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Indirect-to-direct gap transition in strained and unstrained SnxGe1−x alloys
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The transition from an indirect to a direct gap semiconductor in unstrained as well as compressively and tensile
strained SnxGe1−x alloys is investigated as a function of the Sn content 0 � x � 1 by means of both a very
accurate supercell approach and the more approximate virtual crystal approximation (VCA). In the local density
approximation we calculate the bowing parameter of the lattice constant of unstrained SnxGe1−x alloys. Provided
that pseudopotentials suitable for the VCA are used, the random supercell and VCA approaches yield consistent
bowing parameters for the lattice constant of −0.21 and −0.28 Å, respectively, in the entire Sn concentration
range. The band structures and energy gaps are calculated using the modified Becke-Johnson potential, which,
for Ge, yields a one-electron band gap in very good agreement with experimental data. The crossover from an
indirect to a direct gap semiconducting alloy is determined at about 4.5% Sn in unstrained SnxGe1−x . When
SnxGe1−x is grown commensurately and thus strained on Ge(100), a transition to a direct gap is also observed
but at Sn concentrations of about 10%. We finally predict the direct and indirect band gaps as a function of the
in-plane lattice constant and Sn concentration for SnxGe1−x alloys grown on (100) substrates.
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I. INTRODUCTION

One fundamental problem of the well-established Si and
Si/Ge semiconductor technology is the indirect nature of the
fundamental band gap resulting in inefficient absorption and
emission of light. For example, efficient light-emitting diodes
require a direct semiconductor as active material. Another
aspect that is important for optoelectronic applications is the
magnitude of the semiconductor band gap, which determines
the wavelength of the photoabsorption/photoemission. For
future applications, materials with a tunable band gap are
desired. To overcome the limitations stemming from the
indirect band gap in Si/Ge and to benefit from good inte-
gration and compatibility to Si-based technology, mainly two
strategies have been considered. The first involves growing
heterostructures of group IV semiconductors, where the lattice
mismatch induces strain and thus changes the magnitude and
possibly the nature of the band gap [1]. The most prominent
example is the Si/Ge materials system [2]. A second route is the
alloying of Ge with other elements, for instance Sn [3–6]. The
combination of these two routes is possibly the most promising
approach [7], often also enabling a widely tunable band gap.

Using strain, direct band gaps were achieved in single-
crystal Ge nanowires [1]. At ambient conditions, elemental
Ge exhibits an indirect (direct) band gap of 0.66 (0.80) eV
[8]. The energy difference between the absolute conduction-
band minimum (CBM) located at the L point in the Brillouin
zone (L6 symmetry) and the local CBM at the � point (�7

symmetry) is 140 meV. It has been shown by Zhang et al.
[1] that this energy separation can be reduced in germanium
nanowires by uniaxial tensile strain along the [111] direction
leading to direct gap Ge nanowires. Another practical route
to introduce tensile strain is the epitaxial growth of Ge on
substrates with larger lattice constants such as Sn containing
group IV alloys or III-V semiconductors [7].
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In this work, we concentrate on the SnxGe1−x alloy, which
is among the most promising candidates in order to obtain a
direct band gap group IV semiconductor. SnxGe1−x alloys
can be either used as substrates or as the active material.
Below 13 °C Sn exists in the α-Sn (gray tin) phase with
diamond structure, but undergoes a phase transition to β-Sn
(white tin) above this temperature. In the present work, we
assume that the aforementioned phase transition does not
destabilize the zinc-blende alloy. In contrast to Ge, α-Sn is a
zero-gap semiconductor. At the � point the antibonding s-like
conduction-band state (�7 symmetry) drops below the p-type
valence band level (�8 symmetry), resulting in a negative
direct band gap of −0.41 eV [8]. Assuming a simple linear
approximation of the SnxGe1−x alloy band structure from
its constituents according to Vegard’s rule [9], one would
propose the crossover to a direct gap semiconductor at a Sn
concentration of x = 0.22. The pioneering work of He and
Atwater [3]—optical absorption experiments with zinc-blende
SnxGe1−x alloy films of different Sn concentrations—showed
a strong interband transition with a crossover to a direct gap of
0.35 < �E� < 0.80 eV for 0 < x < 0.15. This observation was
confirmed independently experimentally by D’Costa et al. [5]
and Pérez Ladrón de Guevara [10]. According to the positive
Sn-concentration-dependent bowing parameter of the lattice
constant as well as the energy gap, a much lower crossover
concentration close to x = 0.06 [6] was found by recent ab
initio calculations [11].

