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Effects of short-ranged interactions on the Kane-Mele model without discrete
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We study the effects of short-ranged interactions on the Z2 topological insulator phase, also known as the
quantum spin Hall phase, in the Kane-Mele model at half-filling with staggered potentials, which explicitly
breaks the discrete particle-hole symmetry. Within Hartree-Fock mean-field analysis, we conclude that the on-site
repulsive interactions help stabilize the topological phase (quantum spin Hall) against the staggered potentials
by enlarging the regime of the topological phase along the axis of the ratio of the staggered potential strength
and the spin-orbit coupling. In sharp contrast, the on-site attractive interactions destabilize the topological phase.
We also examine the attractive interaction case by means of the unbiased determinant projector quantum Monte
Carlo and the results are qualitatively consistent with the Hartree-Fock picture.
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I. INTRODUCTION

Topological insulators (TI) [1–5] are perhaps some of the
most intriguing states of matter found in recent years. Much
interest in these is initially motivated by the first experimental
realization in HgTe/(Hg,Cd)Te quantum wells, which shows
quantized quantum spin Hall conductance protected by the
time-reversal symmetry (TRS) [6–8]. The most important of
all is that the existence of the topological state and many of
its properties can be well understood in some noninteracting
models. Among them, the Z2 topological insulator (TI) or
quantum spin Hall (QSH) insulator can be realized in the
noninteracting Kane-Mele (KM) model [9]. The KM model
can be described as two copies of the original Haldane
model on the two-dimensional (2D) honeycomb lattice [10]
with the usual real nearest-neighbor hopping and imaginary
second-neighbor hopping, which arises from the spin-orbit
couplings (SOC). Due to the simplicity of the KM model,
it has recently served as the theoretical framework to study
the phase diagram of the interacting Z2 TIs [11–21]. Based
on the numerical studies on the Kane-Mele-Hubbard (KMH)
model, several exotic quantum phases have been proposed,
including the quantum spin liquid (QSL) [17,22]. Even though
several phase diagrams have been proposed in the KMH
model, so far there have been just a few studies focusing
on the interacting effects on the stabilization of the QSH.
Specifically, the question about if the short-ranged interactions
enlarge (stabilize) the QSH regime found in the noninteracting
KM model has not been paid much attention in most of the
previous studies.

Recently, Ref. [19] studies the KMH model with third-
neighbor hoppings at half-filling using determinant projector
quantum Monte Carlo (QMC) and conclude that the short-
ranged on-site repulsive Hubbard interactions tend to push
the QSH phase boundary to larger threshold values of the
third-neighbor hoppings resulting in the stabilization of the
QSH in a larger parameter regime due to the interactions.
The generalized KM model in Ref. [19] as well as the original
KM model at half-filling possesses the discrete particle-hole

symmetry (PHS) [13], {cjα→ ± c
†
jα,c

†
jα→ ± cjα} with ±

for j ∈ {A,B}, where A and B are the sublattice labeling.
The natural question is if the stabilization of QSH against
other effective gap closing perturbations due to short-ranged
interactions can exist in a KMH model with lower symmetries.
To answer this question, at least in some simple model, in
this work we focus on the KMH model without PHS at
half-filling. We explicitly break the PHS by including the
staggered potentials in the original KM model [9]. It is well
known that in the noninteracting limit, the model contains both
QSH and trivial phase depending on the ratio of the strength
of the staggered potentials (ma) and that of spin-orbital
couplings (λso). The phase transition between these two phases
happens when the band gaps close. In the presence of the
short-ranged interactions, it is expected that the band gaps get
renormalized, which causes the shift of the phase boundary.
Within Hartree-Fock mean-field approach [23], we find that
the short-ranged repulsive interactions increase the threshold
value of ma/λso to widen the QSH regime, suggesting in this
model the QSH state is more stabilized against the staggered
potentials by the short-ranged repulsive interactions. On the
contrary, the short-ranged attractive interactions destabilize the
QSH, making it more fragile to the staggered potentials.

In order to go beyond the Hartree-Fock mean-field picture,
numerical tools are highly demanding. The determinant
projector QMC can be used to detect the topological phase,
however, in the case with repulsive interactions it suffers from
the well-known sign problem. On the other hand, the QMC can
still be performed on the attractive interaction side. Within the
Hartree-Fock picture, opposite to the result in the repulsive
interaction case, the on-site attractive interactions tend to
shrink the QSH regime. This picture is confirmed by the QMC
analysis in Sec. III, which may imply that our Hartree-Fock
picture in the repulsive interaction side is possibly plausible.
In Appendix A we also perform renormalization group (RG)
analysis at the tree level in the gapless critical phase at the phase
boundary between the topologically trivial and nontrivial
phases where the band gaps close to form Dirac points. We
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conclude that such a coarse-grained picture can not correctly
predict a shift of the phase boundary.

