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Symmetry enforced non-Abelian topological order at the surface of a topological insulator
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The surfaces of three-dimensional topological insulators (3D TIs) are generally described as Dirac metals, with
a single Dirac cone. It was previously believed that a gapped surface implied breaking of either time-reversal T
or U(1) charge conservation symmetry. Here, we discuss a possibility in the presence of interactions, a surface
phase that preserves all symmetries but is nevertheless gapped and insulating. Then, the surface must develop
topological order of a kind that can not be realized in a two-dimensional (2D) system with the same symmetries.
We discuss candidate surface states, non-Abelian quantum Hall states which, when realized in 2D, have σxy = 1

2
and hence break T symmetry. However, by constructing an exactly soluble 3D lattice model, we show they
can be realized as T -symmetric surface states. The corresponding 3D phases are confined, and have θ = π

magnetoelectric response. Two candidate states have the same 12-particle topological order, the (Read-Moore)
Pfaffian state with the neutral sector reversed, which we term T-Pfaffian topological order, but differ in their
T transformation. Although we are unable to connect either of these states directly to the superconducting TI
surface, we argue that one of them describes the 3D TI surface, while the other differs from it by a bosonic
topological phase. We also discuss the 24-particle Pfaffian-antisemion topological order (which can be connected
to the superconducting TI surface) and demonstrate that it can be realized as a T -symmetric surface state.
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I. INTRODUCTION

Three-dimensional (3D) topological insulators host un-
usual surface states that can be described in a number of
different ways [1–3]. In models of free electrons that respect
time-reversal and charge conservation symmetries which are
necessary to describe this phase, the surface is metallic. The
surface electronic structure is comprised of an odd number
of two-dimensional (2D) Dirac cones, which is impossible to
realize in a purely 2D system with time-reversal invariance. It
is crucial that electrons transform as Kramers pairs, i.e., time
reversal T acting twice on electrons gives T 2 = −1.

Other surface terminations of the topological bulk are also
interesting. If T is broken only at the surface, the metallic
edge can be gapped to yield an insulating surface. The
topological bulk properties are revealed in the properties of
domain walls between opposite T breaking regions on the
surface. The domain walls are necessarily metallic and host
an odd number of chiral Dirac fermions c− = 2n + 1 [4].
Thus, each domain is associated with Hall conductance
σxy = n + 1

2 (and κxy/T = n + 1
2 in the natural units for

thermal Hall conductance), where n is an integer. Such a
half-integer Hall conductance is forbidden in a 2D system
in the absence of electron fractionalization and is directly
related to the magnetoelectric effect [5,6]. The magnetoelectric
polarizability of topological insulators is θ = π in contrast to
trivial, time-reversal-symmetric insulators which have θ = 0.
If, on the other hand, we break charge conservation on the
surface, by pairing and condensing Cooper pairs, the resulting
surface superconductor also has exotic properties (its vortices
host Majorana zero modes) [7], which only occur in 2D
systems if T symmetry is broken.

It was believed that these were the only possible surface
states of the 3D topological insulator, i.e., they must either
be gapless (e.g., metallic) or break one of the defining

symmetries. Recently, inspired by the study of bosonic
topological phases [8–13], and fermionic topological super-
conductors [14], a different surface termination has been
recognized that preserves all symmetries and develops an
energy gap at the surface [12–16]. In this situation the surface
develops topological order, i.e., there are anyonic excitations
bound to the surface. While the topological order itself may be
realized in 2D, the transformation properties of anyons under
action of the symmetry is unlike in any 2D system.

A close analog of this problem was recently discussed in
the context of fermionic topological superconductors protected
by T symmetry, where a non-Abelian surface topological
order was identified [14]. The discussion in this paper will
closely follow this earlier work. Of course, such surface
states will only be realized in systems with strong electron
correlations, and represent a qualitatively new property of
interacting topological insulators. This is analogous to the
argument that in a 2D quantum spin system with S = 1

2 per
unit cell, a gapped, symmetric state must be topologically
ordered [17]. Indeed, the absence of ordering is taken as a
sign of topological order. Similarly, if on the surface of a
3D topological insulator, no sign of superconductivity or T
breaking is present but an energy gap opens, this will be
indicative of topological order. In fact, as discussed in the
context of fermionic topological superconductors [14], and
as we will see in the following, the topological order here is
required to be non-Abelian. This mechanism may provide a
route to realizing non-Abelian topological order, which would
provide further impetus in the search for strongly correlated
topological insulators such as SmB6 [18–20].

Let us discuss some of the key physical requirements that
the topologically ordered surface of a 3D topological insulator
(TI) should satisfy. (a) “Z2 ness”: Given the Z2 classification
of free-fermion TIs, a pair of topologically ordered surfaces
should “unwind,” and should be connected to a trivial confined
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TABLE I. Topological spin and electrical charge assignments of
T-Pfaffian state. Excitations are labeled by Xk where X ∈ {1, σ, ψ}
are the rows and k ∈ {0, 1, . . . ,7} are columns. Charge assignments
are at the bottom of the table. The particle ψ4 is the electron, a charge
e fermion with trivial mutual statistics with all other particles.

0 1 2 3 4 5 6 7

I 1 i 1 i
σ 1 −1 −1 1
ψ −1 −i −1 −i
Charge 0 e/4 e/2 3e/4 e 5e/4 3e/2 7e/4

phase. (b) Magnetoelectric response θ = π : In the absence
of topological order, surface domains of the T -breaking
insulating surface can be assigned a Hall conductivity σxy = 1

2
and thermal Hall conductivity κxy/T = 1

2 (modulo integers).
These are equivalent to the statement that the magnetoelectric
response is θ = π . The implication for the topologically
ordered states is that in their 2D versions, which break T ,
should have σxy = 1

2 and κxy/T = 1
2 modulo integers. (c)

On breaking charge conservation symmetry, it should be
possible to remove the topological order while preserving T .
The resulting superconductor should host hc/2e vortices with
Majorana zero modes in their core.

At first, a promising choice appears to be the Read-Moore
Pfaffian state [21]. One picture of this phase is to consider
a topological superconductor of spin-polarized electrons in a
px + ipy pairing state, while the Cooper pairs form a ν = 1

8
bosonic Laughlin state. The latter has anyon excitations with
fractional charge qk = 2e k

8 and a charged chiral edge state.
The bound state of the superconductor quasiparticle and the
charge e excitation is identified as the electron and only those
excitations that braid trivially with the electron are retained.
This phase has 12 quasiparticles (including the electron) and
σxy = (2e)2

8h
= 1

2
e2

h
. While this satisfies one of our criteria, it

is readily seen from the topological spins of the associated
topological order that this can not be realized in a T -invariant
way even on a surface.

However, a simple modification produces a more promis-
ing candidate which we call the T-Pfaffian (T -preserving
Pfaffian) [22]. Consider the time-reversed superconductor
(px − ipy) combined in the identical way with the Abelian
topological order of Cooper pairs. This theory also has σxy = 1

2
and κxy/T = 1

2 when realized in 2D as required. Moreover,
the topological spins of the quasiparticles (Table I) now appear
compatible with time-reversal symmetry. We construct an
exactly soluble 3D model that explicitly demonstrates that this
state can be realized on the surface of a 3D bulk system while
retaining T and charge U(1) symmetries. Since the surface
topological order is forbidden in a strictly 2D system, we have
realized a 3D topological insulator. Moreover, this phase has
magnetoelectric response θ = π . The remaining question is as
follows: Is this the same phase as the free-fermion topological
insulator?

A necessary condition to make this identification is that in
the absence of charge conservation symmetry (i.e., induced
by proximity coupling the surface to a superconductor),
one should recover the TI surface superconductor, without

topological order, but with Majorana zero modes in the vortex
cores. The T-Pfaffian state, however, allows no simple way to
exit the topological phase even when charge conservation is
absent, while retaining T . On the other hand, we find that
there are two versions of the T-Pfaffian state (T-Pfaffianη,
with η = ±1) which differ in the way the non-Abelian
particles transform under time-reversal symmetry. The non-
Abelian particles with bosonic (fermionic) topological spin
are assigned T 2 = η (T 2 = −η). We can then demonstrate
the following fact: (i) The two states corresponding to η = +1
and −1 differ by the surface topological order of a bosonic
topological superconductor (BTSc) with a Z2 classification
and (ii) they can differ from the 3D free-fermion TI surface at
most, by the same BTSc surface topological order. This implies
that one of them must be the free-fermion TI surface state,
while the other represents a mixture with a BTSc although,
unfortunately, we can not at present specify which of the
η = ±1 is the 3D TI surface.

We also discuss a second topological order, the Pfaffian-
antisemion state obtained recently [23,24] by a series of elegant
physical arguments. This state is a tensor product of the
Read-Moore Pfaffian state as discussed above, with a neutral
antisemion theory {1,s̄} and has 24 quasiparticles. Its statistics
is compatible with T symmetry, and furthermore passes the
necessary requirements for being identified with the 3D TI
surface state, including realizing the TI surface superconductor
on breaking charge conservation [23,24]. Here, we prove that it
is indeed realizable as the surface state of a 3D bulk system with
the requisite symmetries, by constructing an exactly soluble
3D lattice model. In both this and the T-Pfaffian case, we
find time-reversal symmetry is respected only if the electrons
transform projectively, i.e., as T 2 = −1.