Current research on direct gap SnxGe1−x alloy films [6,11]
targets at technical aspects of its realization. An important
issue is the effect of strain on the electronic properties of
SnxGe1−x studied in detail by Fischetti and Laux [2] and
very recently by Gupta et al. [12], both using the nonlocal
empirical pseudopotential method (NL-EPM). In the present
work we investigate the electronic properties of compressively
and tensile-strained SnxGe1−x alloys using more accurate
ab initio (parameter-free) methods instead of the EPM. We
concentrate on the (100) growth direction (basal plane), since
most commercial Ge wavers possess this orientation. To
model the alloys two widely adopted methods are used and
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compared. The more approximate method is the virtual crystal
approximation (VCA). In this approximation, virtual atoms
are introduced that represent a properly weighted average of
the Ge and Sn atoms. This is obviously an approximation.
The more accurate approach is based on the use of large
random superstructures, here containing more than 200 atoms.
This should represent the true experimental situation very
reliably. The comparison between the more approximate
VCA and the accurate supercell approach is interesting in
itself and of relevance beyond the particular materials system
considered here. The VCA is computationally efficient but
rather approximate, whereas the supercell approach is accurate
but computationally demanding. To what extent do the results
of these two approaches agree?

The paper is organized as follows. After summarizing
the methodologies applied in the calculations in Sec. II, the
results are discussed in Sec. III. As elaborated above, structure
optimization was performed within the VCA and using large
supercells. In both cases, the local density approximation
was applied for relaxation. Deviations of the alloy lattice
parameters from Vegard’s rule are investigated. The main
part of Sec. III is devoted to the electronic properties of
the alloy, in particular the indirect-to-direct gap transition
and Sn-dependent band bowing parameters. In this part a
special density functional is applied. This density functional
yields accurate band gaps for Ge in excellent agreement with
experiment.

II. METHODS OF CALCULATION

A. Basis sets and exchange correlation potentials

The density functional theory [13,14] calculations were
performed using the Vienna ab initio simulation package
(VASP) [15] utilizing the projector augmented plane-wave
(PAW) method [16] to describe the core-valence interaction.
For structure optimizations, the exchange correlation (XC)
potential was treated within the local density approximation
(LDA) [17]. This was motivated by the observation that
semilocal XC functionals, i.e., PBE [18] or PBEsol [19], yield
significantly too large lattice constants for Ge and Sn. Those
large lattice constants then cause a wrong band order and
inaccurate fundamental gaps [20]. The LDA underestimates
the volume, but only very slightly. All calculations were
performed with PAW potentials treating only the Ge(Sn) 4(5)s
and 4(5)p states as valence states. As described below, the
Ge/Sn semicore d states were treated as core electrons in
all calculations. Unfreezing them showed little change in the
results.

For cell shape relaxations, the energy cutoff for the plane-
wave basis set was set to 300 eV for the small unit cells.
With this large cutoff the stress tensor is essentially free of
the Pulay stress error, allowing for straightforward volume
relaxations. For the supercell calculations, the cutoff was
reduced to 148 eV, but the stress tensor was then corrected
for the errors introduced by the finite basis set (Pulay stress).

All band structure calculations were performed using a
smaller cutoff of 148 eV. In order to improve the description of
the band structure, the modified Becke-Johnson LDA (MBJ-
LDA) potential developed by Tran and Blaha [21] was applied.

This semilocal XC potential combines the modified Becke-
Johnson exchange potential with LDA correlation and provides
a good description of fundamental band gaps at comparatively
low computational costs. If properly tuned, this XC potential
can yield excellent agreement with experimental band struc-
tures [21,22]. MBJ-LDA calculations are suitable for the large
supercells investigated in this work, where hybrid functionals
or GW calculations are simply too time-consuming. This,
however, also implies that the present calculations carry some
kind of empiricism. Since we have tuned the single parameter
in MBJ carefully to match the available experimental data,
we expect that the predictions are fairly accurate. In general,
the present approach is expected to possess higher predictive
power than semiempirical pseudopotential calculations; in
particular, only a single parameter needs to be adjusted to
fit the band structure of bulk Ge.

B. Structure optimization, virtual crystal approximation,
and PAW potentials

In previous work, the Sn concentration was limited to
x > 6% by the rather small supercells: Yin, Gong, Wei
[11] used 64 atom cells, and Ventura et al. [23] applied
8, 16, and 64 atom supercells. In the present work, this
issue was addressed by employing 3 × 3 × 3 supercells of
the conventional cubic cell of the zinc-blende structure. This
corresponds to 216 = 3 × 3 × 3 × 8 atoms, and the smallest
possible Sn concentration is thus about 0.5%. Tests using
4 × 4 × 4 supercells containing 512 atoms did not change the
results, but required significantly more computer time. In the
first step, SnxGe1−x alloy structures with Sn concentrations
between 0 � x � 1, with x = {0, 2, 5, 10, 20, 25, 30, 40,
50, 75, 100}%, were investigated. The lattice constants were
initially interpolated using Vegard’s rule [9],

aSnxGe1−x
= xaSn + (1 − x)aGe. (1)

It was already pointed out that the unit cell volumes of the
SnxGe1−x alloys deviate from this simple linear approximation
[5]. Hence, these structures were subjected to an optimization
of the lattice constants utilizing the VCA [24]. For the VCA
calculations, special PAW potentials with identical core radii
for the Ge and Sn atoms were generated. Specifically, the
core radii for the s and p partial waves were set to 2.3 and
2.5 a.u., respectively. The local potential was constructed by
pseudizing the Sn all-electron potential below a core radius of
2.0 a.u. For Ge the same local pseudopotential was chosen
between the atomic core and 1.4 a.u.; beyond this radius
the all-electron potential of Ge was used as local potential.
This procedure guarantees that the pseudoorbitals of Sn and
Ge possess a very similar shape inside the atomic spheres.
A common local potential makes the nonlocal projectors
similar and significantly improves the description within
the VCA.