This paper is organized as follows. In Sec. II we define
explicitly the model Hamiltonian that we will study. In
Sec. II A we introduce the Hartree-Fock approach to decouple
the short-ranged interactions and in Sec. II B we numerically
solve for the transition point between the QSH and the trivial
phase by finding the gap closing point self-consistently. In
Sec. III we present the QMC results in the KMH model with
attractive interactions. In Sec. IV we conclude with some
discussions. In Appendix A we show, at the long-wavelength
description, the tree-level RG analysis on the critical phase
at band gap closing point. In Appendix B we provide the
Hartree-Fock mean-field studies on the case with the more
extended interactions, including both on-site interaction U and
the nearest-neighbor V .

II. KANE-MELE-HUBBARD MODEL WITH STAGGERED
ON-SITE POTENTIALS

The model we are focusing on in this work is the honeycomb
Kane-Mele-Hubbard model in the presence of staggered
potentials at half-filling [9]. The honeycomb lattice is shown in
Fig. 1 and the model Hamiltonian is H = HKMs + HU , where

HKMs = t
∑
〈jk〉

∑
σ

c
†
jσ ckσ + iλso

∑
〈〈jk〉〉

∑
σ

σc
†
jσ νjkckσ

+
∑

j

∑
σ

εjmjc
†
jσ cjσ , (1)

HU = U
∑

j

nj↑nj↓, (2)

with εj = ±1 for sublattice j ∈ {A,B}. The νjk = +1(−1) for
clockwise (counterclockwise) second-neighbor hopping, and
U is the strength of the interaction that can be positive and
negative. The positive U corresponds to the on-site Hubbard
repulsion. We theoretically consider the negative U side not
only for the completeness of this work but also for comparing
the results obtained in the mean-field analysis in Sec. II B with
those obtained in the unbiased determinant projector QMC
studies in Sec. III. The QMC works in the negative U side but
suffers from the sign problem in the positive U side. Without
the staggered potentials, the finite spin-orbit couplings break
the spin SU(2) down to U(1) and also break the sublattice

FIG. 1. (Color online) Illustration of the honeycomb lattice.
There are two sublattices per unit cell labeled as A and B. �e1/2 =
(±1/2,

√
3/2) are the two vectors connecting the same sublattices in

different unit cells. We set the lattice constant to be 1.

symmetry, while the TRS and PHS still remain. The presence
of the staggered potentials further break the PHS.

For the case of the U > 0, the previous numerical studies
[12–17] on the KMH model shows that the magnetic transition
to the topologically trivial insulator phase such as antiferro-
magnetic Mott insulator (AFM) happens at a quite large U/t

value. The critical value of the Hubbard repulsion for λso/t =
0.1 is roughly Uc/t 
 5 [17], and the critical Uc/t is even
larger for larger λso/t . On the other hand, for U < 0, the
theoretical mean-field studies by Yuan et al. [24] suggests
that the critical value of the attractive Hubbard interaction is
Uc/t < −2 for finite spin-orbit couplings. If U is smaller than
the critical value, there would be a possible phase transition
to the superconducting state whose bulk is still insulating but
superconductivity appears near the edges [24]. Suggested by
the previous numerical studies in both U axis (negative or
positive), in this work we restrict our analysis within |U/t | < 2
to ignore possibly magnetic phase transitions and within the
regime it is appropriate to ignore the magnetic phases.

For clarification, from now on we replace the site labeling
j with j = {r,a}, where r runs over the Bravais lattice of unit
cells of the honeycomb network and a runs over the two sites
(A and B) in the unit cell. We define the potential on sublattice
A(B) as mA(mB). In the noninteracting limit, the Hamiltonian
in the momentum space is HKMs = ∑

k∈B.Z. �
†
khKMs(k)�k,

with

hKMs(k) =
(

mA tf (k)
tf ∗(k) −mB

)
⊗ 12×2

+
(

2λsog(k) 0

0 −2λsog(k)

)
⊗ σz. (3)

σz is the Pauli matrix and �T
k ≡

(c↑(k,A) c↑(k,B) c↓(k,A)c↓(k,B)). f (k) ≡ 1 + eik·�e1 +
eik·�e2 , and g(k) ≡ sin(k · �e1) − sin(k · �e2) − sin[k · (�e1 − �e2)].
Without lack of generality, we choose mA, mB , and λso to be
positive.