A central tool will be the Walker-Wang construc-
tion [14,16,25,26] of an exactly soluble lattice Hamiltonian,
that realizes the desired surface topological order, while main-
taining a topologically trivial bulk [27]. The model realizes
a ground-state wave function which is a superposition of 3D
loops, one for each quasiparticle of the surface topological
phase. The amplitude for any configuration is obtained as
follows. The topological order is represented in terms of
the R and F symbols that are associated with certain basic
loop moves [28]. First, one projects the loop configuration
onto a 2D plane, and relates it to a reference configuration
using the elementary moves. For each move, the amplitude
acquires a factor that is related to the R and F symbols.
Based on the resulting state, one can readily show that an
anyon that has nontrivial mutual statistics with some other
excitation is necessarily confined to the surface. Furthermore,
the surface excitations realize the required topological order.
A minor caveat here is that for simplicity we work with
bosonic Walker-Wang models, without elementary fermions
in the Hilbert space [14]. Since the surface topological order
is nonmodular, i.e., it contains a fermion excitation that has
trivial mutual statistics with everything else, this excitation is
deconfined in the bulk. Hence, the 3D state that is realized is a
Z2 gauged version of the topological insulators, i.e., it involves
bulk fermions that carry gauge charge and loops carrying
π gauge flux. This state may thought of as being obtained
from a bosonic model, from a parton construction b = f↑f↓,
where the Z2 gauge charged fermions f↑,↓ are placed in
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a 3D topological phase [29]. This can be readily rectified
by introducing elementary fermions cσ and condensing the
product c†σ fσ which confines the gauge flux and removes the
bulk topological order.

Before moving to the technical details, we raise the
following question that may have occurred to some readers.
How is the θ = π magnetoelectric response of 3D topological
insulator reconciled with the topologically ordered insulating
surfaces with T symmetry? Note that θ = π implies that a
weak applied magnetic field produces a surface charge density
of e/2 (modulo integer multiples of e) per flux quantum. Of
course, such a charge density is meaningful only if the surface
is also insulating. Also, charge is only determined modulo
e since integer multiples of e can be screened by surface
electrons. The fractional part, however, can not be screened
by electrons and is a bulk property. Specifying whether this
charge density is ±e/2 leads to the usual argument for breaking
of time-reversal symmetry at the surface. The key observation
here is that the candidate states both contain charge e/2
excitations which can screen the induced charge, and hence
breaking of T symmetry is not required.

II. T-PFAFFIAN TOPOLOGICAL ORDER

First let us introduce the topological order in the T-Pfaffian
state, including the anyon types and their fusion and braiding
rules. The T-Pfaffian state is a twisted version of the Pfaffian
state (such that the state could potentially be time-reversal
invariant). Similar to Pfaffian, it is the combination of the
non-Abelian Ising theory with the Abelian U(1)8 theory. The
Ising theory describes a gauged p + ip superconductor with
Z2 fluxes and contains anyons labeled by I , σ , ψ . I labels the
trivial vacuum, ψ is the fermion in the superconductor, and σ

is the Z2 flux. They fuse according to

σ × σ = I + ψ,

σ × ψ = σ,

ψ × ψ = I,

σ is hence non-Abelian and has quantum dimension
√

2 while
ψ has quantum dimension 1. The topological spins for the
anyons are

θI = 1, θσ = e−i π
8 , θψ = −1. (1)

The braiding of the fermion ψ around the Z2 flux results in
a phase factor of −1. The Ising sector is neutral and does not
carry charge.

The U(1)8 theory describes the ν = 1
2 quantum Hall state

where charge 2e electron pairs form an effective ν = 1
8 bosonic

Laughlin state. The Chern-Simons effective theory for this
state is

L = 8

4π
aμ∂νaλε

μνλ. (2)

There are eight Abelian anyons in the theory labeled by k =
0,1,2, . . . ,7 which add in the usual way when they fuse

k1 × k2 = (k1 + k2) mod 8. (3)

The topological spins for the anyons are given by

θk = ei π
8 k2

. (4)

A full braiding of particle k around particle k′ results in a phase
factor of

θkk′ = ei π
4 kk′

. (5)

The U(1)8 sector carries fractional charge with the k particle
carrying ke

4 mod2e charge.
The T-Pfaffian theory is then obtained by combining I and

ψ of the Ising theory with even k of the U(1)8 theory and σ

with odd k. That is, the T-Pfaffian theory has anyons

I0 I2 I4 I6

ψ0 ψ2 ψ4 ψ6

σ1 σ3 σ5 σ7

.

The charge assignment of the T-Pfaffian theory is carried over
from the U(1)8 theory. The fusion and braiding statistics of the
combined anyons are the product of the fusion and braiding of
the Ising part and the U(1) part. In particular, the topological
spin for the combined anyons are the quantum dimensions of
the Ik and ψk (even k) anyons are 1 and that of the σk (odd
k) anyons are

√
2. The particle and antiparticle pairs in the

T-Pfaffian theory are

Ik ∼ I(8−k)mod 8, ψk ∼ ψ(8−k)mod 8, σk ∼ σ(8−k)mod 8. (6)

Obviously, I0 is the vacuum in the theory. Moreover, it is easy
to check that a full braiding of ψ4 around any other particle in
the theory leads to a phase factor of 1. That is, the ψ4 particle
is a local excitation of the system and can not be seen by a
braiding operation far away. In fact, ψ4 has topological spin
of −1, carries charge e, and is therefore the electron in the
system.

Note that while the T-Pfaffian state has the same anyon types
as the Pfaffian state, the statistics of the two are different. In
particular, the statistics of the Ising part is taken to be the
complex conjugate of that in Pfaffian. Therefore, for example,
the topological spin of the σ1 anyon is 1 in the T-Pfaffian theory
while it is ei π

4 in the Pfaffian theory.

III. TIME-REVERSAL SYMMETRY ON T-PFAFFIAN

Is it possible to realize the T-Pfaffian topological order
in a time-reversal-invariant system? For pure 2D system, the
answer is no. This is easy to see if we look at the edge of
the system. The Ising part of the theory has chiral central
charge c− = − 1

2 and is neutral, hence does not contribute to
charge Hall conductance σxy . On the other hand, the U(1)8 part
of the theory has chiral central charge c− = 1 and σxy = 1

2 .
Therefore, the T-Pfaffian theory has total chiral central charge
c− = 1

2 and charge Hall conductance σxy = 1
2 . Obviously,

this is not possible in a pure 2D system with time-reversal
symmetry.

However, such argument fails if the T-Pfaffian theory is
realized on the surface of a 3D gapped system because the
2D surface of a 3D system does not have an edge of its
own. Therefore, the chiral edge of the T-Pfaffian state no
longer presents an obstruction to realization in a time-reversal-
invariant system. On the surface of a 3D system, we can only
probe how time-reversal symmetry acts on the excitations in
the bulk of the 2D system, namely, the anyons. First, the
action of time-reversal symmetry takes complex conjugation
of all the braiding and fusion processes among the anyons.
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Moreover, time-reversal symmetry can map one anyon type
to another. Therefore, if the T-Pfaffian theory can be realized
on the surface of a 3D time-reversal-invariant system, then
the time-reversal symmetry must exchange the anyon types
in such a way that the fusion and braiding amplitudes are
invariant under both complex conjugation and this exchange
of anyon types.

Such an exchange of anyon type does seem to exist if we
consider the topological spins of the anyons, which describe
the self-rotating processes of the anyons. From Table I, we
can see that the topological spins remain invariant if the time-
reversal symmetry performs the following exchange:

I2 ↔ ψ2, I6 ↔ ψ6 (7)

together with taking complex conjugation. Compare to the
Pfaffian state where such an exchange of anyon type, hence
time-reversal symmetry, can not exist. In particular, the
topological spins for the four σ anyons in the Pfaffian theory
are

θσ1 = ei π
4 , θσ3 = ei 5π

4 , θσ5 = ei 5π
4 , θσ7 = ei π

4 , (8)

which do not form time-reversal-invariant pairs.
Moreover, we can check that the exchanges I2 with ψ2 and

I6 with ψ6 is consistent with the fusion rules of the T-Pfaffian
theory. For example, the fusion process of

I2 × ψ4 = ψ6 (9)

is mapped to

ψ2 × ψ4 = I6 (10)

under this exchange, which is again a valid fusion process in
the T-Pfaffian theory.

Therefore, we have found an exchange of anyon types
which, together with complex conjugation, keeps the fusion
rules and the topological spins of the T-Pfaffian theory
invariant.

IV. LOCAL TIME-REVERSAL-SYMMETRY ACTION

The exchange of anyon types, however, does not completely
specify the action of time-reversal symmetry on the T-Pfaffian
state. In particular, for anyon types which do not change under
time reversal, one can ask whether time reversal acts as T 2 = 1
or −1 on the anyon locally. This is a legitimate question to ask
because away from the anyonic excitations, the state remains
invariant under time reversal. If the anyon type does not change
under time reversal, then time reversal acts effectively locally
around the anyon. As shown in [30], the local action of time
reversal can only square to 1 or −1. If T 2 = −1 on a particular
anyon, then the anyon has an extra spin label and leads to a
local twofold degeneracy under time-reversal symmetry when
it is separated from all other anyons. On the other hand, if
the anyon changes type under time reversal, then the effective
action of time reversal is nonlocal on the state and it is not well
defined to talk about T 2 locally for the anyon.

Note that for non-Abelian anyons (like the σ ’s), time-
reversal action can be nonlocal even though it does not change
the anyon type because it can change the fusion channel of
two anyons. For example, under time-reversal symmetry, the
fusion channels of two σ1’s (σ1 × σ1 = I2 and σ1 × σ1 = ψ2)

map into each other. Therefore, it might seem not well defined
to talk about the T 2 value for the σ ’s. However, we can always
find a time-reversal-invariant fusion channel involving the σ ’s,
for example, by fusing σk with σ8−k into vacuum, and ask
if there are local Kramer degeneracies associated with each
anyon in this fusion channel. Therefore, we can assign T 2

values to both Abelian and non-Abelian anyons as long as the
anyon type does not change under time reversal.

The local time-reversal-symmetry action represented by
this T 2 = ±1 information is important because with different
local action, the topological state can correspond to totally
different bulk phase. For example, the statistics of Z2 gauge
theory with anyons {I,e,m,ε} is time-reversal invariant with no
exchange of anyons. If the two bosonic particles e and m both
transform as T 2 = 1, the state can be realized in 2D time-
reversal-invariant system. However, if they both transform
as T 2 = −1, the state can only be realized on the surface
of 3D bosonic topological superconductors [12,15]. For the
T-Pfaffian state, we would be interested in the T 2 transforma-
tion for the charged boson I4, the chargeless fermion ψ0, the
electron ψ4, and all the non-Abelian σk particles. In particular,
the T 2 transformation of ψ4 would tell us whether we are
dealing with a T 2 = 1 or −1 topological insulator.