The more approximate alloy calculations are performed
using the VCA, as described by Bellaiche and Vanderbilt [24].
For a specific concentration of SnxGe1−x , this is achieved
by weighting the PAW potentials of Sn by a factor x, and
the PAW potentials of Ge by a factor 1–x. An important
comment is in place here. We also tried to generate VCA
potentials with the d electrons in the valence. However, this
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turned out to be impossible, since the Ge 3d electrons possess
a very different spatial distribution compared to the Sn 4d

electrons. If the 3d and 4d electrons are treated as valence
electrons in the VCA, the electronic structure code needs
to find a compromise between the spatial distribution of
the 3d and 4d orbitals. This causes unreliable results and
large errors in the mean energy position of the d levels;
they are generally well above the mean position of the
supercell 3d and 4d orbitals. Quite generally, the VCA is
only reliable if the considered valence orbitals are spatially
reasonably similar. For instance, after pseudization the Ge 4s

and Sn 5s pseudoorbitals, and the Ge 4p and Sn 5p pseu-
doorbitals are rather similar inside the pseudization sphere.
To achieve this similarity requires considerable care, when
constructing VCA potentials, and the standard PAW potentials
distributed with the VASP code are generally not suitable for
VCA calculations.

In the VCA calculations, the volume was optimized
automatically using a large cutoff (300 eV). Alternatively, the
volume was varied in the range of 0.9–1.1 V0, and the self-
consistently converged total energies fitted to a Murnaghan
equation of state (EOS) [25]. This procedure can be safely
adopted even at low-energy cutoffs (148 eV) and yields
identical results to the automatic relaxations at large plane-
wave cutoff energies. For pure Ge and Sn, the present potentials
yield an optimized LDA lattice constant of aGe = 5.644 Å
and aSn = 6.481 Å, which is in good agreement with the
experimental values of 5.658 Å [8] and 6.49 Å [8] for Ge and
Sn, respectively.

The more accurate alloy calculations were performed using
actual random supercells. From the VCA primitive unit cells
obtained in the first step, 3 × 3 × 3 supercells were con-
structed corresponding to effective Sn concentrations of x =
{0, 1.89, 4.85, 9.72, 19.9, 25, 29.6, 39.8, 50, 75, 100}%. In
the supercells, only an integer number of Ge atoms can be
replaced by Sn atoms, resulting in the specified effective Sn
concentrations x. For each SnxGe1−x supercell, ten different
structures with Sn and Ge atoms randomly distributed on the
lattice positions were created. In order to guarantee completely
unstrained structures, each random structure was optimized
with respect to the atomic positions for a range of volumes
between 0.9 V0 and 1.1 V0, as already described above for the
primitive VCA cell. The atomic positions were optimized by
minimization of the forces acting on the atoms. Typically,
the forces were converged to better than 0.01 eV/Å. The
optimized volume was then determined by a Murnaghan’s
EOS fit.

With the aim to better match experimental conditions, i.e.,
alloy structures grown by molecular beam epitaxy (MBE) on
the Ge (100) substrates, the modeling was also performed
with strained alloy structures. In this case, the in-plane lattice
constants a and b (perpendicular to the growth direction) were
set to the LDA optimized value for Ge a = b = 5.644 Å,
whereas the lattice parameter parallel to the growth direction
(c parameter) was optimized to yield a minimal energy. This
was achieved again by a fit to Murnaghan’s EOS, but now only
the lattice parameter c was optimized. This procedure leads
to laterally, compressively strained structures corresponding
to epitaxial growth of the SnxGe1−x alloy on the Ge (100)
substrate.

C. Brillouin sampling and zone folding

For the structure optimizations using the VCA in the
zinc-blende cell, �-centered k meshes with 16 × 16 × 16 k

points were used to carry out the Brillouin zone integration.
For all supercell calculations, however, only the � point
was considered in the structure optimizations with some
calculations double checked using 2 × 2 × 2 k points.