A. Hartree-Fock approach

In order to take the on-site interaction into considerations,
we use Hartree-Fock mean-field decoupling approach to
decouple it as

HU = U
∑
(r,a)

n↑(r,a)n↓(r,a)


 U

2

∑
(r,a)

[〈n(r,a)〉n(r,a) + 〈sz(r,a)〉sz(r,a)], (4)

with n ≡ n↑ + n↓, and sz ≡ n↑ − n↓. We have explicitly
neglected the constant 〈nj 〉2 appearing in the Hartree-Fock
decoupling since they only shift the total energy. The terms
〈c†σ cσ̄ 〉 also vanish since they do not conserve Sz. Since there
is no local magnetic field at each site, the local magnetization
is zero, which means the second term in the Eq. (4) vanishes.
The on-site interaction within the Hartree-Fock picture adds
density modulations to the diagonal elements in the KMs
matrix (3). In addition, due to the translational symmetry
〈n(r,a)〉 = 〈n(a)〉 ≡ 〈na〉 and the crucial point is that the
densities at site A and B are different due to the presence
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of the staggered potential. In the momentum space, h(k) =
hKMs(k) + hu(k), with hKMs defined in Eq. (3) and

hu(k) = U

2

(〈nA〉
0 〈nB〉

)
⊗ 12×2. (5)

Since the phase boundary between the QSH and the trivial
phase in the KM model is located at the parameter regime
in which the band gaps close, the key point is to find when
the band gaps close in the presence of the short-ranged
interactions. Within Hartree-Fock picture, since no symmetry
is spontaneous broken, the band gaps associated with the
full Hamiltonian matrix still close at K = −K′ = {4π/3,0}
in the Brillouin zone (BZ). Near K and K′, the off-diagonal
elements in Eq. (3) become linear in k and vanish exactly
at K and K′. Since the two points are related by the
TRS, the gaps must simultaneously close at both K and
K′. It is then sufficient to examine the gap near K only.
Focusing on K, we find that the two of the four bands
with eigenvalues E1 = mA − 2λsog(K) + U

2 〈nA〉 and E2 =
−mB + 2λsog(K) + U

2 〈nB〉 would get inverted by tuning the
mass mA/B and λso. We then define the gap function 	(K) as

	(K) = mA + mB − 4λsog(K) + U

2
(〈nA〉 − 〈nB〉), (6)

with g(±K) = ±3
√

3/2. When 	(K) > 0, the bands are not
inverted and we are in the topologically trivial phase. When
	(K) < 0, the bands are inverted and we are in the topological
phase. The transition happens at 	(K) = 0 when the band gaps
close to form Dirac points.

B. Self-consistent numerical calculations

For simplicity, in the self-consistent numerical calculations,
we set mA = mB ≡ λm. Before jumping to the numerical
calculations, we first give a simple physical picture here. Since
the presence of the staggered potentials lowers the chemical
potential at sublattice B, the total number density at sublattice
B is expected to be higher than that in sublattice A. The contri-
bution from the last term in Eq. (6) is then negative (positive)
for repulsive (attractive) interaction. For fixed λso, the gap
function reaches zero at larger (smaller) mass compared with
the case without the on-site repulsive (attractive) interaction.
Therefore, the regime of the topological phase is enlarged
(shrunk) in the presence of the on-site repulsive (attractive)
interaction.

In the numerical calculations, the honeycomb lattice con-
sists of 200 × 200 unit cells and we choose to set t = 1
and λso = 0.4. The result is shown in Fig. 2. We can see
that the on-site repulsive interaction widens the regime of
QSH, Fig. 2(b). The physical picture is that the on-site
Hubbard repulsion screens the staggered potentials resulting
in stabilizing the topological phase against the staggered
potentials. The attractive U on the other hand enhances
the staggered potentials, which leads to the opposite result
shown in Fig. 2(b). In order to have a more complete and
unbiased analysis, next section we perform QMC to compare
qualitatively with the results obtained in the Hartree-Fock
picture here. For the repulsive interaction case, there is a sign
problem and can not be accessed by the QMC. We thus focus

on the attractive interaction case in which the QMC analysis
is free of sign-problem in Sec. III

III. SIGN-FREE DETERMINANT PROJECTOR QMC
STUDIES IN THE KANE-MELE MODEL WITH ON-SITE

ATTRACTIVE INTERACTION

In this section, we will study the KM model with staggered
potentials using the unbiased projector QMC method. Due
to a sign problem in the QMC in the case of the repulsive
Hubbard interaction, Eq. (2) with U > 0, we will focus on
the case with the attractive interaction and compare the result
qualitatively with that in the Hartree-Fock picture. We remark
that the presence of the staggered potentials breaks the PHS, so
even at half-filling, the QMC result in the attractive interaction
case is different from that in the repulsive case. We will see that
the behavior given by the QMC is consistent with that from
the Hartree-Fock analysis, where the attractive interactions
destabilize the QSH phase.