In this section, we state the general rules for determining
the T 2 information for anyons. We give the motivation for
setting these rules and apply them to the T-Pfaffian state. In
Appendix B, we will provide an algebraic proof for these rules
in terms of the exactly solvable Walker-Wang model realizing
the particular topological state on the surface.

The local action of time reversal on the anyons can be
determined from the following two rules that apply to both
Abelian and non-Abelian anyons:

(i) Rule 1: If anyons i and j fuse into k and none of i, j , k

change type under time reversal, then T 2
k = T 2

i × T 2
j .

(ii) Rule 2: If i maps into ī (different from i) under time
reversal and the braiding of i around ī in the fusion channel k

resulting in a phase factor of 1 (or −1), then T 2
k = 1 (or −1).

The first rule comes from considering a region with two
anyons i and j . If i and j are separated far enough (larger
than correlation length), then they each have well defined T 2.
The total local time-reversal-symmetry action on the whole
region is composed of that on i and j separately. However, for
an observer very far away from this region, the total anyonic
charge in the region is k. Therefore, T 2

k = T 2
i × T 2

j . Note that
one consequence of this rule is that a particle and its antiparticle
have the same T 2.

The second rule comes from considering a region with i

and ī. Applying time reversal, i changes into ī and vice versa.
This is equivalent to rotating the (i,ī) pair by 180◦. Applying
time reversal twice, we have rotated the pair by 360◦ which
is equivalent to a full braiding of i around ī and results in a
phase factor of 1 (or −1). However, for an observer far away
from this region, the total anyonic charge in the region is k

and the 1 (or −1) phase factor comes from T 2
k . Applying these

two rules, we can find out possible T 2 action on each anyon
locally. There may be more than one set of T 2 values for all
the anyons satisfying these rules.

Let us now apply these rules to T-Pfaffian and determine the
local time-reversal-symmetry action. First of all, the electron
ψ4 is the fusion product of I2 and ψ2 which map into each
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TABLE II. Time-reversal-symmetry action on the T-Pfaffian. The
semion-antisemion (I2, ψ2) [as well as (I6, ψ6)] are exchanged by
time-reversal symmetry. For the remaining quasiparticles, Kramers
degeneracy (T 2 = ±1) can be assigned as shown above. The electron
ψ4 is a Kramers doublet as is I4. The non-Abelian anyons can have
two possible T 2 assignments given by η = ±1.

0 1 2 3 4 5 6 7

I 1 × −1 ×
σ η −η −η η

ψ 1 × −1 ×

other under time reversal. Because the braiding of I2 around
ψ2 gives a −1, ψ4 transform as T 2 = −1. Therefore, we are
indeed dealing with a T 2 = −1 topological insulator. Next,
because σ1 and σ3 can fuse both to ψ4 and I4 and they do not
change type under time reversal, using the first rule we find
that I4 transforms in the same way as ψ4. That is, T 2 = −1
for the charged boson. From this, we can easily tell that ψ0,
the chargeless fermion, transforms as T 2 = 1. Finally, {σ1,σ7}
have the same T 2 = η = ±1, while {σ3,σ5} have T 2 = −η.
This information is summarized in Table II of T 2 values:

Two T-Pfaffians. Hence, there are two possible ways that
time-reversal symmetry can act on the T-Pfaffian state, labeled
with η = ±1. These two states can be mapped into each other
by combining with the following Z2 gauge theory. Consider
a Z2 gauge theory where the gauge charge e and the gauge
flux m both transform as T 2 = −1 and e carries U(1) charge
−1 (in units of the electron charge) while m is neutral. This
particular Z2 gauge theory can not be realized in a purely
2D system as discussed in Ref. [12], where it was termed
the eTmT state, and realizes the surface topological order
of a bosonic symmetry protected topological (SPT) phase
protected by time-reversal symmetry (charge attached to the e

particle is an unimportant difference). Bring such a Z2 gauge
theory on top of the η = 1 T-Pfaffian state and condense the
boson pair eI4. The combination of e and I4 is charge neutral
and transforms as T 2 = 1, therefore, the condensate preserves
both symmetries. After the condensation, the gauge flux m gets
bounded to the σ particles in the T-Pfaffian state in order to
commute with the condensate while all the Abelian particles in
the T-Pfaffian state remain. Therefore, the particle content in
the resulting theory is the same as the original T-Pfaffian state,
but the time-reversal representation of the σ particles change
from η = 1 to −1. The U(1) charge carried by the particles
remains the same. Thus, these two states differ by a particular
bosonic topological superconductor.

V. COMPARISON WITH TOPOLOGICAL
INSULATOR SURFACE STATE

From the discussion in the previous sections we see that a
possible definition of time-reversal and charge conservation
symmetry action does exist for the anyonic excitations in
the T-Pfaffian state. Therefore, the T-Pfaffian state could
potentially be realized on the surface of 3D systems with T
and charge conservation symmetry, although not in purely
2D due to the chiral edge modes in T-Pfaffian. In the next
section, we show that such a 3D realization indeed exists by

presenting an exactly solvable model using the Walker-Wang
construction [25]. Due to the nontrivial symmetry action in
T-Pfaffian, the 3D bulk of the system must have some nontrivial
symmetry protected topological order. That is, the model is a
3D topological insulator. But, is it the topological insulator
realized in free-fermion systems or some other previously
unknown topological insulator which is only possible in
strongly interacting systems?

To answer this question definitely, we would need to find
some topological invariants for different topological insulators
and compute them for this system. However, we do not
know how to do this. In the following, we will check certain
properties of this model and see if it is consistent with what
we know about the free-fermion topological insulator. We find
the following: (i) two copies of T-Pfaffian are trivial which
is consistent with the Z2 classification of the free-fermion
topological insulator; (ii) by breaking time reversal but not
charge conservation symmetry, the topological order can be
removed. Now, surface domain walls between regions with
opposite T breaking carry gapless 1D modes with c− = 1
and σxy = 1, which is known to happen in the free-fermion
topological insulator. This also implies θ = π ; (iii) for one of
the T-Pfaffian states (η = 1 or −1), the topological order can be
removed by breaking charge conservation but not time-reversal
symmetry, a property expected for free-fermion topological
insulator surface states. While we do not explicitly construct
the route to removing topological order, we demonstrate this
to be a logical consequence.

A. Two copies of T-Pfaffian are trivial

The free-fermion topological insulator (TI) has a Z2

classification. That is, if we take two copies of the free-fermion
TI and allow interactions between them, the surface state can
be made trivial without breaking either time-reversal or charge
conservation symmetry. Therefore, if the T-Pfaffian state is
realized on the surface of the free-fermion TI, we should
be able to take two copies of it and remove the topological
order without breaking time-reversal or charge conservation
symmetry. This is indeed the case as we show in the following.

Suppose that we have two T-Pfaffian states whose anyons
are labeled as {Ik,σk,ψk} and {Ĩk,σ̃k,ψ̃k}. We can condense the
following set of composite bosonic particles without breaking
time reversal or charge conservation:

I2ψ̃6, ψ2Ĩ6, I6ψ̃2, ψ6Ĩ2, I4Ĩ4, ψ0ψ̃0, ψ4ψ̃4. (11)

Note first that each composite particle listed above has bosonic
self- and mutual statistics, therefore, they can be condensed
together. Also, each composite particle has charge 0mod 8,
hence condensing them does not break charge conservation.
Moreover, the composite particles either map to themselves
under time reversal or appear in time-reversal pairs. Finally,
they all transform as T 2 = 1 under time reversal. Therefore,
the condensate does not break time reversal either.

After condensing these particles, the non-Abelian σk and
σ̃k particles are all confined. Some of the composite σ σ̃ -type
particles remain, which up to the condensed particles include

σ1σ̃3, σ1σ̃7. (12)
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The Abelian particles that remain include (up to the condensed
particles)

I4, ψ0, ψ4. (13)

In the resulting theory, the σ σ̃ particle splits into two Abelian
particles and the theory is equivalent to the product of a free-
fermion part {I,ψ4} and a simple Z2 gauge theory part

I, e, m, ε. (14)

e and m come from σ1σ̃7. They are bosons, carry charge
0, and are invariant and transform as T 2 = 1 under time
reversal. ε comes from ψ0. It is a fermion, has charge 0, and
maps to itself and transforms as T 2 = 1 under time reversal.
Therefore, the total theory is trivial under time reversal and
charge conservation symmetry and can be realized in 2D.

B. Breaking time-reversal symmetry and confinement

To remove the topological order in the T-Pfaffian surface
state by breaking time reversal but not charge conservation
symmetry, we can bring a 2D fractional quantum Hall state
with the T-Pfaffian topological order and couple it to the T-
Pfaffian surface state. The 2D state has c− = 1

2 and σxy = 1
2 ,

therefore is not time-reversal invariant. But, it does have charge
conservation symmetry.

We label the anyons in the surface T-Pfaffian state as
{Ik,σk,ψk} and those in the 2D T-Pfaffian state as {I ′

k,σ
′
k,ψ

′
k}.