The MBJ supercell band structure calculations were per-
formed with the � point and additional k points along high-
symmetry directions. To determine the band structure in the
primitive cell, a “simple” backfolding scheme described in
the following is applied. Orbitals with eigenenergies εnK in
the supercell are linear combinations of plane waves

ϕnK(r) =
∑

G

Cn,G+Kei(G+K)r, (2)

where the vectors G are reciprocal lattice vectors of the
supercell, and K is a Brillouin zone vector in the supercell.
With the zone folding relation, K is related to a wave vector in
the primitive cell k by the relation G + K = g + k (see, e.g.,
Ref. [26]). One can exactly rewrite Eq. (2) as

ϕnK(r) =
∑

k

∑

g

Cn,g+ke
i(g+k)r, (3)

where g is a reciprocal lattice vector of the primitive cell and k
is a k point in the first Brillouin zone of the original primitive
cell, in the present case the zinc-blende structure with two
atoms. The norm of the orbital can then be rewritten as

〈ϕnK|ϕnK〉 =
∑

k

∑

g

|Cn,g+k|2 =
∑

k

wnK,k, (4)

where

wnK,k =
∑

g

|Cn,g+k|2, (5)

This simple procedure makes it possible to assign the original
eigenvalue εnK to k points in the original primitive cell and rep-
resents a simplification of the effective band structure (EBS)
method proposed by Popescu and Zunger in Refs. [26,27].
In that work, a spectral weight is derived from the supercell
eigenvectors by projecting them onto a set of eigenfunctions
in the primitive cell. The present procedure is simpler and
does not require the calculation of the eigenfunctions in the
primitive cell. Our approach can be derived from the approach
of Popescu and Zunger realizing that the eigenstates of the
primitive cell form a complete Hilbert space at each k point.
Using this exact identity our wnK,k can be identified as PKn(k)
in Eq. (8) of Ref. [27]. The only “drawback” of the present
approach is that some states and eigenvalues might be assigned
to multiple k points; however, this is also the case for the
method of Popescu and Zunger. For instance, orbitals from
the three X points in the original primitive cell (X, Y , Z)
have all the same eigenvalues, and the three states mix in
the supercell calculation. It is, therefore, usually not possible
to uniquely assign the orbital in the supercell to the X, the
Y , or the Z point. For the present purpose, this is of little
consequence, since we only attempt to fold the original states
back to the irreducible wedge of the zinc-blende primitive
cell, and hence the distinction between X, Y , and Z does
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not matter: One simply needs to sum the weights wnK,k
over k points that are symmetry equivalent in the original
primitive cell. More problematic is that the conduction-band
states have very similar energies at L and �, in particular,
at concentrations where the gap changes from indirect �-L
to a direct �-� transition. In this case, strong hybridization
between the original � and L conduction-band minima can
occur, and the assignment becomes ambiguous. In the present
case, this is avoided by using 3 × 3 × 3 supercells, so that
the original L point is mapped onto the distinct point (0.5, 0.5,
0.5) 2 π/a in the supercell. Thus, states originating from the
L and the � points can be distinguished without ambiguity.

D. MBJ calculations of alloy band structures

The VASP implementation of the modified Becke-Johnson
potential either determines the parameter c-MBJ self-
consistently or allows calculations with a fixed parameter
[22]. The latter approach has been chosen for the present
study and the optimal c-MBJ parameter was determined by
calculating the band gap of pure germanium and comparing
it to the experimental value. The best match was obtained
with c-MBJ = 1.2. This parameter has been kept constant
throughout all alloy calculations. This is the only parameter
used in the present calculations; otherwise, the calculations are
entirely ab initio.

The theoretical direct gaps calculated using the MBJLDA
potential (c-MBJ = 1.2) at the lattice constant optimized within
LDA (aGe = 5.644 Å and aSn = 6.481 Å) are Eg(Ge) =
0.97 eV and Eg(Sn) = −0.12 eV, with an indirect fundamental
minimum Ge gap of 0.82 eV. Including SOC in the MBJLDA
calculations reduces the direct gap to Eg(Ge) = 0.87 eV and
Eg(Sn) = −0.24 eV and the indirect gap in Ge to 0.72 eV.

These values agree well with the measured direct and
indirect low-temperature gaps of 0.89 and 0.74 eV, respectively
[8]. Specifically the difference between the direct and indirect
gap is in excellent agreement with experiment, which is
particularly relevant to the present study.

E. Calculations of the bowing parameter

Many binary semiconductor alloys AxB1−x have a nonlinear
dependence of their physical properties, e.g., lattice constants
or band gaps, as a function of the alloy composition x. This
is commonly described by a second-order polynomial of the
form

aSnxGe1−x
= xaSn + (1 − x)aGe − bx(1 − x). (6)

Here b denotes the bowing parameter. When the lattice
constant a is replaced by the direct band gap Eg , b is also
called optical bowing or optical bowing parameter bg .

