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A series of cerium-based heavy fermion materials is studied using a combination of local density functional
theory and the many-body Gutzwiller approximation. Computed orbital-dependent electronic mass enhancement
parameters are compared with available experimental data extracted from measured values of the Sommerfeld
coefficient. Gutzwiller density functional theory is shown to remarkably follow the trends across a variety of Ce
compounds and to give important insights into the phenomenon of orbital-selective mass renormalization which
in turn allows for a better understanding of a wide spread of data.
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I. INTRODUCTION

Heavy-fermion materials pose one of the greatest chal-
lenges in condensed matter physics. Their low-temperature
linear specific heat coefficient can be up to 1000 times larger
than the value expected from the free-electron theory; their
magnetic moments can be screened by the Kondo effect and
their electrical resistivity is frequently divergent but sometimes
superconductivity can emerge at low temperatures [1].

Theoretical calculations based on density functional theory
(DFT) in its popular local density approximation (LDA) [2]
fail to reproduce strongly renormalized electronic masses in
heavy-fermion materials due to improper treatment of many-
body-correlation effects. Consider, for example, a well-known
class of cerium heavy-fermion materials, such as two famous
phases (α and γ ) of cerium itself [3–5], so-called Ce-115s
systems: CeXIn5 (X = Co, Rh, Ir) [6–8] and numerous Ce-122
compounds [9–21]: CeX2Si2 (X = Mn, Fe, Co, Ni, Cu, Ru,
Rh, Pd, Ag). Table I gives evaluated via LDA densities
of states specific heat coefficients γ for these materials as
compared with experiments, where in many cases a factor of
2–20 error exists in underestimating γ while, in some cases,
such, as CeCo2Si2, an overestimation occurs. It is the purpose
of this work to show that a better treatment of electronic
correlations via the recently introduced Gutzwiller density
functional theory [22–25] can correct most of these errors
and uncover exactly which orbitals become heavy, as is also
illustrated in Table I.

The physics of the electronic mass enhancement is con-
trolled by a low-frequency behavior of the local electronic
self-energy which can be encoded in the simple Taylor-like
form

�α(ω) = �α(0) + (
z−1
α − 1

)
ω + · · · , (1)

where we assume, for simplicity, the existence of some crystal-
field representation |α〉 that diagonalizes the self-energy matrix
in a spin-orbital space of the localized f electrons. This
expression suggests two main effects that may occur when
correlations are brought into consideration on top of a band
theory such as LDA: first the crystal-field correction to a
local f -electron level is controlled by �α(0) and, second, the
actual band narrowing is controlled by a quasiparticle residue

parameter zα. Both effects would affect our comparisons of γ

in Table I.
Recently, advanced many-body approaches based on com-

binations of density functional and dynamical mean-field
theory (DMFT) have been implemented [26] to study heavy-
fermion systems [27,28] where self-consistent solutions of
either Anderson- or Kondo-impurity problems have been
done using most accurate continuous-time quantum Monte
Carlo method [29,30]. While DMFT deals with full frequency
dependent self-energy and is a lot more computationally
demanding than traditional LDA, it taught us an important
lesson in the so-called orbital selectivity in the Mott transition
problem, i.e., when crystal-field dependent self-energies can
reduce the effective degeneracy of the impurity. This affects
the proximity of the quasiparticle residue z to become equal to
zero when the ratio between the Hubbard U and the bandwidth
W changes.