Condense the following composite particles:

I2ψ
′
6, ψ2I

′
6, I6ψ

′
2, ψ6I

′
2, I4I

′
4, ψ0ψ

′
0, ψ4ψ

′
4. (15)

Note that this condensation is very similar to the one we applied
in the previous section to two copies of T-Pfaffian surface
states. However, here the operation breaks time reversal from
the beginning because the 2D T-Pfaffian state breaks time-
reversal symmetry. After this condensation, the surface state
is reduced to the product of a charge neutral Z2 gauge theory
with anyons {I,e,m,ε} together with a charged fermion. We
can further remove the topological order by condensing the e

particle in the Z2 gauge theory.
To break the time-reversal symmetry in the opposite way

and remove the topological order, we bring a time-reversed
copy of the 2D T-Pfaffian state with anyons {Ī ′

k,σ̄
′
k,ψ̄

′
k} and

couple it in the time-reversed way to the surface T-Pfaffian
state. The statistics in the time-reversed copy of the 2D T-
Pfaffian is the complex conjugate of that in the original 2D
T-Pfaffian state. Therefore, in this new combination, we would
condense

ψ2ψ̄
′
6, I2Ī

′
6, ψ6ψ̄

′
2, I6Ī

′
2, I4Ī

′
4, ψ0ψ̄

′
0, ψ4ψ̄

′
4. (16)

The resulting theory is again composed of a neutral Z2 gauge
theory with {I,ē,m̄,ε̄} and a charged fermion. By condensing
ē, we remove the topological order completely.

Between the 2D T-Pfaffian state and its time-reversal copy,
there is a c− = 1 and σxy = 1 edge. Condensation in the system
does not affect c− and σxy . Therefore, we can break time-
reversal symmetry in opposite ways on the surface T-Pfaffian
state, remove any topological order, and be left with a c− = 1
and σxy = 1 chiral edge between the two regions. This is what
is known to happen on the free-fermion TI surface starting
from the gapless Dirac-cone surface state.

C. Breaking charge conservation symmetry

When the surface of the free-fermion topological insulator
is gapless, the surface Dirac cone can be gapped out (in
a topologically trivial way) by inducing superconductivity
on the surface without breaking time-reversal symmetry. If
the T-Pfaffian can be realized as the topologically ordered
surface state of the free-fermion TI, we would like to see that
the topological order can be removed by condensing charge
without breaking time-reversal symmetry. In the T-Pfaffian
state, it is not obvious how this can be achieved. For example,
one might want to condense the charged boson I4 and simplify
the topological order. However, I4 transforms under time
reversal as T 2 = −1. Therefore, condensing I4 necessarily
breaks time-reversal symmetry. The other Abelian particles
are not bosons and can not be directly condensed. We show
that such a removal of topological order can be achieved
for one of the T-Pfaffian states (η = 1 or −1) by combining
with a 2D topological order which has time reversal but not
charge conservation symmetry and then condensing composite
bosonic particles. Therefore, one of the T-Pfaffian states is
consistent with being the surface state of the free-fermion TI.
Our argument proceeds in the following steps:

(1) The “modularized” T-Pfaffian is a time-reversal-
symmetric bosonic topological state. As a fermionic topologi-
cal order, the T-Pfaffian state has Z2 fermion parity symmetry.
We can gauge the Z2 symmetry and obtain a modularized
bosonic topological theory where the local fermion has a
mutual −1 statistics with the Z2 fluxes. Such a gauging
process is not unique and we find that one of the possible
modularized theories has time-reversal-symmetric fusion and
braiding statistics. The gauging process and the resulting
theory are described in detail in Appendix A. This step works
for both versions of the T-Pfaffian (η = ±1).

(2) One of the “modularized” T-Pfaffians can be re-
alized in 2D with time-reversal symmetry. As a bosonic
topological order with time-reversal-symmetric fusion and
braiding statistics, the modularized T-Pfaffian states can be
either realized in 2D time-reversal-symmetric systems or on
the surface of 3D bosonic topological superconductors. By
simply looking at the theories, it is hard to tell which is the
case. However, useful information can be obtained from our
knowledge of bosonic topological superconductors. We know
that bosonic topological superconductors have a Z2 × Z2
classification [8,9,12]. These are composed of (i) the nontrivial
state in the first Z2 has three fermion surface topological order
(which is chiral when realized in 2D) while (ii) the nontrivial
state for the second Z2 has both the electric and magnetic
charges transforming as T 2 = −1 and is a nonchiral surface
topological order [12,15,16], labeled eTmT in Refs. [12,15].
Because the modularized T-Pfaffian theories are nonchiral,
they must belong to either the trivial or the nontrivial case of the
second Z2 (i.e., eTmT surface topological order). Moreover,
the two modularized T-Pfaffians differ by exactly eTmT. To
see this, take the eTmT surface topological order, and bring
it on top of the η = 1 modularized T-Pfaffian. Condense the
composite particle eI4. Because both e and I4 are both Kramer
doublets, such a condensation does not violate time-reversal
symmetry. The resulting theory after the condensation is
exactly the η = −1 modularized T-Pfaffian state. Therefore,
one of the modularized theories can be realized in 2D with
time-reversal symmetry, while the other is the surface state of a
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nontrivial bosonic topological superconductor (eTmT surface
topological order). One last piece of missing information is
which one is which. We do not know the answer to this question
right now.

(3) Combining the “modularized” T-Pfaffian with
T-Pfaffian, the topological order can be removed without
breaking time-reversal symmetry. Now, bring the modularized
T-Pfaffian state (complex conjugated) on top of the corre-
sponding T-Pfaffian state. Condense fermion-fermion pair to
confine the Z2 gauge field and we obtain a doubled T-Pfaffian
theory. The topological order in this doubled theory can be
completely removed by condensing pairs of corresponding
particles, e.g., I2I

′
2, which does not violate time-reversal

symmetry. Therefore, for one of the T-Pfaffians, the surface
topological order can be removed through combination with a
2D T -invariant topological state and condensing bosons in a
time-reversal-invariant way.

Therefore, we can conclude from the previous analysis that
one of the T-Pfaffian states, on breaking charge conservation
symmetry, is equivalent to the superconducting surface of
the free-fermion topological insulator, while the other differs
from it by a bosonic topological superconductor (with surface
topological order eTmT). Thus, one of the T-Pfaffian states
passes all the physical requirements expected of TI surface
topological order Z2“ness,” thermal and electrical Hall (equiv-
alent to θ = π ) conductivity on T -breaking surface domain
walls, and surface superconductor with T symmetry and free
of topological order. However, at this moment, we can not tell
whether this is the η = 1 state or the η = −1 T-Pfaffian state.

D. Connecting surface topological order to the free-fermion TI

We mention here a simple argument that allows us to
connect one of the T-Pfaffian states with the free-fermion
TI, based on the classification result of [31]. We note,
however, that the argument above did not utilize this result. In
Ref. [31], U(1) � ZT

2 fermionic topological insulators in 3D
were proposed to have a Z3

2 classification, one Z2 corresponds
to the free-fermion topological insulator while the remaining
Z2

2 refers to neutral bosonic SPTs with time-reversal symmetry.
The ambiguity here is whether the T-Pfaffian(s) describe a
mixture of the free-fermionic topological insulator with 3D
bosonic SPT phases. We can prove that there is a T-Pfaffian
state which is to be identified with the free-fermion TI, with no
bosonic SPT mixture assuming the classification result above.

First, let us discuss possible bosonic SPT phases with
U(1) � ZT

2 symmetry which have a Z3
2 classification. The root

states in terms of surface topological order are (i) three-fermion
state, (ii) the toric code with e and m transforming as T 2 = −1
(eTmT state), and (iii) the toric code where both e and m are
charge 1

2 of the Cooper pair. However, in the presence of
electrons, the classification is reduced to Z2

2 for these bosonic
SPTs. One can combine, say, the electron with (iii) to obtain a
mixture of (i) and (ii). Therefore, one can take the two neutral
states (i) and (ii) as the relevant topological orders [31].

The remaining question is as follows: Is the T-Pfaffian a
mixture of fermionic TI and one or both of the bosonic SPTs (i),
(ii)? Note, if it is a mixture, then breaking charge conservation
symmetry is not sufficient to eliminate the topological order.
The T-Pfaffian can not contain the state (i) since T-Pfaffian

has κxy = 1
2κ0 and σxy = 1

2σ0 in one realization while the
mixture with state (i) would have an additional thermal
Hall conductivity of ±4κ0, while retaining the same charge
Hall conductivity. Here, σ0 = e2/h and κ0 = L0σ0T where
L0 = π2

3 ( kB

e
)2 is the Lorentz number and T is the temperature.

Therefore, the T-Pfaffian can at best differ from the free-
fermion TI by the eTmT state (ii). However, the two versions
of the T-Pfaffian differ from one another by exactly this state,
which has a Z2 classification. Hence, one of the two T-Pfaffian
states represents the surface of the free-fermion TI.

VI. WALKER-WANG CONSTRUCTION AND MORE ON
TIME-REVERSAL SYMMETRY

In this section, we construct the 3D model with time-
reversal symmetry which realizes the T-Pfaffian theory on its
surface and have time reversal acting in the way expected. In
Sec. VI A, we introduce the basic idea of the Walker-Wang
construction and explain in Sec. VI B how it allows us to
determine the local time-reversal-symmetry transformation
(T 2 = ±1) for the anyons. We try to first present the basic
picture and the general idea underlying the Walker-Wang
construction in this section without going into too much
details, which is saved for Sec. VI C where we give the exactly
solvable Hamiltonian and address some related subtleties.

A. Walker-Wang: General idea

The Walker-Wang construction provides a way to write
an exactly solvable 3D model which realizes a particular
topological order on the 2D surface of the system [25].
Given all the fusion and braiding data of a 2D anyon theory,
the Walker-Wang prescription gives the local Hilbert space,
terms in the Hamiltonian and ground-state wave function of
a 3D model such that the 2D anyon theory emerges on the
surface of the system. While it is not surprising that 2D anyon
theories can be realized on the surface of 3D systems, the
Walker-Wang construction is useful in the following ways: (1)
it provides exactly solvable 3D models to realize “chiral” 2D
topological orders, for which a 2D exactly solvable model is
not known to exist; (2) the 3D Walker-Wang model can have
extra symmetry than is possible on the topological order in
a purely 2D system. That is, the surface of the Walker-Wang
model can realize symmetry enriched topological orders that
are not possible in 2D, which is a result of the nontrivial
symmetry protected topological order in the 3D bulk of
the system. In our previous works, we have explored this
property of the Walker-Wang model in the case of bosonic
and fermionic topological superconductors, demonstrating the
existence of time-reversal-invariant topological orders which
are impossible in purely 2D systems but can be realized on the
3D surface. Here, we use a similar strategy to study fermionic
topological insulators and show that the T-Pfaffian state can
be realized on the surface of a 3D system with time reversal
and charge conservation symmetry while it is not possible in
2D with the same symmetry.