III. RESULTS AND DISCUSSION

When alloy samples are experimentally prepared, the
distribution of the Sn atoms in the Ge matrix is often
governed by thermodynamics. The Sn atoms can be randomly
distributed, form a regular superstructure, or coalesce into a
larger cluster. The question of whether the Sn atoms form
clusters in the Ge matrix has been investigated by Ventura
et al. [23], who concluded that homogeneous SnGe alloys
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FIG. 1. (Color online) SnxGe1−x alloy lattice constant (Å) as
function of the Sn content (%). Volume and atomic position relaxed
random supercells (green circles), VCA calculations (blue squares),
and laterally biaxial strained supercells on Ge (100) are compared
to the linear dependence corresponding to Vegard’s rule (black
line). APL81 and APL83 indicate the results of Refs. [6] and [28],
respectively.

with Sn atoms substitutionally incorporated in the Ge matrix
are energetically preferred in the lower concentration range,
whereas metallic Sn clusters resulting in inhomogeneous
defect structures are preferred at high Sn concentrations. Here
we have considered only fully random structures. Although
this might not be the energetically preferred arrangement, we
believe that such random structures are generated under the
growth conditions of MBE and thus provide a valid model
for the experimental situation. Moreover, random structures
are most appropriate for investigating the electronic properties
of random alloys within the concept of band theory. Also by
avoiding any disorder-order phase transition, we can expect
smooth variations of the evaluated properties as a function of
the Sn concentration, so that sensible bowing parameters can
be determined.

The results of the optimization (lattice constants) of the
more approximate VCA (blue line) and the random supercells
(green line) for each Sn content are compared to the lattice
constants obtained from Vegard’s rule in Fig. 1. Again we
emphasize that the results for the random supercells are the
reference, to which the VCA calculations can and should
be compared. As expected from the large lattice mismatch
and confirmed by previous work [5,6,29], the optimized
lattice constants of the alloy clearly deviate from a linear
dependence on x (Vegard’s rule). Hence, structures generated
using Vegard’s rule without any optimization are not suitable
for describing the structural and electronic properties of the
SnxGe1−x alloys. The deviation from Vegard’s rule is positive,
resulting in a negative bowing parameter, which is opposite
to the observations for SixGe1−x alloys [5,6]. Compared to
the supercell approach, the VCA yields a quite accurate
description of the lattice parameters for the investigated
compositions, although upon closer inspection the deviation
from Vegard’s rule is overestimated by about 25% for the VCA.
The good match of the VCA and supercell results relies on the
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particular VCA PAW potentials employed here and should not
be taken for granted, as discussed in the Methods section. The
bowing parameter b of the lattice constant with respect to x

evaluated from a quadratic fit of the supercell and VCA data
for 0 � x � 1 is −0.21 and −0.28 Å, respectively. As already
mentioned, the VCA overestimates the bowing by about 25%.
Our values are in reasonable agreement with D’Costa et al.,
who deduced −0.17 Å < b < 0 Å from high-resolution x-ray
diffraction of SnxGe1−x samples with x � 0.2 [5]. In contrast,
Chibane and Ferhat obtained a significantly larger bowing
coefficient of the lattice constant, i.e., −0.65 Å from VCA
calculations of SnxGe1−x alloys with 0 � x � 0.19 [29]. In
order to understand the discrepancies, the quadratic fit of the
present data was also restricted to x � 0.2 for the VCA. In
this case, a larger b = −0.45 Å is obtained. Thus, the fit is
somewhat dependent on the considered fitting range; however,
the increase from −0.28 to −0.45 Å is not sufficient to fully
explain the discrepancy to the results of Chibane and Ferhat.
We believe that the present results are more accurate, since the
present approach is less empirical, and since the present VCA
are evaluated by reference supercell calculations.

The structure optimization of laterally strained supercells
with the lattice constants a and b fixed to the Ge lattice
constant (5.644 Å) yield, as expected, a much larger increase
of the lattice constant in the c direction. If the volume
increase were similar to the isotropic case (perfectly elastic),
one would expect that the increase of the lattice constant in
the c direction were three times larger than for relaxation
in all three directions. However, the increase of the lattice
constant in the strained case is only about twice as large as
for the isotropic case. The calculated Poisson’s ratio is 0.4,
which agrees well with the observed behavior. As before, the
VCA overestimates the increase in the lattice constant c by
about 25%.

A. Alloy band structures as function of the composition

The alloy band structures obtained by the unfolding
procedure of the supercell, as described in Sec. II B, are
depicted in Figs. 2(a)–2(c) for x = 1.89% (a), x = 4.85%
(b), and x = 9.72% (c) as discrete data. The distance
between the two horizontal lines above and below each data
point indicates the standard deviation calculated from the ten
supercells. Note that the deviations are only in the energy (y
axis) and not in the k point (x axis), but since the deviations are
so small, often only a single horizontal line is discernible. The
VCA band structures are shown by continuous lines. In these
graphs, the valence bands formed by semiconductor s states
(gray line) and the p states, as well as the lowest conduction
band comprised by p states (red line) are shown from the zone
center � = (0, 0, 0) towards L = (0.5, 0.5, 0.5) 2π/a. The
two uppermost valence bands (green line) with a total angular
momentum J = 3/2, i.e., the heavy hole (with z component
Jz = ±3/2) and the light hole (Jz = ±1/2), are degenerate
along �-L, since spin-orbit coupling (SOC) was not taken
into account in the calculations. The third band with J =
1/2 (turquoise line), usually referred to as the split-off band,
is also degenerate with the other two bands at the � point
due to neglect of SOC. Since the common nomenclature does
not fully apply here, the uppermost valence band (twofold
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FIG. 2. (Color online) SnxGe1−x band structures of unstrained
alloys obtained by averaging over ten structurally relaxed random
supercells with a Sn content of (a) x = 1.89%, (b) x = 4.85%,
and (c) x = 9.72%. The upper and lower lines indicate the standard
deviation evaluated from the ten considered models. The lines indicate
the calculated VCA band structures. The lowest conduction band is
shown in red, whereas the topmost four valence bands are indicated
in green (twofold degenerate p band, heavy hole and light hole, here
VB1), turquoise (split-off p band, here VB2), and gray (s character)
lines. SOC was not included in these calculations, resulting in a higher
degeneracy of bands.