A recently introduced Gutzwiller density functional theory
(GDFT) and the so-called LDA + G method [22–25] is a
simplified variational approach that relies on the Gutzwiller
approximation initially introduced to study itinerant ferro-
magnetism of the one-band Hubbard model [31], and later
extended to multiband systems [32,33]. In this method, the
atomic configurations of correlated orbitals are treated by
adjusting their weights using a variational procedure. This
leads to renormalized energy bands and mass enhancements
for the electrons. The approximation was extensively studied
in the limit of infinite dimensions [34,35] and was shown
to be equivalent to a slave-boson mean-field theory [36]
for both single-band and multiband models [37–39]. In
LDA + G, the Gutzwiller-type trial wave function P̂ |0〉 is
adopted with |0〉 and P̂ being the LDA ground state and the
Gutzwiller projector, respectively. After further application
of the Gutzwiller approximation, an effective Hamiltonian
describing the dynamics of quasiparticles was obtained as
Heff = P̂HLDAP̂ , which contains two important features dis-
cussed above: the modification of the crystal and spin-orbital
fields and the quasiparticle weight zα . Thus, the method exactly
casts the effect encoded into the low-frequency behavior of
�(ω) [Eq. (1)].

The benchmark of the LDA + G scheme was demonstrated
in Ref. [23]. For a nonmagnetic correlated metal SrVO3, it
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TABLE I. Comparison between calculated using LDA density of states and experimentally extracted specific heat coefficients γ and the
extracted quasiparticle residues zexpt = γLDA/γexpt for a number of cerium-based heavy-fermion compounds considered in this work. The last
columns show the predictions of γ and z using the LDA + G method with the values of U = 4 and 5 eV as well as the reference to the specific
orbital degeneracy of the j = 5/2 manifold that exhibits the strongest enhancement.

NLDA(0) γLDA γexpt Ref. γLDA+G γLDA+G zLDA+G zLDA+G Orbital
St./(Ry cell) mJ/(mol K2) mJ/(mol K2) to γexpt zexpt (U = 4 eV) (U = 5 eV) (U = 4 eV) (U = 5 eV) j = 5/2

α Ce 36 6.2 13 [3] 0.48 0.55 0.33 �7,�8

γ Ce 49 8.5 0.14 0.11 �7,�8

115s:
CeCoIn5 150 26.0 290 [6] 0.09 70 104 0.20 0.13 �6,2�7

CeRhIn5 156 27.2 420 [7] 0.065 75 120 0.19 0.12 �6,2�7

CeIrIn5 165 28.6 720 [8] 0.04 79 210 0.14 0.07 �6,2�7

122s:

CeMn2Si2 184 31.9 47 [9] 0.68 52 84 0.51 0.43 �6,2�7

CeFe2Si2 85 14.7 22 [10] 0.67 21 24 0.53 0.47 �6,2�7

CeCo2Si2 110 19.0 10 [11] 1.9? 35 43 0.47 0.36 �6,2�7

CeNi2Si2 115 19.9 33 [12] 0.60 27 29 0.47 0.43 �6,2�7

CeCu2Si2 64 11.1 1000 [13–15] 0.01 430 ∞ 0.10 0 �6

CeRu2Si2 103 17.8 350 [16–18] 0.05 70 190 0.33 0.13 2�7

CeRh2Si2 106 18.3 130 [19] 0.14 35 120 0.36 0.14 2�7

CePd2Si2 100 17.3 65−110 [20,21] 0.15–0.26 170 ∞ 0.045 0 �7

CeAg2Si2 205 35.5 140 430 0.10 0.06 �6

produced narrower bands and larger effective masses than
those found in standard LDA. Also the method was able to
get a photoemission peak missed in the LDA calculation.
These improvements are very close to the experimental results.
Later, in Ref. [40], a complex phase diagram of NaxCoO3

was correctly reproduced. Recently, this method has been
successfully applied to FeAs-based superconductors [25,41]
and to Ce metal [42,43].

In this work we address the physics of cerium heavy-
fermion materials via the use of the LDA + G approach. A
great spread in the extracted values of mass enhancements
data shown in Table I together with some unphysical values of
z > 1 prompts us that in many classes of real compounds both
the orbital selectivity encoded via the shifts �α(0) on top of
the LDA as well as the quasiparticle residues play an important
role and have to be treated on the same footing. It therefore
represents a stringent test of a many-body electronic-structure
method such as LDA + G to heavy-fermion materials. In
particular, in its recent application to elemental cerium [43],
it has been shown that the spin-orbital splitting of the f level
is renormalized by correlations and pushes energies of the
J = 7/2 manifold up relative to J = 5/2 states. This resulted
in lowering the degeneracy from 14 to 6 and in a greater
mass enhancement of J = 5/2 manifold as compared to a
non-spin-orbit–coupled calculation.