In this section, we are not going to explain all the details
related to the exactly solvable Hamiltonian, but only focus on
the basic idea of the Walker-Wang construction and show how
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it allows us to determine that T 2 = −1 for the electrons. (T 2

for other anyons can also be determined.)
The basic idea underlying the Walker-Wang construction

is very intuitive. The model is constructed such that the
ground-state wave function is a superposition of 3D loops
(more precisely “string nets,” in the sense of [32]) labeled
by the anyon types, which describes the (2 + 1)D space-time
trajectory of the anyons. The amplitude for a given configura-
tion of these loops C in the (3 + 1)D wave function �3D(C)
is determined by the expectation value of the corresponding
Wilson loop operators in the (2 + 1)D TQFT (topological
quantum field theory) which describes how the anyon world
lines twist and intertwine with each other; i.e., we have

�3D(C) = 〈W (C)〉2+1TQFT. (17)

This is similar in spirit to, e.g., quantum Hall wave functions,
which are related to the space-time correlations of their
edge states. Here, since we demand a topologically ordered
boundary state, the expectation values are taken in the
boundary TQFT.

The wave function for the T-Pfaffian Walker-Wang model
hence contains 12 different string types corresponding to the
12 different anyons in the theory which can braid and fuse
according to the fusion rules of T-Pfaffian. The strings have
directions. If the direction of a string related to anyon i is
reversed, it becomes a string related to the antiparticle i∗.
Since the twisting and intertwining of the anyon world lines
may depend on the angle of view, in order to calculate the
amplitude of the string-net configurations, we need to pick a
particular projection of the 3D loops onto a 2D surface. The
projection we will use is also shown in Fig. 5.

Having fixed a projection, the amplitude of each configura-
tion can be obtained using the braiding and fusion rules given
by the R and F matrices of the T-Pfaffian theory, which is the
product of the R and F matrices of the Ising part and the U(1)8

part. The R matrix for the Ising part reads as

RI,∗
∗ = R∗,I

∗ = 1, R
σ,σ
I = ei π

8 , R
σ,σ
ψ = e−i 3π

8 ,
(18)

Rσ,ψ
σ = Rψ,σ

σ = i, R
ψ,ψ

I = −1.

The R matrix in the U(1) part is

R
k1,k2
(k1+k2)mod 8 = ei 2π

16 k1k2 . (19)

The F matrix for the Ising part is

[
Fσ,σ,σ

σ

]
α,β

= 1√
2

(
1 1
1 −1

)
,

(20)[
F

σ,ψ,σ

ψ

]
σ,σ

= [
Fψ,σ,ψ

σ

]
σ,σ

= −1,

where α,β = I,ψ , all other terms being 1.
The F matrix for the U(1) part is[

F
k1,k2,k3
(k1+k2+k3)mod 8)

]
(k1+k2)mod 8,(k2+k3)mod 8

= ei π
8 k1[k2+k3−(k2+k3)mod 8].

It can only take value ±1.
Using the braiding and fusion moves as illustrated in Fig. 1,

we can deform any string-net configurations configuration to
a set of isolated loops. The change in the amplitude of the

FIG. 1. Braiding and fusion moves on the string-net
configurations.

configurations is given by the F and R matrices. The isolated
loops can be removed with the change in amplitude by

�Ik
= �ψk

= 1, k = 0,2,4,6
(21)

�σk
= −

√
2, k = 1,3,5,7.

Using this set of rules, the amplitude of any string-net configu-
ration can be determined (relative to the all I0 configuration).

Such a bulk wave function encodes the statistics on the
surface, as we show in the following. Anyonic excitations
can be created by adding open strings to the surface. The
wave function becomes a superposition of all string-net
configurations in which the corresponding strings end at the
positions of the excitations. Then, we can check the statistics
of the excitations by tracking these open strings. Suppose we
exchange two string ends of the same type α [as shown in
Fig. 2(a)] by crossing two red string segments on the surface.
The two α anyons fuse to a β anyon. [Figure 2(a) shows one
possible string-net configuration.] This twist in the string-net
configuration (relative to the string-net configuration before
exchange) can be removed to bring the strings back to their
original form, but this results in a factor of R

α,α
β . Therefore,

exchanging end of strings of the same type adds a R
α,α
β factor

to the total wave function, which is equivalent to saying that
the ends of the strings are anyons with self-statistics given
by R

α,α
β . Similarly, one can check, with linked loops on the

surface as shown in Fig. 2, that string ends of different types
have mutual statistics given by the corresponding R matrix
element.

Open strings in the bulk also create excitations in the ground
state. However, if the corresponding anyon has nontrivial
braiding with any other anyon, the excitation energy grows

FIG. 2. (Color online) The anyonic excitations on the surface are
created by open strings. The end of strings of type α are anyonic
excitations of type α with the expected statistics. This can be seen
from the braiding statistics of the strings generating (a) the exchange
and (b) the braiding of the end of strings.
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FIG. 3. (Color online) If an anyon α has nontrivial braiding with
some other anyon β, then the open string of type α in the bulk can
change the quantum fluctuation phase factors of β loops along its
length, which costs finite energy. Therefore, the end of strings of
type α are confined in the bulk. Otherwise, the end of string of type
α is a deconfined point excitation, which must be either bosonic or
fermionic in a 3D system.

linearly with the string length, leading to confinement of the
particles at the ends of the strings. To see the confinement,
consider an open string of type α (colored blue) in the bulk
which is circled by a small ring of a different string type β

(colored red), as shown in Fig. 3. Using the braiding rule
between the loops, we find that the linking between the ring
and the open string can be removed together with a phase
factor

Sα,β = 1

D

∑
γ

dγ Rβ̄α
γ Rαβ̄

γ , (22)

where γ is the fusion product of α and β, dγ is its quantum
dimension, and D = √∑

α dα . If Sα,β = 1, the open string
changes the quantum fluctuation phase factors of small loops
along its length, which costs finite energy. Therefore, the
string’s end points can not be separated very far, and the
corresponding anyonic excitations in the bulk are confined.
If Sα,β = 1 for all β, then the end of string of type α can be
a deconfined point excitation in the 3D bulk of the system,
which has to be either a boson or a fermion.

In the T-Pfaffian state, all anyons have nontrivial braiding
with some other anyon except the electron I4. The electron
is a local excitation in the 2D topological order and hence
has trivial braiding with any other anyon. Therefore, in the
T-Pfaffian Walker-Wang model, the only deconfined excitation
in the 3D bulk is the electron. However, open strings lying on
the surface, where no loops can encircle them, give rise to
deconfined excitations [26]. Therefore, the 3D Walker-Wang
model written in terms of the fusion and braiding rules
of the T-Pfaffian theory has a deconfined electron in the
bulk and deconfined quasiparticles corresponding to all the
anyons in the T-Pfaffian theory on the surface. We will
postpone describing all details of the exactly solvable model to
Sec. VI C. First, let me see how the Walker-Wang construction
tells us more about time-reversal-symmetry action in the
T-Pfaffian state.

B. Time-reversal symmetry of the Walker-Wang model

The Walker-Wang model provides us with not only an
exactly solvable model to realize the T-Pfaffian surface state,
but also a more concrete setup to study the time-reversal
symmetry in the system. Because the ground-state wave

function is determined by the F and R matrices of the
T-Pfaffian state, in order for the wave function to be time-
reversal symmetric, the time-reversal-symmetry action must
leave the F and R matrices invariant. However, a quick check
shows that the F and R matrices are not invariant under the
exchange of I2 ↔ ψ2, I6 ↔ ψ6, and complex conjugation. For
example [33], (

R
ψ2I2
ψ4

)∗ = −R
I2ψ2
ψ4

. (23)

In order to fix this, we need to introduce extra phase factors
α

ij

k in the time-reversal-symmetry action to the vertices where
three strings meet. With proper choice of α

ij

k , the F and R

matrices can be invariant as

[
F

ijk

l

]∗
m,n

= [
F

īj̄ k̄

l̄

]
m̄,n̄

α
ij
mαmk

l

α
jk
n αin

l

,

(
R

ij

k

)∗ = R
īj̄

k̄

α
ij

k

α
ji

k

,

where ī is the time-reversal partner of i. That is, we need
to introduce some extra vertex degrees of freedom at the
branching point of strings, which gets a phase factor under
time-reversal-symmetry action. With a proper choice of gauge
for F and R (explained in detail in Appendix B), a possible
set of α’s is α = i for the vertices

(σ1,σ5,I2), (σ3,σ7,I6), (I2,I2,I4),
(24)

(I2,ψ2,ψ4), (I6,I6,I4), (I6,ψ6,ψ4)

and α = −i at their time-reversal partners

(σ1,σ5,ψ2), (σ3,σ7,ψ6), (ψ2,ψ2,I4),
(25)

(ψ2,I2,ψ4), (ψ6,ψ6,I4), (ψ6,I6,ψ4),

and α = 1 for all other allowed vertices. Note that here we are
labeling the strings at each vertex such that the corresponding
anyons fuse to the vacuum, i.e., the directions of the strings are
all pointing towards the vertex. The strings at each vertex are
ordered in a clockwise way. [With this choice of α, Eq. (24)
is satisfied, not for the F and R given above, but with some
other gauge choice of F and R. This is explained in detail in
Appendix B.]