In the QMC method, the expectation value of an arbitrary
observable Ô is evaluated as

〈Ô〉 = lim

→∞

〈ψT |e− 

2 HÔe− 


2 H |ψT 〉
〈ψT |e−
H |ψT 〉 , (7)

where 
 is the projective parameter. The trivial wave function
|ψT 〉 is required to have nonvanishing overlap with the ground-
state wave function |ψ0〉, i.e., 〈ψT |ψ0〉 �= 0. Numerically, the
projection operator e−
H is discretized into e−	τH , written
as e−
H = (e−	τH )M , where 
 = 	τM; M is the number
of time slices and 	τ is chosen as a small number. In the
first-order Suzuki-Trotter decomposition, we can have

e−	τH 
 e−	τHKMs e−	τHU , (8)

where HKMs is the Hamiltonian of the KM model with
staggered potentials. HU is the attractive Hubbard on-site
interaction

HU = −|U |
∑

j

nj↑nj↓, (9)

where nj,σ = c
†
j,σ cj,σ , nj = ∑

σ c
†
j,σ cj,σ . At half-filling, we

can recast HU as

HU = −|U |
2

∑
j

(nj − 1)2. (10)

For the attractive interaction case, we can implement the exact
Hubbard-Stratonovich transformation [25]

e−	τHU = e	τ
|U |
2 (nj −1)2 = 1

2

∑
s=±1

esα(nj −1), (11)

where α = arcCosh(e
|U |	τ

2 ). By the implementation, the de-
nominator of Eq. (7), also named the projector partition
function [26], can be numerically evaluated as [13,17,27]

〈ψT |e−
H |ψT 〉

∼= 〈ψT |
M∏

τ=1

e−	τHKMs e−	τHU,τ |ψT 〉
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(a) (b)

FIG. 2. (Color online) The phase boundary between the topologically nontrivial phase (QSH) and the trivial phase within the Hartree-Fock
picture. (a) The numerical data in the repulsive interaction case, during the numerics, we set t = 1, λso = 0.4 and U > 0. The Hubbard repulsion
tends to screen the stagger potentials to push the boundary of the nontrivial phase toward the trivial side, which widens the regime of the
nontrivial phase. (b) The numerical date in the attractive interaction case, U = −|U |. Contrary to the result in (a), the attractive interactions
enhances the staggered potential and shrink the regime of the topological phase.

∼
∑
{si,τ }

∏
σ

Tr

(
M∏

τ=1

e−	τ
∑

i,j c
†
i,σ [Hσ

KMs]ij cj,σ eαsi,τ (ni,σ − 1
2 )

)

∼
∑
{si,τ }

{det(O↑[si,τ ]) det(O↓[si,τ ])}

=
∑
{si,τ }

w[si,τ ], (12)

where det(Oσ [si,τ ]) is the matrix determinant of
e−	τHKMs e−	τHU with fermion trace Tr and at a given
auxiliary configuration {si,τ }. In the QSH with the attractive
interaction, we have O↑[si,τ ] = (O↓[si,τ ])∗. Therefore, the
weight w[si,τ ] > 0 and the sampling in Eq. (12) is sign free.
In the current literature, 	τt = 0.05 and 
t = 40 are used
through the content. The eigenstates of the noninteracting
Hamiltonian HKMs is used as the trial wave function.

To characterize the QSH state and a trivial insulator, we
usually need to evaluate the Z2 topological invariant [1]. In the
KM model, however, the existence of the staggered potential
breaks the inversion symmetry; thus the conventional approach
to evaluate the Z2 index, 	,

(−1)	 =
∏

ki∈T RIM

η̃i (13)

is not applicable. However, the model still does not break
the Sz conservation, and thus the spin Chern number Cσ is a
proper topological measurement to probe the phase transition.
The spin Chern number formalism has been proposed using
the QMC method to acquire the zero-frequency single-particle
Green’s functions G(iω = 0,�k) [20,28–31] and then construct
projector operators in terms of the R-zero eigenstates of the
Green’s functions to evaluate the spin Chern number [32]

Cσ = i

2π

∫
d2k εμνTr[Pσ (k) ∂μPσ (k) ∂νPσ (k)], (14)

where Pσ (k) = ∑
n |vnkσ 〉〈vnkσ | is the single-particle spectral

projector onto R-zero modes; i.e., G(0,�k)|vnkσ 〉 = λnkσ |vnkσ 〉
and λnkσ > 0. Although the spin Chern number has been
shown to suffer strong finite-size effect, it is still useful to

determine the topological phase boundary in the interaction
case by observing the dramatic change in the topological
number [20,28–31].