The paper is organized as follows: In Sec. II, the LDA + G
method is described. The results for several typical families
of heavy-fermion materials are presented in Sec. III. Finally,
Sec. IV is the conclusion.

II. THE LDA + G METHOD

The Gutzwiller density functional theory and the LDA + G
approximation have been described previously [22–25]. Here
we merely summarize the equations of the method that we

implement using a linear muffin-tin orbital formalism [44]
that includes both the full potential terms [45] and relativistic
spin-orbit-coupling operator variationally [44].

A. Gutzwiller approximation

We first illustrate the method using a general multi-orbital
Hubbard model. The Hamiltonian is

H = H0 + Hint =
∑
ij,αβ

t
αβ

ij c
†
iαcjβ

+
∑

i

∑
αα′ββ ′

U
αβα′β ′
i c+

α c+
α′cβ ′cβ, (2)

where α,β = 1, . . . ,2N are the spin-orbital indexes of the
localized orbital, N is the number of orbitals, e.g., 7 for
the f orbital. The first term is a tight-binding Hamiltonian
which can be extracted from the LDA calculation. The second
term represents the on-site Coulomb repulsion, Uαβα′β ′ =
〈αα′| e2

r
|ββ ′〉, although in actual calculations we assume it

to be diagonal: Uαβα′β ′ = Uδαβδα′β ′ .
In the atomic limit, for the localized orbital there are

2N different states which can be either occupied or empty.
Therefore there is a total of 22N configurations |�〉. All these
configurations form a complete basis and the density-density
interaction is diagonal in this configuration space. It is obvious
that these configurations should not be equally weighted. In the
Gutzwiller method, we adjust the weight of each configuration.
Therefore, it is convenient to construct projection operators
that project onto a specific configuration � at site i:

m̂i� = |i�〉〈i�|. (3)

When the interaction term is absent, the ground state is
the Hartree uncorrelated wave function (HWF) |	0〉 which is
a Slater determinant of the single-particle states. When the
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interaction is switched on, this wave function is no longer
a good approximation. In the Gutzwiller method, we project
the wave function onto a Gutzwiller wave function (GWF)
|	G〉 by adjusting the weight of each configuration through
variational parameters λi� (0 � λi� � 1 ):

|	G〉 = P̂|	0〉 =
∏

i

P̂i |	0〉, (4)

where
P̂i =

∑
�

λi�m̂i�. (5)

Notice that when all λi� = 1, the GWF is going back to HWF.
At the same time, setting λi� = 0 removes configuration � at
site i. Therefore, a perfectly localized atomic state of site i

is described by all λi� = 0 except for one, and in this way,
the Gutzwiller wave function captures both the itinerant and
localized behavior of the system.

It is a difficult task to evaluate GWF. However, within the
Gutzwiller method, we can map any operator Ô acting on the
GWF to a corresponding effective ÂG which acts on the HWF:

〈	G|Â|	G〉 = 〈	0|P̂†ÂP̂‖	0〉 = 〈	0|ÂG|	0〉, (6)

where
ÂG = P̂†ÂP̂. (7)

Specifically, when the operator Â is a single-particle opera-
tor, e.g., Â = ∑

ij,αβ A
αβ

ij c
†
iαcjβ where A

αβ

ij = 〈iα|Â|jβ〉, the
Gutzwiller effective operator can be written as

ÂG =
∑
ij,αβ

√
ziαA

αβ

ij

√
zjβc

†
iαcjβ

+
∑
i,α

Aαα
ii (1 − ziα)c†iαciα, (8)

where ziσ are the orbital-dependent quasiparticle residues:
0 � ziα � 1. These are determined by the configuration
weights:

√
ziα =

∑
��′

√
mi�mi�′ |〈i�′|c†iα|i�〉|√

niα(1 − niα)
, (9)

where mi� = 〈	G|m̂i�|	G〉 and niα are the occupation num-
bers for the orbitals. Although, generally, the zs should be
considered as matrices over orbital index, here we neglect
their off-diagonal elements for simplicity.