With this choice of α, we find that T 2 = −1 on all the
vertices listed above in Eqs. (24) and (25), while T 2 = 1 on all
other allowed vertices. But where are these T 2 = −1 vertex
degrees of freedom coming from? Actually, they are related
to the T 2 = ±1 transformation law for each anyon type under
time reversal, as we explain below.

A simple way to understand the vertex T 2 = −1 degrees
of freedom is to “attach Haldane chains” to the strings labeled
by σ3, σ5, I4, and ψ4. Imagine adding pairs of spins 1

2 to each
string segment. Along the strings of types

σ3, σ5, I4, ψ4, (26)

the spin 1
2 ’s are put into a “Haldane chain” state where spins on

neighboring string segments are connected into singlet pairs,
as shown in Fig. 4. Along strings of all other types, the two
spins on the same segment are connected into singlet pairs. A
sample configuration is shown in Fig. 4.
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FIG. 4. (Color online) Sample spin configuration in the deco-
rated Walker-Wang model. Black dots represent spin 1

2 ’s, and blue
ellipses represent spin singlets. The leftmost vertex {I2,ψ2,ψ4} prefers
a down spin while the rightmost vertex {ψ2,I2,ψ4} prefers an up spin.

Because of the two different ways of pairing the spins,
there are unpaired spins at vertices such as {I2,ψ2,ψ4} and
{ψ2,I2,ψ4} as shown in Fig. 4. Note that because we have fixed
a projection on the system, vertices {I2,ψ2,ψ4} and {ψ2,I2,ψ4}
are different with different chiralities. We can choose to have
the spin to point up at vertex {I2,ψ2,ψ4} and point down at
vertex {ψ2,I2,ψ4}. In this way, it becomes natural that time
reversal adds an extra α = i at vertex {I2,ψ2,ψ4} and an extra
α = −i at vertex {ψ2,I2,ψ4}. In general, an unpaired spin
always appears at vertices listed in Eqs. (24) and (25). We
choose to have the spin to point up at vertices in Eq. (24) and to
point down at vertices in Eq. (25). Therefore, all these vertices
transform under time reversal as T 2 = −1. There are other
possible ways to attach Haldane chains to realize the desired
time-reversal symmetry. We summarize them in Appendix B,
but the different choices do not affect our discussion in the
following.

Such a spin configuration not only fixes the time-reversal
symmetry action on the ground state, but also determines the
transformation law of the deconfined anyonic excitations on
the surface of the system. For example, deconfined excitations
of anyon type I4 on the surface are created by adding open
strings of type I4 to the surface. At the point of excitation, the
wave function contains vertices such as {I0,I0,I4}. Because
I4 carries a Haldane chain with it (while I0 does not), at
the vertex where the I4 string ends, there is an extra spin- 1

2
degree of freedom which transforms projectively under time
reversal. Therefore, the anyonic excitation of type I4 on the
surface carries a projective representation of time reversal. If
the symmetry if not broken, the excitation gives rise to at least
a twofold degeneracy locally.

C. Walker-Wang construction: Details

In this section, we discuss the details about the exactly
solvable model with T-Pfaffian surface state using the Walker-
Wang construction. Readers not interested in the exact form of
the Hamiltonian can skip this section. Our construction here
follows closely the strategy outlined in [25,26] and we refer
the reader there for further details.

The T-Pfaffian Walker-Wang model is defined on a 3D
trivalent lattice. A trivalent 3D lattice can be obtained by

FIG. 5. A trivalent 3D lattice obtained by splitting the vertices in
a cubic lattice (taken from [25]).

splitting the vertices in a cubic lattice as shown in Fig. 5.
We have taken a particular projection of the 3D lattice onto the
2D plane. Each link in the lattice carries a 12-dimensional spin
degree of freedom, corresponding to the 12 anyon types in T-
Pfaffian. The Hamiltonian contains vertex terms Av involving
all three links ending at a particular vertex and plaquette terms
Bp involving links around a particular plaquette

H =
∑

v

Av +
∑

p

Bp. (27)

The vertex term enforces the fusion rules at each vertex by
giving a higher energy to all disallowed vertices where the
three strings do not fuse to the vacuum.

The plaquette term is a sum over terms labeled by anyon
type s, Bp = ∑

s dsB
s
p, weighted by the quantum dimension

of s. Each Bs
p can change the labels of links in a plaquette

(abcdpqruvw), and can also depend on the labels of adjoin-
ing links (a′b′c′d ′p′q ′r ′u′v′w′) (but can not change these).
Explicitly, the matrix element between a state with plaquette
links (abcdpqruvw) and (a′′b′′c′′d ′′p′′q ′′r ′′u′′v′′w′′) is

B
s,a,...,w
p,a′′,...,w′′ = Rq ′b

q

(
Rc′r

c

)∗(
R

q ′b′′
q ′′

)∗
Rc′r ′′

c′′

× [
F

a′′sp
a′

]
ap′′

[
F

p′′sq
p′

]
pq ′′

[
F

q ′′sb
q ′

]
qb′′

[
Fb′′sc

b′
]
bc′′

× [
Fc′′sr

c′
]
cr ′′

[
F r ′′su

r ′
]
ru′′

[
Fu′′sd

u′
]
ud ′′

[
Fd ′′sv

d ′
]
dv′′

× [
Fv′′sw

v′
]
vw′′

[
Fw′′sa

w′
]
wa′′ .

The intuition behind this complicated-looking term is that
it fuses in the loop s to the skeleton of the plaquette using
multiple F moves, but in the process of doing so must use
R moves to temporarily displace certain links (c′ and q ′ in
Fig. 6). It is possible to check that all of these terms commute,
and the resulting ground state is a superposition of string nets
as given in Eq. (17). Following the proof in [25,26], we can see
that the model has the bulk and surface deconfined excitations
as desired.

In order to realize time-reversal symmetry on this model,
we need to add two spin- 1

2 degrees of freedom to each link and
put them into Haldane chains or trivial chains along different
strings. At each vertex listed in Eqs. (24) and (25), there is
an unpaired spin 1

2 . We add an up-pointing magnetic field to
this spin if it is at a vertex in Eq. (24) and a down-pointing
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FIG. 6. (Color online) Plaquette term in Walker-Wang Hamilto-
nian (taken from [25]).

magnetic field if it is at one in Eq. (25). The plaquette term
should then be modified correspondingly to act only between
the low-energy configurations. It can then be checked that the
Hamiltonian is indeed time-reversal invariant.

In order to add charge to this model, we can use similar
tricks and attach fractional charges to the end of each link.
When the links connect according to the fusion rules of the
theory, the charges cancel at the vertex. When excitations are
created by end of strings, extra fractional charges are present
at the position of the excitation.

There is one subtle point about this construction. The
Walker-Wang model as defined above is a spin model instead
of a fermion model as one would expect for a 3D topological
insulator. The fermions in the bulk appear as gauge fermions
coupled to a Z2 gauge field. Therefore, the model is topolog-
ically ordered not only on the surface, but also in the bulk.
Apart from the deconfined fermionic point excitations, there
are also Z2 flux loop excitations in the bulk around which the
gauge fermions pick up a −1 phase factor.

A simple way to remove the topological order in the bulk
and obtain a real fermionic model is to couple the above
construction with a trivial fermionic insulator and condense
the fermion pairs. Because the gauge fermion transforms as
T 2 = −1 under time reversal, it comes in two species ψ4↑
and ψ4↓. It is coupled to a fermionic insulator made also of
T 2 = −1 fermions c↑, c↓. One can then turn on the tunneling
c
†
↑ψ4↑ + c

†
↓ψ4↓ + H.c. and condense the particle-hole pair.

The Z2 flux loops are then confined because they have
nontrivial statistics with the condensate. Therefore, the bulk
topological order is removed and one obtains a short-range
entangled fermionic model as desired.

VII. PFAFFIAN-ANTISEMION STATE

The process of removing topological order by breaking
charge conservation but not time-reversal symmetry is realized
in a simpler way in the Pfaffian antisemion model [23,24]. In
this section, we show this model can be realized as the surface
state of a T and U(1) conserving bulk phase and discuss its
properties compared to the free-fermion TI surface.

The Pfaffian-antisemion state is a product of the anti-
semion state and the Pfaffian state. We label the anyons
as {Ik,Iks,σk,σks,ψk,ψks}. The topological spins for the

anyons are

0 1 2 3 4 5 6 7
I 1 i 1 i

I s −i 1 −i 1
σ eiπ/4 −eiπ/4 −eiπ/4 eiπ/4

σs e−iπ/4 −e−iπ/4 −e−iπ/4 e−iπ/4

ψ −1 −i −1 −i

ψs i −1 i −1

(28)

The Ising and antisemion parts are both neutral while the
U(1) part has charge k e

4 . Time-reversal symmetry exchanges
the following pairs of anyons I0s and ψ0s, I2 and ψ2,
I4s and ψ4s, I6 and ψ6, σk and σks. Moreover, using the rules
in Sec. IV, we can determine the local time-reversal-symmetry
action on anyons which do not change type under time reversal:
I2s, I4, I6s, ψ0, ψ2s, ψ4, ψ6s.

Because I2 and ψ2 map into each other under time reversal
and braid with a −1, T 2 = −1 for their fusion product ψ4.
Therefore, the Pfaffian-antisemion state is the surface state
of a T 2 = −1 topological insulator. Similarly, σ1 and σ1s

are time-reversal partners. In fusion channel I2s, they have
trivial mutual statistics, therefore, T 2 = 1 for I2s (also for I6s).
In fusion channel ψ2s, they have mutual semionic statistics,
therefore, T 2 = −1 for ψ2s (also for ψ6s). Moreover, I0s

and ψ0s are time-reversal partners and have mutual semionic
statistics. Therefore, T 2 = −1 for their fusion product ψ0.
Finally, from the fusion of ψ0 and ψ4 into I4 we find that
T 2 = 1 for I4.

