
[TR(ωn − ωe) cos(ωnTR) + sin(ωeTR) − sin(ωnTR)]

}
,

Y (2)
n,yy = A2

4(ωe − ωn)2

{
Se,z sin

(
ATR

2

)
[TR(ωe − ωn) cos(ωnTR) − sin(ωeTR) + sin(ωnTR)]

+ cos

(
ATR

2

)
[TR(ωe − ωn) sin(ωnTR) + cos(ωeTR) − cos(ωnTR)]

}
,

Y (2)
n,z0 = A2Se,z sin2

[
1
2TR(ωe − ωn)

]
(ωe − ωn)2

, Y (2)
n,zz = A2{cos[TR(ωe − ωn)] − 1}

2(ωe − ωn)2
.

APPENDIX C: NUCLEAR SPIN STEADY STATE AND RELAXATION RATE FOR SINGLE-PULSE-PER-PERIOD DRIVING

In the case of driving with a single pulse per period as considered in Sec. V F and which is relevant for the mode-locking
experiments analyzed in detail in Sec. VI, the explicit forms of the nuclear spin steady and relaxation rate for arbitrary nuclear
Zeeman energy ωn are

S (∞)
n = (1,0,0,ξ ∗), γn = λ∗

2/TR, (C1)

with

ξ ∗ = S(∞)
n,z = C

D
, λ∗

2 = A2

4(ωe − ωn)2
(2 − F/G), (C2)

where

C = −2eiTR (A+ωn)

{
2
(
S2

e,z + S2
e

)
sin

(
ATR

2

)
sin(ωnTR) + Se,z

[
−(S2

e − 1
)

cos(ATR) − 4 cos

(
ATR

2

)
cos(ωnTR) + S2

e + 3

]}
,

(C3)

D = [
(Se,z − 2)Se,z − S2

e + 2
]
e

1
2 iTR (A+4ωn) + 2

(−2S2
e,z + S2

e − 3
)
eiTR (A+ωn) + [

Se,z(Se,z + 2) − S2
e + 2

]
e

1
2 iTR (3A+4ωn)

+ e
3
2 iATR

[
(Se,z − 2)Se,z − S2

e + 2
]+ e

1
2 iATR

[
Se,z(Se,z + 2) − S2

e + 2
]+ (

S2
e − 1

)
eiTR (2A+ωn) + (

S2
e − 1

)
eiωnTR , (C4)

F = 2(ξ − 1)S2
e,⊥ cos

[
1

2
TR(A − 2ωn)

]
+ 2(ξ + 1)S2

e,⊥ cos

[
1

2
TR(A + 2ωn)

]

+ [−(ξ − 1)S2
e,⊥ − 2Se,z + 2

]
cos

[
1

2
TR(A + 2ωe − 4ωn)

]
+ [

(ξ − Se,z)S
2
e,⊥ + S2

e,z − 1
]

cos[TR(A + ωe − ωn)]

+ [
(ξ − Se,z)S

2
e,⊥ + S2

e,z − 1
]

cos[TR(A − ωe + ωn)] − [
(ξ + 1)S2

e,⊥ − 2(Se,z + 1)
]

cos

[
1

2
TR(A − 2ωe + 4ωn)

]
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− 2 cos

(
ATR

2

)
cos(ωeTR)

[
ξS2

e,⊥ − 2
]− 2S2

e,⊥[cos(ATR)(ξ − Se,z) + Se,z + ξ ]

+ 2 cos[TR(ωe − ωn)]
[
ξS2

e,⊥ + Se,z

(
S2

e,⊥ − Se,z

)− 3
]+ 2 sin

(
ATR

2

)
sin(ωeTR)

(
S2

e,⊥ − 2Se,z

)
, (C5)

G = −4Se,z sin

(
ATR

2

)
sin(ωnTR) + (

S2
e,z − 1

)
cos(ATR) − S2

e,z + 4 cos

(
ATR

2

)
cos(ωnTR) − 3. (C6)

In the above expressions, we have compressed the notation for
the electron steady state S

(∞)
e,i → Se,i for the sake of brevity,

and we have defined S2
e ≡ S2

e,x + S2
e,y + S2

e,z.