The QMC results are shown in Fig. 3. The spin-orbital
coupling is used at λSO = 0.4t . In the noninteracting limit, the
topological phase boundary is identified at λc

m = 3
√

3λSO =
2.0784t [10,33], depicted as the dot line in Fig. 3. As λm < λc

m,
the system is a QSH (left-hand side of the dot line); otherwise
it is a trivial insulator. It is obvious to see that Cσ has strong
finite-size effect, since it is poorly quantized. However, even
on the noninteracting 6 × 6 cluster at the critical point, a
significant drop is clearly seen and the location is consistent
with the analytical prediction. Upon introducing the attractive
interaction, the topological phase boundary shifts away from
λc

m. One can observe that at U = −|U | = −2t and −4t , the

FIG. 3. (Color online) The spin Chern number Cσ vs the mag-
nitudes of staggered potentials λm/t using QMC at λSO = 0.4t .
The dot line indicates the noninteracting phase boundary λc

m =
3
√

3λSO = 2.0784t . The solid symbols denote the 6 × 6 QMC results
at U = 0, − 2t and −4t . The hollow symbols denote the 12 × 12
QMC at U = −4t .
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critical points can be roughly identified at 1.4 t and 0.9 t by
QMC simulation. Upon increasing the strength of the Hubbard
interaction, the critical point moves towards to the QSH phase,
i.e., the attractive interaction destabilizes the QSH phase.
For the case of U/t = −2, we can see that the boundary is
roughly at λc

m/λso 
 1.4/0.4 = 3.5, which is quite close to
the Hartree-Fock analysis focusing on the K point in BZ in
Sec. II A,λc

m/λso 
 3.4.
On the other hand, the location of the boundary is subject

to weaker finite-size effect. For U = −4t , the locations where
the spin Chern numbers drop for 6 × 6 and 12 × 12 clusters
are fairly close. As a consequence, one can merely perform
the QMC simulation on a small-size cluster to determine the
topological phase boundary. Moreover, in comparison with
the 6 × 6 and 12 × 12 clusters, the computed spin Chern
numbers show closer to the quantized number with increasing
system sizes, so the poor quantization is expected to vanish
in the thermodynamic limit. Therefore, by the unbiased QMC
simulation, we can arrive at a summary that the attractive
interaction brings a minus effect to the mass, which is
consistent with the Hartree-Fock approach.

IV. DISCUSSION

In this work, we study the effects of the short-ranged
interaction on the Kane-Mele model with staggered potentials,
which breaks the discrete particle-hole symmetry. Within the
Hartree-Fock mean-field approach, we conclude that the short-
ranged repulsive interactions help stabilize the topological
phase (QSH) against the staggered potentials by enlarging
the regime of the topological phase (QSH) along the axis of
the ratio of the staggered potential strength and the spin-orbit
coupling. In sharp contrast, the short-ranged attractive interac-
tions destabilize the topological phase (QSH), making it more
fragile to the staggered potentials. Beyond the Hartree-Fock
picture, we study the interaction effects using the projector
QMC. Due to the sign problem, the KM model with repulsive
interaction can not be accessed by the QMC, and thus we
focus on the case of the attractive interaction. The QMC results
show that the attractive interactions shrink the QSH regime,
which is consistent with that in the Hartree-Fock approach. The
qualitative consistency between these two approaches in the
case of attractive interaction may imply that the Hartree-Fock
analysis in the repulsive side is plausible. Because QMC
suffers from sign problem in this case, other numerical tools
such as dynamical mean-field theory (DMFT) [16,34–37] may
be used to confirm our conjecture in future work.

The boundary shifts due to the presence of the on-site
interaction in this model can not be explained by the continuum
low-energy theory at the critical phase in which the gaps close
to form Dirac points. Explicitly, in Appendix A we focus on
the low-energy descriptions at the critical phase and perform
tree-level RG analysis. The straightforward thought is that
even though the local four-fermion interactions are irrelevant
in the critical phase, before they flow to negligible values under
RG they can still generate a finite bilinear mass term, which
can possibly shift the phase boundary. However, we find that
the tree-level RG corrections completely cancel each other,
which gives no generation of a bilinear mass term. Hence we
conclude that the boundary shift can only be captured by the

physics of the lattice model and can not be captured by the
coarse-grained continuum theory around K and K′.

In this work, we only consider the on-site interaction
effects on the Kane-Mele model with staggered potentials.
It is interesting to consider a more extended interaction
case such as a U -V model (including both on-site U and
nearest-neighbor V ). In Appendix B we check the case
with both on-site repulsive (attractive) Hubbard U and a
nearest-neighbor repulsive (attractive) V . The inclusion of
the nearest-neighbor V complicates the analysis and we find
that whether or not the topological phase is stabilized due
to the short-ranged interactions depends on the details of the
competition between the on-site U and the nearest-neighbor
V . From the low-energy analysis focusing on K point in the
BZ, we conclude that within the Hartree-Fock picture if U is
dominant over V (U > 6V ) the qualitative result obtained
from the case with only on-site U , repulsive (attractive)
interactions stabilize (destabilize) the topological phase, is
still correct in the U -V model. However, from the studies
of the Kane-Mele–U -V model, it may suggest a long-ranged
repulsive interaction such as Coulomb interaction that decays
very slow may completely destabilize the QSH phase.