A Walker-Wang model can be written explicitly for the
Pfaffian-antisemion state as well. The model is defined on a
3D trivalent lattice similar to the T-Pfaffian case while the
dimension of the Hilbert space on each link is doubled. Basis
states on each link correspond to the 24 quasiparticles in
the theory and the vertex term and plaquette term enforces
the fusion and braiding rules. On the surface of the system,
there are deconfined excitations corresponding to all 24
quasiparticles in the theory while in the bulk only the
ψ4 fermion is deconfined. Time-reversal symmetry acts as
complex conjugation, permutation of link basis states, and
phase factors at each vertex. The phase factors involved are
such that vertices such as {σ1,σ1s,ψ2s} transform as T 2 = −1.
Such vertex transformation laws can be understood as coming
from the Kramer degeneracy of ψ0, ψ4, ψ2s, and ψ6s.

A. Breaking charge conservation, Z2 ness, and breaking T
A property of this model, which is different from T-Pfaffian,

is that if we condense I2s, the topological order can be removed
without breaking time-reversal symmetry. One may also
observe that the fundamental hc/2e vortices carry Majorana
zero modes. To see this, first notice that, naively, a charge
e/2 condensate would entail vorticity in multiples of 2hc/e. A
vortex of strength hc/2e would induce a Berry phase of π/2
on the condensed particles. However, this can be rectified by
attaching a σ (σs) particle to the vortex (to the antivortex),
which has the opposite braiding statistics That is, we can
obtain the superconducting surface state of the free-fermion
TI starting from the Pfaffian-antisemion state.
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Now, we can take two copies of this state and see if it
can be made trivial. We label the anyons in the two copies
as {Ik,Iks,σk,σks,ψk,ψks} and {Ĩk,Ĩk s̃,σ̃k,σ̃k s̃,ψ̃k,ψ̃ks̃}. First,
we set aside the antisemion parts of the theory {I,s} and {I,s̃}
and analyze the two Pfaffian parts. We can again condense the
following set of composite bosonic particles without breaking
time reversal or charge conservation:

I2ψ̃6, ψ2Ĩ6, I6ψ̃2, ψ6Ĩ2, I4Ĩ4, ψ0ψ̃0, ψ4ψ̃4. (29)

The particles that remain in the two Pfaffian states include (up
to the condensed particles)

σ1σ̃3, σ1σ̃7, I4, ψ0, ψ4. (30)

This is very similar to the T-Pfaffian case except that the
σ1σ̃3 particle has topological spin −i and the σ1σ̃7 particle
has topological spin i. In the resulting theory, these quantum
dimension two particles split into two Abelian particles s1, s2

(semions), which fuse to ψ0:

s1 × s2 = ψ0. (31)

Combined with the antisemion part of the theory, the total
theory after condensation is a product of two semion theories,
two antisemion theories, and a trivial electron

{I,s1} × {I,s2} × {I,s} × {I,s̃} × {I,ψ4}. (32)

The semion and antisemions parts are all neutral. Only the
electron is charged. We can further condense s1s and its
time-reversal partner s2s̃ without breaking any symmetry,
which confines everything except the electron ψ4. Therefore,
the Pfaffian-antisemion state likely corresponds to a Z2

topological insulator.
In order to check what happens between time-reversal

symmetry-breaking domains, we can couple the the Pfaffian-
antisemion surface state to 2D realizations of the Pfaffian-
antisemion state, which must break time-reversal symmetry.
Following similar analysis as above, we find that if we couple
a 2D Pfaffian-antisemion state on the left half of the plane,
we can remove all topological order. Similarly, if we couple a
time-reversed 2D Pfaffian-antisemion state on the right half of
the plane, with time-reversed coupling, we can also remove all
topological order. Between these two domains, a chiral edge
state with c− = 1, σxy = 1 is left behind, which is expected
for the free-fermion topological insulator surface state.

B. Connecting the Pfaffian antisemion state
to the T-Pfaffian topological order

We can directly show that one of the two T-Pfaffians can
be connected to the Pfaffian-antisemion state, i.e., is surface
equivalent to it. Again, the procedure is not constructive, so
we do not know which of the two it is. We do not make any
assumption about the classification of interacting topological
insulators (Ref. [31]) but utilize a related construction.

Consider combining the T-Pfaffian state with Pfaffian-
antisemion state and attempting to remove all the topological
order while preserving both T and charge U(1) symmetry. To
help this process, we introduce a Z8 gauge theory topological
order of Cooper pairs, where the gauge charges pm m =
0, 1, . . . , 7 carry charges qm = m 2e

8 , and the gauge fluxes
vn, where n = 0, 1, . . . , 7 are exchanged under time-reversal

symmetry n → (8 − n)mod8 under T . v4 maps to itself under
time reversal and we choose it to transform as a Kramers
doublet. Consider condensing I2ψ̃6v2 and its time-reversed
conjugate ψ2Ĩ6v6. Note, here the first particle is in the
Pfaffian-antisemion theory while the second is in the T-Pfaffian
(with tilde). These condensates are self- and mutual bosons
with charge 0 and preserve time-reversal symmetry. The last
is particularly crucial since in the absence of the v2 factors,
the square of these condensates I4Ĩ4 would break T symmetry
since one of these bosons is a Kramers doublet. However, here
it appears as I4Ĩ4v4 which is a total time-reversal singlet and
can be condensed. As I2ψ̃6v2 is a strength-2 flux of the whole
theory, all the surviving excitations after this condensation
have integer electric charge in units of e. We can separate all
the quasiparticles after this condensate into two sets, a charge
neutral set and a charge e set which are related to each other
through combination with an electron. The neutral set forms
a closed modular topological theory X which is T symmetric
(note, T symmetry does not interchange particles differing
by an electron since they carry different charges) [31] and
the whole theory can be written as X × {1, f }, where the
electric charge is only carried by the electron f . Therefore,
the T-Pfaffian state and the Pfaffian-antisemion state is surface
equivalent up to either the surface of a 3D bosonic SPT
of neutral boson protected by ZT

2 or a 2D T -symmetric
topological order. Again, one can exclude the three-fermion
state since the combined theory has no nontrivial edge states
even when realized in 2D. So, the question is whether they
differ by a bosonic SPT which is eTmT (both e, m transforming
as Kramers doublets). Now, since the two T-Pfaffians differ
by precisely this theory, one of them is equivalent to the
Pfaffian-antisemion state.

VIII. CONCLUSIONS

We have discussed the possibility of a 3D topological
insulator with a symmetric gapped surface state and non-
Abelian surface topological order. We constructed a model for
a 3D topological insulator, with magnetoelectric response θ =
π , with a surface state given by T-Pfaffian topological order.
We find that the symmetry transformation on the T-Pfaffian
state can take two different forms. One of them is consistent
with being the surface state of the free-fermion TI while the
other differs from the free-fermion TI by a neutral bosonic
topological superconductor. One remaining question is which
specific T-Pfaffian state is connected to the free-fermion
surface state. We can not yet answer this question due to the
lack of a simple way to smoothly connect the T-Pfaffian state
to the superconducting surface state of the free-fermion TI,
and is left for future work. We also constructed an exactly
soluble 3D lattice model for a somewhat more complicated
topological order, the Pfaffian-antisemion theory [23,24] with
twice as many particles, which can be smoothly connected to
the superconducting surface state. These finds are consistent
with the classification result obtained in [31].
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APPENDIX A: GAUGING THE T-PFAFFIAN THEORY

In order to see, with broken U(1) symmetry, whether the
T-Pfaffian theory can be realized in two dimensions with time-
reversal symmetry, we try to gauge the Z2 fermion parity
symmetry in the theory and examine whether the resulting
theory can be time-reversal invariant or not. There are different
ways (at least 16) to consistently gauge the Z2 fermion parity
symmetry and we need to consider them all.

One obvious way to gauge the Z2 fermion parity in the
T-Pfaffian theory is into the full Ising∗ × U(1)8 theory. The
topological spins of all 24 particles are listed as follows:

0 1 2 3 4 5 6 7
I 1 ei π

8 i −ei π
8 1 −ei π

8 i ei π
8

σ e−i π
8 1 ei 3π

8 −1 ei 7π
8 −1 ei 3π

8 1

ψ −1 −ei π
8 −i ei π

8 −1 ei π
8 −i −ei π

8

(A1)
The braiding of the I1 particle correctly measures the
(fractional) Z2 quantum number associated with the original
anyons. Therefore, I1 is the Z2 flux and the full table is obtained
by combining I1 with all the original anyons. This theory is
obviously not time-reversal invariant.

There are (at least) 15 other different ways to gauge
the Z2 fermion parity symmetry in this theory. They can
be obtained by combining one of Kitaev’s 16-fold way to
gauge free-fermion theory together with the full Ising∗ ×
U(1)8 theory and condense the fermion-fermion pair. For
example, if we consider the zeroth one in Kitaev’s 16-fold
way, the toric code model with I , ẽ, m̃, ψ̃ , then the anyon
types in the resulting theory come in two sets: the set of
anyons in the T-Pfaffian theory and the set of anyons in[
Ising∗ × U(1)8 − T-Pfaffian

] × m̃. and topological spins in
the resulting theory are [here, we are still denoting the anyons
with the label in Ising∗ × U(1)8 but half of them are actually
combined with m̃ in the toric code theory]

0 1 2 3 4 5 6 7
I 1 ei π

8 i −ei π
8 1 −ei π

8 i ei π
8

σ e−i π
8 1 ei 3π

8 −1 ei 7π
8 −1 ei 3π

8 1

ψ −1 −ei π
8 −i ei π

8 −1 ei π
8 −i −ei π

8

(A2)
which is the same as the Ising∗ × U(1)8 theory, as we expected.