APPENDIX D: DERIVATION OF FLIP-RATE EXPRESSION

At leading order in the hyperfine coupling, the nuclei are
essentially independent of each other, and we may estimate
the flip rates by using the solution we have obtained for the
single-nucleus problem. For a single nucleus, we may write

dP↑
dt

= −w−P↑ + w+P↓, (D1)

where P↑ is the probability that the nucleus is aligned with
the magnetic field and P↓ = 1 − P↑ is the probability that it
lies antiparallel to the magnetic field. In terms of the nuclear
SV component along the magnetic field direction, Sn,z, these
probabilities are given by

P↑ = 1
2 (1 + Sn,z), P↓ = 1

2 (1 − Sn,z). (D2)

Therefore, we have

d

dt
Sn,z = −(w+ + w−)Sn,z + w+ − w−. (D3)

The solution to this equation is easily obtained:

Sn,z(t) =
[
Sn,z(0) − w+ − w−

w+ + w−

]
e−(w++w−)t + w+ − w−

w+ + w−
.

(D4)
We may then compute the flip rates w± by comparing this with
our coarse-grained solution from Eq. (25):

Sn(t) = e(Yn−1)t/TRSn(0). (D5)

To facilitate the comparison, we expand the initial state as a
linear combination of the eigenvectors of 1 − Yn:

Sn(0) = S (∞)
n +

3∑
i=1

ciVi . (D6)

Here we have set the coefficient of the steady state S (∞)
n to

1 since the first component of Sn(0) must be 1, and the first
component of S (∞)

n is already 1. (Consequently, it must be the
case that the first components of each of the Vi are all zero.)
Plugging Eq. (D6) into Eq. (D5), we find

Sn(t) = S (∞)
n +

3∑
i=1

cie
−μi t/TRVi , (D7)

where the μi are the eigenvalues of 1 − Yn corresponding to
the Vi .

At this point, we use the fact that the null space of 1 − Y (0)
n is

twofold degenerate and spanned by the vectors v0 = (1,0,0,0)
and v1 = (0,0,0,1), as discussed in Appendix A. Two of the
four eigenvectors will therefore have a vanishing eigenvalue at
zeroth order in perturbation theory. One of these eigenvectors
is the steady state S (∞)

n , and we choose the other to be V3.
This immediately implies that the steady state has the form
S (∞)

n = (1,0,0,ξ ∗), while V3 = (0,0,0,1) at zeroth order since
the first component of S (∞)

n is 1, while that of V3 has to be zero.
Since the null space is orthogonal to the row space spanned
by V1 and V2, these vectors must be orthogonal to v0 and v1 at
zeroth order and therefore do not have z components at zeroth
order. Taking the z component of Eq. (D7), we find that the
zeroth-order nuclear spin z component is given by

Sn,z(t) = S(∞)
n,z + c3e

−μ3t/TR . (D8)

Identifying μ3/TR as the nuclear spin relaxation rate γn, and
rewriting c3 in terms of the initial value Sn,z(0), we have

Sn,z(t) = [
Sn,z(0) − S(∞)

n,z

]
e−γnt + S(∞)

n,z . (D9)

Comparing this equation with Eq. (D4) gives

w± = γn

(
1 ± S(∞)

n,z

)/
2, (D10)

which is quoted in Eq. (31).

APPENDIX E: CONTINUUM OF RATE EQUATION

Starting from the recursion formula for the nuclear spin
polarization distribution,

P (m) = N − m + 2

N + m

w+(m − 2)

w−(m)
P (m − 2), (E1)

we can take the continuum limit by rewriting this as

w−(m + 2)P (m + 2) − w−(m)P (m)

= N − m

N + m + 2
w+(m)P (m) − w−(m)P (m). (E2)

Defining the function �(m) ≡ w−(m)P (m), we can interpret
the left-hand side as the derivative of � in the continuum limit:

�′(m) = 1

2

[
N − m

N + m + 2

w+(m)

w−(m)
− 1

]
�(m). (E3)
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This equation is easily integrated, with the result

�(m) = C exp

{
1

2

∫ m

−N

dm′
[

N − m′

N + m′ + 2

w+(m′)
w−(m′)

− 1

]}
.