degenerate, green) is denoted with VB1, and the lower one
(turquoise) with VB2 throughout the paper.

The band dispersion of the supercell with x = 1.89%
Sn resembles closely the pure Ge band structure, as well
as the VCA band structure. This validates the unfolding
procedure applied in the present work. The deduced direct
band gap at the � point (Eg) and the indirect �-L band gap
are summarized in Figs. 3(a) and 3(b) for the VCA and the
supercell calculations, respectively. For a small Sn content
[Fig. 2(a)], the direct and indirect alloy gaps compare well
with the pure Ge gaps, which are without spin orbital coupling
0.97 and 0.82 eV, respectively. Disorder introduces a slight
broadening of the peaks, but the standard deviation remains
fairly small throughout the Brillouin zone.

With increasing Sn content, both gaps are reduced, and
the alloy undergoes a transition from an indirect to a direct
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semiconductor in the vicinity of x = 4.85%. This transition, the
band gaps, and the optical bowing parameters are the subjects
of the following section. Before continuing, we note that
the standard deviation increases as the Sn content increases,
but not by much. This indicates that the QP particle peaks
observed in experiments should remain fairly sharp even in
the disordered alloy.

B. Indirect-direct gap transition and optical bowing

Both, the lowest direct and indirect gaps evaluated from
the alloy band structures are plotted as function of the Sn
content in Figs. 3(a) and 3(b). The results obtained by three
approaches, the VCA [see Fig. 3(a)] and random supercells
with and without relaxation of the atoms [see Fig. 3(b)], are
compared. In Figs. 3(a) and 3(b), the insets show closeups
of the regions where the SnxGe1−x alloy transforms into a
direct semiconductor. Again, the supercell calculations with
relaxation are the reference to which the other calculations
should be compared.

The VCA calculations were performed with and without
SOC. As the Sn content increases, the effect of SOC increases
from 100 meV for pure Ge to about 180 meV at 20% Sn.
However, since SOC mainly raises the J = 3/2 states (VB1),
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FIG. 3. (Color online) SnxGe1−x alloy band gap as function of
composition. The indirect �-L and direct �-� band gaps are given
for a Sn content between 0 < x < 0.8 calculated using the VCA
(a) and unstrained random supercells (b) The supercells were either
fully relaxed (solid circles) or only the volumes were optimized (open
circles).

this has very little effect on the point at which the transition
from the indirect to a direct gap occurs. This is clearly
highlighted by the inset in Fig. 3(a), which indicates that the
critical Sn concentration changes by less than 0.5%, when SOC
is included. Given the uncertainties of the present calculations,
for instance the applied density functional, this effect can
be safely disregarded. Therefore, we neglect SOC from
here on.

More critical is that the VCA and the supercell calculations
show quite a different slope for the band gap. In the VCA
the band gap is more quickly reduced than in the supercell
calculations, as observed in Fig. 3(b). Neglecting the relaxation
of the atomic positions in the supercell calculations enhances
this effect even more. As a matter of fact, the relaxed supercell
calculations take into account the effect of disorder and lattice
relaxation correctly and should provide the best prediction for
the experimental behavior.

Even though VCA and supercell calculations disagree
on the slope, in both calculations the direct gap is more
quickly reduced with increasing Sn content, resulting in
an indirect-to-direct gap transition. The data extracted from
the fully relaxed supercells yield this transition at a Sn
content of 4.1% (compared to 4.4% for the VCA). In
the supercell calculations, increasing the Sn content be-
yond 30% yields a semimetallic behavior for SnxGe1−x .
Since these calculations have neglected spin orbit coupling,
and spin orbit coupling decreases the band gap by about
200 meV at 20% Sn, we expect that, experimentally, the
insulator-to-metal transition should be rather observed around
20% Sn.