If we consider an even number element (νth) in the 16-fold
way, with anyons I , ẽ, m̃, ψ̃ and topological spins 1, ei π

8 ν , ei π
8 ν ,

−1, then the anyon content in the resulting theory is similar
to the previous case and the topological spins are (with slight

abuse of notation for anyon label)

0 1 2 3
I 1 ei π

8 (ν+1) i −ei π
8 (ν+1)

σ ei π
8 (ν−1) 1 ei π

8 (ν+3) −1

ψ −1 −ei π
8 (ν+1) −i ei π

8 (ν+1)

4 5 6 7

I 1 −ei π
8 (ν+1) i ei π

8 (ν+1)

σ ei π
8 (ν+7) −1 ei π

8 (ν+3) 1

ψ −1 ei π
8 (ν+1) −i −ei π

8 (ν+1)

(A3)

The theory can not be time-reversal invariant for any even ν.
Now, let us check the case for odd ν. With odd ν, the

gauged free-fermion theory has a non-Abelian Z2 flux σ̃

with topological spin ei π
8 ν . The total theory is obtained by

combining the Ising∗ theory, the U(1)8 theory, and the νth
gauged free-fermion theory and condensing ψψ̃4, where the
subscript 4 denotes the U(1) charge. The resulting theory
contains the following anyons:

II0 = ψψ4 II2 = ψψ6 II4 = ψψ0 II6 = ψψ2

ψI0 = Iψ4 ψI2 = Iψ6 ψI4 = Iψ0 ψI6 = Iψ2

σI1 = σψ5 σI3 = σψ7 σI5 = σψ1 σI7 = σψ3

Iσ1 = ψσ5 Iσ3 = ψσ7 Iσ5 = ψσ1 Iσ7 = ψσ3

σσ0 = σσ4 σσ2 = σσ6

.

Let us use the shorthand notation

I0 I2 I4 I6

ψ0 ψ2 ψ4 ψ6

σa
1 σa

3 σa
5 σa

7

σb
1 σb

3 σb
5 σb

7

�0 �2

.

The Ik and ψk particles have quantum dimension 1, the σk

particles have quantum dimension
√

2, and the �k particles
have quantum dimension 2. The � particles could split into
two quantum dimension-1 particles. Here,

�0 × �0 = I0 + I4 + ψ0 + ψ4. (A4)

�0 fuses with itself into four different particles, therefore �0

does not split. Neither does �2.
The topological spins are

1 i 1 i

−1 −i −1 −i

1 −1 −1 1

ei ν+1
8 π −ei ν+1

8 π −ei ν+1
8 π ei ν+1

8 π

ei ν−1
8 π ei ν+3

8 π

.
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When ν = −1, the anyon theory could potentially be time-
reversal invariant with topological spins

1 i 1 i

−1 −i −1 −i

1 −1 −1 1

1 −1 −1 1

e−i π
4 ei π

4

.

The fusion and braiding all follow from the parent Ising∗ ×
Ising∗ × U(1)8 theory.

Under time reversal, �0 would map into �2 and vice versa.
Moreover, time reversal maps between the following pairs of
particles:

I2 ↔ ψ2, I6 ↔ ψ6, σ b
1 ↔ σb

7 , σ b
3 ↔ σb

5 , �0 ↔ �2. (A5)

We can check that this time-reversal-symmetry action is
consistent with the fusion rule of the theory.

This is in contrast to the semion-fermion theory where
one of the gauged theories does have time-reversal pairs of
topological spins but time-reversal-symmetry action is not
consistent with the fusion rule. In that case, the gauged theory
is obtained from Ising∗ × Ising∗ × semion by condensing the
ψψ̃ pair. The two-dimensional particle σ σ̃ needs to split into
two one-dimensional particles in order to make the theory
unitary which causes the inconsistency between time-reversal-
symmetry action and the fusion rule. However, in the gauged
T-Pfaffian case, the σσ particle does not split and time reversal
can be consistent with fusion rule.

So, now we need more powerful tools to determine whether
T-Pfaffian or its gauged version can be realized in 2D with time
reversal. The gauged T-Pfaffian theory is a bosonic nonchiral
theory. Assuming it has time-reversal symmetry, it should
either be (1) realizable in 2D or (2) realizable on the surface of
a 3D bosonic topological superconductor (the Z2 class within
group cohomology).

Note, ψ4 is a time-reversal doublet since it is composed
by fusing a pair of particles ψ2, I2 which are mutual semions
and go into each other under T symmetry. This implies I4 is
a Kramers doublet too, and in that case we can not condense
I4. However, we can combine this theory with the changeless
T-Pfaffian [i.e., having broken U(1) symmetry], and condense
the product of the ψ4 particles (C = 〈ψgauged

4 ψ4〉 = 0) in the
two theories. This boson can be condensed and confines the
flux excitations in the gauged theory resulting in two copies
of T-Pfaffian, which can be confined. Thus, the changeless
T-Pfaffian can be converted into a confined Sc without
topological order, by combining it with this state. Hence,
assuming T symmetry of the gauged theory, the changeless
T-Pfaffian is either trivial (realizable in 2D with T symmetry)
or equivalent to the surface of a 3D T -symmetric bosonic SPT
phase.

APPENDIX B: LOCAL TIME-REVERSAL-SYMMETRY
ACTION FROM WALKER-WANG CONSTRUCTION

In this section, we show how to obtain the rules for
determining the local action of time-reversal symmetry given
in Sec. IV from the Walker-Wang construction. We apply the

procedure to the case of T-Pfaffian and find which anyons
transform as T 2 = −1. We discuss how various gauge choices
in the problem can affect the solution.

In the Walker-Wang construction, in order to have a time-
reversal-invariant Hamiltonian and ground state, we need to
find vertex phase factors α

ij

k which satisfy

[
F

ijk

l

]∗
m,n

= [
F

īj̄ k̄

l̄

]
m̄,n̄

α
ij
mαmk

l

α
jk
n αin

l

,

(
R

ij

k

)∗ = R
īj̄

k̄

α
ij

k

α
ji

k

.

T 2 at each vertex is then obtained by

(T 2)ijk = (
α

ij

k

)∗
α

īj̄

k̄
, (B1)

which is equal to the combination of T 2 for i, j , and k:

(T 2)ijk = T 2
i T 2

j T 2
k . (B2)

Of course, for anyon types i which change under time reversal,
T 2 is not well defined. However, we have the constraint that(

T 2
i

)∗ = T 2
ī
. (B3)

In particular, if i = ī, T 2
i = ±1.

From these equations, we can derive the rules given in
Sec. IV. Moreover, we shall see that the arbitrariness of T 2 for
i which is not equal to ī is taken into account naturally in these
equations.

When i, j , and k are all invariant under time reversal and i,
j fuse into k,

(T 2)ijk = (
α

ij

k

)∗
α

ij

k = 1. (B4)

Therefore,

T 2
k = T 2

i × T 2
j (B5)

as given in the first rule in Sec. IV. Next, when i = ī and i and
ī fuse into k (k = k̄),

(
Riī

k

)∗ = Rīi
k

αiī
k

αīi
k

. (B6)

Therefore,

(T 2)iīk = (
αiī

k

)∗
αīi

k = Rīi
k Riī

k = siī
k , (B7)

where siī
k is the phase factor coming from a full braid of i

around ī in fusion channel k. Moreover,

(T 2)iīk = T 2
i T 2

ī
T 2

k = T 2
k . (B8)

Therefore,

T 2
k = siī

k (B9)

as given in the second rule in Sec. IV.
In particular in the case of T-Pfaffian, solving the equations

in Eq. (24) with the F and R matrices given in Sec. VI A, we
obtain a set of solutions for α

ij

k . Pick one possible solution and
we can determine the T 2 transformation law for each vertex
{i,j,k} from

(T 2)ijk = (
α

ij

k

)∗
α

īj̄

k̄
. (B10)
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We find that the following vertices have T 2 = −1:

(σ1,σ5,I2), (σ1,σ5,ψ2), (σ3,σ7,I6), (σ3,σ7,ψ6),

(I2,I2,I4), (ψ2,ψ2,I4), (I2,ψ2,ψ4), (ψ2,I2,ψ4), (B11)

(I6,I6,I4), (ψ6,ψ6,I4), (I6,ψ6,ψ4), (ψ6,I6,ψ4),

and permutations of them. The T 2 of each vertex is determined
by the T 2 of all three anyons involved:

(T 2)ijk = T 2
i T 2

j T 2
k . (B12)

From this, we find that the possible set of Kramers doublet
anyons has two possibilities:

(i) I4, ψ4, σ3 and σ5,
(ii) I4, ψ4, σ1 and σ7.

T 2 = 1 for all other anyons. These assignments satisfy(
T 2

i

)∗ = T 2
ī
. (B13)

In fact, this Kramers doublet assignment can be simply
determined from the rules given in Sec. IV.

The F and R matrices can change by gauge β
ij

k as

[
F

ijk

l

]
m,n

→ [
F

ijk

l

]
m,n

β
ij
mβmk

l

β
jk
n βin

l

,

(
R

ij

k

) → R
ij

k

β
ij

k

β
ji

k

.

Under this change, the α’s change by

α
ij

k → αijβ
ij

k β
īj̄

k̄
. (B14)

This does not affect the value of (T 2)ijk for each vertex but
can change the value of α

ij

k to be anything consistent with the
(T 2)ijk value. Using this degree of freedom, we can make α’s
to be i for vertices in Eq. (24), −i for vertices in Eq. (25), and
1 for all other vertices.

The α’s satisfying Eq. (24) are not unique. In particular, if
they change by

α̃
ij

k = α
ij

k

aiaj

ak

, (B15)

then, obviously, the equations for F and R are still satisfied.
Such a change would lead to a change in T 2

ijk . If α
ij

k changes

by aiaj

ak
, then (T 2)ijk changes by

aīaj̄ ak

ak̄aiaj
. Correspondingly, such

a change leads to the change in T 2
i as

T 2
i → T 2

i

aī

ai

. (B16)

If i = ī, then T 2
i does not change. If i = ī, T 2

i does change.
However, T 2

i is not well defined for i = ī and the degree of
freedom given by aī

ai
reflects exactly this arbitrariness. Note

that with arbitrary ai , we have(
T 2

i

)∗ = T 2
ī
. (B17)
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