As a final remark, there is a recent paper addressing the Hub-
bard interaction effects on the topological insulators properties
using the slave-rotor formalism [38]. In that approach, both the
spin orbital coupling, λso, and the staggered potential, λm are
renormalized and the situation of whether or not the Hubbard
interactions stabilize the QSH phase is not clear yet, depending
on the details of the renormalized ratios of λ∗

so/λ
∗
m. Though

it is very likely that the results obtained in that approach
are consistent with what we find in this work. Besides, the
slave-rotor formalism [39] can also be applied to the case in the
generalized Kane-Mele model with third-neighbor hoppings
[20] in which the Hartree-Fock mean-field approach fails to
predict any boundary shift due to the presence of Hubbard
interaction found in the QMC studies.
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APPENDIX A: RG ANALYSIS OF THE CRITICAL PHASE
IN THE KANE-MELE MODEL WITH WEAK U IN THE

PRESENCE OF STAGGERED POTENTIALS

In this model, since Sz is still conserved, the spin-up and
spin-down Hamiltonian can be treated separately. For each
spin species, we can diagonalize the Hamiltonian matrix for
spectra. There are two bands for each spin species. The
bands can be characterized by the eigenvector-eigenenergy
pairs {�vα

b (k),εα
b (k)}, where b = 1,2 are band indices. The

Hamiltonian can be diagonalized by rewriting the original
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fermion fields in terms of the complex fermion fields dα
b (k)

in the diagonal basis,

cα(r,a) =
√

1

Nuc

∑
b=1,2

∑
k∈BZ

vα
b (k,a)dα

b (k)eik·r, (A1)

where Nuc is the number of unit cells and the complex
fermion field f satisfies the usual anticommutation relation
{dα†

b (k),dα′
b′ (k′)} = δαα′δbb′δkk′ . In terms of the new complex

fermion fields, the Hamiltonian becomes

HKMs =
∑
b=1,2

∑
α=↑,↓

∑
k∈BZ

εα
b (k)dα†

b (k)dα
b (k). (A2)

At the critical phase (λc
m = 3

√
3λso), the gaps close at

momentums K and K′ = −K. Around these points, only the
spin-down fermions are gapless at K and spin-up fermions
are gapless at K′. As far as the long-wavelength (low-energy)
description is concerned, we can focus on the K and K′ points
and perform expansion around these points by introducing a
small momentum shift δk.

For the low-energy description at momentum K, we
find that only the spin-down fermions are gapless and can
expansion around K by introducing k = K + δk, with |δk| <

�,� � |K|, gives

HK 

∑

|δk|<�

vF |δk|[ψ†
1R↓(δk)ψ1R↓(δk)

−ψ
†
2R↓(δk)ψ2R↓(δk)], (A3)

where we introduced d
↓
b (K + δk) ≡ ψbR↓(δk) with R labeling

the valley at K and vF ≡ √
3t/2 is the Fermi velocity of each

band at K. It is more convenient to transform the continuum
fields defined above to real space, defining fields

ψbR↓(r) =
√

1

Nuc

∑
|δk|<�

eiδk·rψbR↓(δk). (A4)

Therefore, in the low-energy description, we can reexpress the
spin-down fermion field as

c↓(r,a) 

∑
b=1,2

vbR↓(a)ψb↓(r)eiK·r, (A5)

where we defined v
↓
b (K + δk,a) ≡ vbR↓(a).

Similarly, we can also obtain the low-energy description at
K′. At K′, only the spin-up fermions are gapless and expansion

around K′ with small momentum shift δk gives

HK′ 

∑
δk<�

vF |δk|[ψ†
1L↑(δk)ψ1L↑(δk)

−ψ
†
2L↑(δk)ψ2L↑(δk)], (A6)

where similarly we defined d
↑
b (K′ + δk) ≡ ψbL↑(δk). We can

define a similar transformation to the real space as above,
and therefore the spin-down fermion field can be effectively
expressed as

c↑(r,a) 

∑
b=1,2

vbL↑(a)ψbL↑(r)eiK′ ·r, (A7)

with v
↑
b (K′ + δk,a) ≡ vbL↑(a), L labeling the valley at K′,

and remember K′ = −K. The action for the low-energy
description is

S0,P =
∫

d2qdω

(2π )3
[ψ†

bPαP
(q)(−iω)ψbPαP

(q) + HP ], (A8)

with P = R/L = K/K′ and αR/L =↓ / ↑ and we use 2 + 1
dimensional vector q representing frequency and momentum
(ω,q). We can also define the Green’s functions as

〈ψ†
bL↑(q)ψbL↑(q ′)〉 = 〈ψ†

bR↓(q)ψbR↓(q ′)〉

= iω − (−1)bvF |q|
(iω)2 − (vF |q|)2

δ
(3)
qq ′ , (A9)

and we introduce the abbreviation δ
(3)
qq ′ = (2π )3δ(ω −

ω′)δ(2)(q − q′).
In order to write down the general expression of the

four-fermion interactions, we need first to obtain the
symmetry transformation of the fields defined above. There
are Sz-conservation, U (1) charge, TRS, and C3 in this system.
Except TRS, the other else symmetry transformations are
quite transparent. Let us focus on the symmetry transformation
under TRS (T ), and we find

v
↑∗
bL(a)T ψ

↑
bLT −1 = −v

↓
bR(a)ψ↓

bR, (A10)

v
↓∗
bR(a)T ψ

↓
bRT −1 = v

↑
bL(a)ψ↑

bL. (A11)