The indirect and direct band gaps deduced from the alloy
band structures shown in Figs. 3(a) and 3(b) clearly exhibit
a strongly nonlinear dependence on the Sn content. The
deviation from linearity is often measured by the bowing
parameter. For the evaluation of the optical bowing bg the direct
(�-�) gap dependence is fitted by a second-order polynomial
of the form

Eg(x) = xEg[Sn] + (1 − x)Eg[Ge] − bgx(1 − x)

= x(Eg[Sn] − Eg[Ge] − bg) + bgx
2 + Eg[Ge]. (7)

As we can see in Fig. 3(a) such a fit is hardly sen-
sible in the present case, as the nonlinearity is just way
too strong. To be consistent with the experimental fitting
procedure, we set Eg[Sn] to −0.4 eV finding an optical
bowing parameter bg = 3.1 eV from the unstrained random
supercells fitted to the composition range of 0 < x < 0.2.
The present fairly large optical bowing is in agreement with
the experimental findings of He and Atwater [3] as well
as D’Costa et al. [5]. The former studied SnxGe1−x with
0 < x < 0.15 by optical absorption measurements and
proposed 2.8 eV. The latter directly observed the energy gaps
employing spectroscopic ellipsometry and photoreflectance
on SnxGe1−x in the composition range 0.02 < x < 0.20 at
room as well as low temperature and proposed bLT

g = 2.61 ±
0.10 eV (strain corrected bLT

g = 2.26 ± 0.09 eV) and bRT
g =

1.94 ± 0.10 eV at low and room temperature, respectively. This
significant temperature dependence of the bowing parameter
was later experimentally confirmed by Pérez Ladrón de
Guevara et al., who observed bRT

g = 2.30 ± 0.10 eV and
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bLT
g = 2.84 ± 0.15 eV [30]. More recently, Lin et al.

deduced bRT
g = 2.42 ± 0.04 eV from photoreflectance [31],

whereas room-temperature experiments from the same group
yielded a somewhat lower value of bRT

g = 2.1 ± 0.1 eV
2 yr earlier [32]. However, it should be emphasized that the
exceedingly strong nonlinearity of the gap makes a standard
fitting of the optical bowing parameter pretty inaccurate: The
direct gap changes by almost 0.7 eV over a range of 20%,
with a remaining change of 0.6 eV over the residual 80%
concentration change.

The indirect-to-direct gap transition and the optical bowing
of the direct gap obtained by the random supercell approach are
in reasonable agreement with the results of DFT calculations
employing special quasirandom structures (SQSs) constructed
from 2 × 2 × 2 cubic cells containing 64 atoms with Sn
concentrations of x = 0.125, 0.25, 0.50, and 0.75 [11]. These
DFT calculations used the generalized gradient approximation
for the XC potential. This approximation results in a negative
band gap even for pure Ge, and this might make the predictions
less reliable than the present calculations. The crossover
from an indirect to a direct gap occurred at x � 6.3% and
the bowing parameter bg was �2.8 eV. In a recent work
by Gupta et al. [12], based on NL-EPM calculations, an
optical bowing of 2.1–2.9 eV was predicted and the transition
to a direct gap semiconductor occurred at x = 6.5% Sn
content. However, to achieve agreement with experiment,
a modified VCA with carefully chosen local and nonlocal
parameters for the potential was used. Compared to these
two calculations, the MBJLDA calculations presented here
provide band structures and band gaps with higher accuracy
than standard semilocal DFT and less empiricism than the
NL-EPM calculations. We expect the present calculations to be
more reliable than previous estimates. This is also supported
by the observation that the indirect-to-direct gap transition
is experimentally observed at a lower Sn content of 0.06 <

x < 0.08 in recent room-temperature photoluminescence
experiments [32,33].

C. Laterally strained alloys

To realize SnxGe1−x alloys, a common strategy is to grow
the alloy on a suitably chosen substrate. In many cases, this
growth is done epitaxially, implying that the in-plane lattice
constant of the substrate is maintained. In order to study this
case, we have performed VCA calculations for SnxGe1−x

alloys with the in-plane [100] and [010] lattice constants fixed
to the LDA optimized Ge lattice constant (5.644 Å). In the
third direction, c = [001], the structures were fully relaxed.
In Fig. 4(a) the band structure of laterally, compressively
strained SnxGe1−x with x = 9.75% is shown. In contrast to
the unstrained case (Fig. 3), the VB1 state is split along �-L
due to the strain, as indicated by the VCA band structure. In
the supercell calculations it was difficult to separate those
two subbands, since they partially overlap, when disorder
is introduced. Instead we only show the mean value. The
resulting mean deviation is large, and the bars indicating the
standard deviation are roughly on top of the two bands found
in the VCA.

The band gaps deduced from the strained random supercells
are given in Fig. 4(b) as a function of the Sn content.
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FIG. 4. (Color online) (a) Band structure of compressively
strained SnxGe1−x obtained by averaging over ten random supercells
with Sn content of x = 9.72%. The lattice constants a = [100] and
b = [010] correspond to the Ge substrate lattice constant (5.644 Å),
whereas the c = [001] lattice constant was relaxed. The corresponding
VCA band structure is shown by lines. Color coding is analogous to
that of Fig. 2. (b) Direct �-� band gap (red) and the indirect �-L band
gap (blue) as functions of Sn content obtained by VCA (squares), as
well as the supercell approach (circles).