(E4)

The constant C is determined by the normalization of P (m):

C =
[∑

m

exp
{

1
2

∫ m

−N
dm′[ N−m′

N+m′+2
w+(m′)
w−(m′) − 1

]}
w−(m)

]−1

. (E5)

In the special case where the flip rates are equal, w+(m) =
w−(m), the polarization distribution reduces to

P (m) = 2−1−m−NCe−m−N (2 + m + N )1+N

w−(m)
. (E6)

It is clear from this expression that the zeros of w−(m) give
rise to peaks in P (m). For the original mode-locking exper-
iment, w−(m) ∼ sin2[(ωe + Am/2)TR/2], while in the case
of spin echo, w−(m) ∼ sin2[(ωe + Am/2)TR/4], immediately
implying that P (m) will exhibit a comblike structure in both
cases.
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[13] Ł. Cywiński, W. M. Witzel, and S. Das Sarma, Phys. Rev. B 79,

245314 (2009).
[14] W. A. Coish, J. Fischer, and D. Loss, Phys. Rev. B 81, 165315

(2010).
[15] B. Erbe and J. Schliemann, Phys. Rev. Lett. 105, 177602

(2010).
[16] A. Faribault and D. Schuricht, Phys. Rev. Lett. 110, 040405

(2013).
[17] S. Foletti, H. Bluhm, D. Mahalu, V. Umansky, and A. Yacoby,

Nat. Phys. 5, 903 (2009).
[18] J. M. Taylor, A. Imamoglu, and M. D. Lukin, Phys. Rev. Lett.

91, 246802 (2003).
[19] M. S. Rudner and L. S. Levitov, Phys. Rev. Lett. 99, 036602

(2007).
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[53] E. Barnes, Ł. Cywiński, and S. Das Sarma, Phys. Rev. B 84,
155315 (2011).

[54] S. E. Economou, L. J. Sham, Y. Wu, and D. G. Steel, Phys. Rev.
B 74, 205415 (2006).

165301-22

http://dx.doi.org/10.1103/PhysRevB.85.041303
http://dx.doi.org/10.1103/PhysRevB.85.041303
http://dx.doi.org/10.1103/PhysRevB.85.041303
http://dx.doi.org/10.1103/PhysRevB.85.041303
http://dx.doi.org/10.1103/PhysRevB.89.075316
http://dx.doi.org/10.1103/PhysRevB.89.075316
http://dx.doi.org/10.1103/PhysRevB.89.075316
http://dx.doi.org/10.1103/PhysRevB.89.075316
http://dx.doi.org/10.1209/0295-5075/17/5/005
http://dx.doi.org/10.1209/0295-5075/17/5/005
http://dx.doi.org/10.1209/0295-5075/17/5/005
http://dx.doi.org/10.1209/0295-5075/17/5/005
http://dx.doi.org/10.1103/PhysRevB.71.195327
http://dx.doi.org/10.1103/PhysRevB.71.195327
http://dx.doi.org/10.1103/PhysRevB.71.195327
http://dx.doi.org/10.1103/PhysRevB.71.195327
http://dx.doi.org/10.1103/PhysRevLett.94.227403
http://dx.doi.org/10.1103/PhysRevLett.94.227403
http://dx.doi.org/10.1103/PhysRevLett.94.227403
http://dx.doi.org/10.1103/PhysRevLett.94.227403
http://dx.doi.org/10.1103/PhysRev.92.411
http://dx.doi.org/10.1103/PhysRev.92.411
http://dx.doi.org/10.1103/PhysRev.92.411
http://dx.doi.org/10.1103/PhysRev.92.411
http://dx.doi.org/10.1103/PhysRev.102.975
http://dx.doi.org/10.1103/PhysRev.102.975
http://dx.doi.org/10.1103/PhysRev.102.975
http://dx.doi.org/10.1103/PhysRev.102.975
http://arxiv.org/abs/arXiv:1303.0590
http://dx.doi.org/10.1103/PhysRevB.84.155315
http://dx.doi.org/10.1103/PhysRevB.84.155315
http://dx.doi.org/10.1103/PhysRevB.84.155315
http://dx.doi.org/10.1103/PhysRevB.84.155315
http://dx.doi.org/10.1103/PhysRevB.74.205415
http://dx.doi.org/10.1103/PhysRevB.74.205415
http://dx.doi.org/10.1103/PhysRevB.74.205415
http://dx.doi.org/10.1103/PhysRevB.74.205415