With TRS, the eigenvector-eigenvalue pairs have the property,
�v↑
b (k) = [�v↓

b (−k)]∗ and ε
↑
b (k) = ε

↓
b (−k), which gives

v
↑∗
bL(a) = v

↓
bR(a). We can use the properties above to simplify

the TRS transformation in (A10) and (A11), but as far as the
RG analysis presented below is concerned, we don’t need to
do that.

The general expressions of the local four-fermion inter-
actions in terms of the continuum fields defined above are
shown below. For simplicity in the expression, we define
below fbPα(a) ≡ vα

bP (a)ψα
bP (r), and the local four-fermion

action can be written as (repeated a means summation over
the eigenvector elements)

Sint = ωa
11f

†
1L↑(a)f1L↑(a)f †

1R↓(a)f1R↓(a) + ωa
22f

†
2L↑(a)f2L↑(a)f †

2R↓(a)f2R↓(a)

+ωa
12[f †

1L↑(a)f1L↑(a)f †
2R↓(a)f2R↓(a) + f

†
1R↓(a)f1R↓(a)f †

2L↑(a)f2L↑(a)]

+ λa
12[(f †

1L↑(a)f1L↑(a)f †
1R↓(a)f2R↓(a) + f

†
1R↓(a)f1R↓(a)f †

1L↑(a)f2L↑(a)) + H.c.]
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+ λa
21[(f †

2L↑(a)f2L↑(a)f †
1R↓(a)f2R↓(a) + f

†
2R↓f2R↓(a)f †

1L↑(a)f2L↑(a)) + H.c.]

+ua
12[f †

1L↑(a)f2L↑(a)f †
1R↓(a)f2R↓(a) + H.c.] + ua

21[f †
1L↑(a)f2L↑(a)f †

2R↓(a)f1R↓(a) + H.c.], (A12)

and we remark that in the presence of the on-site interaction U , Eq. (2), all the bare couplings above are simply
equal to U .

The RG analysis in a nutshell is to integral out the fast-momentum modes defined within a momentum shell between [�/b,�],
with b ≡ ed� 
 1 + d� slightly bigger than one. The mathematical form at the tree level is

Seff,< = 〈Sint〉>, (A13)

where the subscript > means momentum shell integral of the fast-momentum modes.
At the tree-level, we find the corrections are

〈Sint〉> = −�2

4π
d�

[
ωa

11

∣∣v1R↓(a)
∣∣2 − ωa

12

∣∣v2R↓(a)
∣∣2]

f
†
1L↑(a)f1L↑(a) + �2

4π
d�

[
ωa

22

∣∣v2R↓(a)
∣∣2 − ωa

12

∣∣v1R↓(a)
∣∣2]

f
†
2L↑(a)f2L↑(a)

−�2

4π
d�

[
ωa

11

∣∣v1L↑(a)
∣∣2 − ωa

12

∣∣v2L↑(a)
∣∣2]

f
†
1R↓(a)f1R↓(a) + �2

4π
d�

[
ωa

22

∣∣v2L↑(a)
∣∣2 − ωa

12

∣∣v1L↑(a)
∣∣2]

f
†
2R↓(a)f2R↓(a)

−�2

4π
d�

[
λa

12

∣∣v1L↑(a)
∣∣2 − λa

21

∣∣v2L↑(a)
∣∣2]

(f †
1R↓(a)f2R↓(a) + H.c.)

−�2

4π
d�

[
λa

12

∣∣v1R↓(a)
∣∣2 − λa

21

∣∣v2R↓(a)
∣∣2]

(f †
1L↑(a)f2L↑(a) + H.c.), (A14)

and all the four-fermion couplings are irrelevant,

dg

d�
= −g, (A15)

with g = ωa-s, λa-s, ua-s introduced above and � is the
logarithm of the length scale in RG analysis.

The bare couplings of ωa
11(� = 0) = ωa

22(0) = ωa
12(0) =

U , and we numerically check that |v1R↓(a)|2 = |v2R↓(a)|2,
|v1L↑(a)|2 = |v2L↑(a)|2. At the tree-level RG analysis, all the
couplings decays at the same rate under RG flow. Before all the
four-fermion couplings flow to negligible values, at some small
�c, we have ωa

11(�c) = ωa
22(�c) = ωa

12(�c) = λa
12(�c) = λa

21(�c),
and hence the bilinear corrections generated by these irrelevant
four-fermion interactions completely cancel each other, which
leaves no corrections at the tree-level RG analysis. Therefore,
we conclude such long-wavelength analysis can not capture
the shift of the boundary between the topologically trivial and
nontrivial phases. The boundary shift can only be captured, at
least in this model, by the lattice Hamiltonian, which is not
coarse grained.