Remarkably, the present calculations indicate that even under
compressive strain a transition from an indirect to a direct gap
semiconductor is predicted. Compressive strain in the [100]
and [010] direction reduces the indirect gap more strongly
than the direct gap (see below), and therefore works against
the formation of a direct gap. In our calculation, this only
delays the formation of a direct gap, which now occurs at a Sn
concentration of roughly 10%. The VCA calculations again
agree very well with the full supercell calculations, with the
transition occurring also at roughly 10% Sn.

To study this in more detail, further calculations using
the VCA were performed. The results of these calculations
are presented in Fig. 5. The in-plane lattice constants a =
b = [100] = [010] were varied in the range of −3 to +4%
compared to pure Ge (5.644 Å). Specifically, a “strain” of +3%
corresponds to an increase of the in-plane lattice constant by
3% compared to bulk Ge, and that of −4% corresponds to a
decrease of the in-plane lattice constant by 4% with respect
to Ge. The 0% line corresponds to compressive strain on the
SnxGe1−x alloys, as the SnxGe1−x alloy would rather adopt
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a larger lattice constant than Ge. The cut at a strain of 0%
has already been shown in Fig. 4(b). It is well accepted that
tensile strain can produce a direct gap in Ge. Our calculations
suggest this to occur at about 2% tensile strain for pure Ge
consistent with the NL-EPM calculations of Gupta et al. [12],
who suggested �1.5% tensile strain. Alternatively, a direct
gap can be introduced by alloying with about 10% Sn, when
the SnxGe1−x is epitaxially grown on Ge. The trend that
in-plane compressively strained SnxGe1−x alloys exhibit the
indirect-to-direct gap transition at higher Sn contents than the
unstrained alloys was also experimentally observed [32].
The maps shown in Fig. 5 might help experimentalists to
determine an optimal strategy for growing direct gap group
IV SnxGe1−x semiconductors.

IV. SUMMARY

We have computed the band structures and energy gaps of
SnxGe1−x using density-functional theory (DFT). Since stan-
dard density functionals underestimate the gap significantly,
we have utilized the modified Becke-Johnson potential, which
can be tuned to yield an excellent description of both the direct
and the indirect band gap of Ge.

Two alternative approximations are used in the present
work. The computationally more efficient method relies on
the VCA: In this approach, every atom is replaced by two
“virtual” atoms, one Sn and one Ge atom, and atomic
“weights” consistent with the concentration x are assigned to
the individual atoms. This approach is, in principle, elegant, but
what has been often overlooked in literature is that it will only
work if the potentials have been constructed with sufficient
care: The combination of pseudopotentials and VCA only
works if the pseudopotentials are designed to possess similar
s and p pseudoorbitals for Sn and Ge. The potentials used in
this work have been carefully designed to meet this criterion.

It is then not astonishing but still rather gratifying that the
VCA results agree remarkably well with the computationally
much more refined supercell calculations. In the present
case, the supercell calculations were performed by simply
placing Sn atoms randomly at Ge sites. Large supercells with
216 atoms were used, and the results were averaged over ten
different random structures.

As previously observed, we find that the volumes of
SnxGe1−x alloys deviate significantly from Vegard’s law. For
intermediate Sn concentrations, the volume is larger than
expected and the bowing parameter is about b = −0.25 Å.
This is in good agreement with experiment.

For unstrained SnxGe1−x alloys, the transition from an
indirect to a direct gap semiconductor is calculated to occur
around 4% Sn. The predicted transition concentration is mostly
independent of the employed methods. Whether supercells or
the VCA are used, whether spin orbit coupling is included or
not, the results only vary by less than 0.5%.

Unfortunately the required Sn concentration increases to
about 10%, when the SnxGe1−x alloy is grown epitaxially
on (100) Ge. As usual, the compressive strain exerted by the
Ge substrate leads to a reduction of the indirect gap, partly
counteracting the reduction of the direct gap by Sn alloying.
Figure 5 is a central result of the present work. It maps out the
indirect gap and the difference between the indirect and direct

FIG. 5. (Color online) (a) Indirect gap of SnxGe1−x in (eV) as a
function of the Sn concentration x and the in-plane lattice constant
(“strain”). The [100] and [010] lattice constants (a and b) are fixed,
whereas the [001] lattice constant c was relaxed to minimize the total
energy. A strain of 0% corresponds to the in-plane lattice constant of
bulk Ge (5.644 Å). A strain of −3% implies an in-plane contraction of
3% compared to bulk Ge (compressive), whereas +4% corresponds
to an in-plane lattice constant that is 4% larger than for bulk Ge. The
calculations were performed using the VCA. (b) Difference between
direct and indirect gap of SnxGe1−x . Negative values correspond to
a direct gap, positive values to an indirect gap. At 0% strain, the
transition from an indirect to direct gap occurs at 10% Sn content
[compare Fig. 4(b)].

gap as a function of the Sn content and as a function of the
in-plane [100] = [010] lattice constants of epitaxially grown
SnxGe1−x films. It might help to determine optimal growth
strategies.
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