APPENDIX B: KANE-MELE-U-V MODEL IN THE
PRESENCE OF STAGGERED POTENTIALS

In this Appendix, we will consider a more extended
interaction, which includes both the Hubbard U and the
nearest-neighbor V . The presence of the nearest-neighbor
V within Hartree-Fock contribute both the diagonal terms
and the off-diagonal terms to the original Hamiltonian. The
diagonal terms obviously renormalize the mass terms and the
off-diagonal terms renormalize the nearest-neighbor hopping
amplitude t , resulting in renormalizing the velocity of the Dirac
fermions in the critical phase. Within the Hartree-Fock picture,
besides the expectation values of the densities defined in the
on-site Hubbard case, we also need to introduce

〈c†σ (r,B)cσ (r,A)〉 ≡ (χσ )∗, (B1)

〈c†σ (r + �ea,B)cσ (r,A)〉 ≡ [χσ (�ea)]∗, (B2)

where �ea=1,2 defined in Fig. 1. The nearest-neighbor V

contributes additional terms to the full Hamiltonian. In the
matrix form, the additional terms can be expressed as

hv(k) = V

⎛
⎜⎜⎝

3〈nB〉 −f↑(k) 0 0

−(f↑(k))∗ 3〈nA〉 0 0
0 0 3〈nB〉 −f↓(k)
0 0 −(f↓(k))∗ 3〈nA〉

⎞
⎟⎟⎠,

(B3)

where fσ (k) ≡ (χσ )∗ + eik·�e1 [χσ (�e1)]∗ + eik·�e2 [χσ (�e2)]∗. By
C3 symmetry, we can simplify the result by identifying
χσ = χσ (�e1) = χσ (�e2). We can see that fσ (k) is proportional
to f (k) defined in Eq. 3 and therefore vanish at momentums
K and K′. We also set λA

m = λB
m = λm for simplicity. Focusing

on momentum K, we can see that the two of the four bands
with the eigenvalues E1/2 = ±λm ∓ 2λsog(K) + U

2 〈nA/B〉 +
3V 〈nB/A〉 can be inverted due to the tuning of the ratio of λm

and λso. Therefore, we define the gap function as

	(K) = E1 − E2 = 2λm − 4λsog(K)

+
(

U

2
− 3V

)
[〈nA〉 − 〈nB〉]. (B4)

Due to the presence of the staggered potentials, the density
at B is larger than that at A, 〈nB〉 > 〈nA〉, and the sign of
the correction of the last term in the gap function depends on
the competition between U and V . For repulsive U,V > 0, if
U > 6V , the last term is negative and the repulsive interactions
stabilizes the topological phase. However, if U < 6V , the
last term is positive and then the interactions destabilizes
the topological phase. On the other hand, the attractive
U,V < 0 would give the opposite results to the repulsive
case.
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(a) (b)

FIG. 4. (Color online) Illustration of the phase boundary between trivial and nontrivial phase in the present of both U and V repulsion. For
illustration, we take t = 1, λso = 0.4, and choose V = U/2 and V = U/10. The blue open dot squares represent the boundary in the case of
V = U/10 and the open red diamonds line represents the boundary in the case of V = U/10. The black line represents the boundary in the
present of on-site Hubbard U . (a) The repulsive interaction case, U,V > 0. We can see that in this case. If the nearest-neighbor V is much
smaller than U , V = U/10, the interactions still tend to stabilize the topological phase. But due to the competition between U and V the
topological widow is less widened by the interactions. If V is more comparable to U ,V = U/2 in this case, the effects of V will be dominant
over U and will tend to destabilize the topological phase. According to the gap function defined around momentum K point, Eq. (B4), the
transition point is at U = 6V . (b) The attractive interaction case, U,V < 0. The results in this case are qualitatively opposite to those in the
repulsive case. When V is more comparable to the U , the interactions tend to stabilize the topological phase.

For illustration, we numerically check the cases with t = 1,
λso = 0.4, and choose V = U/10 and V = U/2 on a honey-
comb lattice consisting of 200 × 200 unit cells. The results
on shown in Fig. 4. The blue open dot squares represent the
boundary in the case of V = U/10 and the open red diamonds
line represents the boundary in the case of V = U/10. The
black dashed line represents the boundary in the present of only

on-site Hubbard U shown in Fig. 2. Qualitatively, the results
between the repulsive and the attractive case are opposite.
In the repulsive interaction case, the more short-ranged the
repulsive interactions are, the more stable the topological is.
On the other hand, in the attractive interaction case, the more
extended the attractive interactions are, the more stable the
topological phase is.
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