B. Combination with local density approximation

Similar to the idea of the LDA + U or LDA + DMFT
methods, we add the interaction term on top of the LDA
calculation. The Hamiltonian is given by

H = HLDA + Hint − HDC, (10)

where HLDA is the LDA Hamiltonian, which has the same
form as H0 in Eq. (2), Hint is the on-site interaction term for
the set of correlated orbitals, such as the f orbitals of heavy-
fermion materials considered in this work. Since the LDA
calculation has already included the Coulomb interaction in
some averaged level, we need to subtract the double-counting
term HDC from LDA. Various forms of HDC will be discussed
later.

The Kohn–Sham approach uses a noninteracting system
as a reference which keeps the same ground-state density as
the interacting one. However, now our ground state is the
GWF instead of the HWF. Therefore, we need to transform
the Hamiltonian into the effective one in the |	0〉 basis. Since
the Hamiltonian HLDA is a single-particle operator, following
Ref. [24] we obtain

HG
LDA = 〈	G|HLDA|	G〉

=
(∑

αi

√
zα|φαi〉〈φαi | + 1 −

∑
αi

|φαi〉〈φαi |
)

×HLDA

⎛
⎝∑

βj

√
zβ |φβj 〉〈φβj | + 1 −

∑
βj

|φβj 〉〈φβj |
⎞
⎠

+
∑
αi

(1 − zα)|φαi〉〈φαi |HLDA|φαi〉〈φαi |,

where |φαi〉represents a complete basis set of the correlated
orbitals, and where we omit site index i from the quasiparticle
residues za due to lattice periodicity.

The interaction term acting on the GWF produces

HG
int = 〈	G|Hint|	G〉 =

∑
i�

E�m�. (11)

The expectation value of the total Hamiltonian gives us the
total energy as a functional of the density ρ and configurational
weights m�:

E(ρ,{m�}) = 〈	0|HG
LDA|	0〉 +

∑
�

E�m� − EDC. (12)

A minimization similar to LDA is now performed. Repre-
senting density in terms of the Kohn–Sham states produces the
equations for the quasiparticles:

∂E(ρ,{m�})
∂〈ψnk| =

(
HG

LDA +
∑

α

[
∂E

∂zα

∂zα

∂nα

− ∂EDC

∂nα

]
|φα〉〈φα|

)

× |ψnk〉 = εnk|ψnk〉, (13)

∂E(ρ)

∂m�

=
∑

α

∂E

∂zα

∂zα

∂m�

+ E� = 0. (14)

Recalling the self-energy linear expansion [Eq. (1)], we see
from Eq. (13) that the effective Hamiltonian to be diagonalized
has the following form

HG = HG
LDA +

∑
α

[�α(0) − VDC,α]zα|φα〉〈φα|, (15)

where �α(0) and VDC,α are directly associated with various
total-energy derivatives that appeared in Eq. (13).

C. Gutzwiller projected Hamiltonian

It is convenient to represent all matrices in the space
of the Bloch eigenvalues εkj and wave functions |kj 〉 that
are obtained from the LDA calculation. The Gutzwiller
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Hamiltonian to be diagonalized is given by

〈kj ′|HG|kj 〉 =
∑
j ′′

εk′′j ′′

(∑
α

√
zα〈kj ′|φα〉〈φα|kj ′′〉 + δj ′j ′′ −

∑
α

〈kj ′|φα〉〈φα|kj ′′〉
)

×
⎛
⎝∑

β

√
zb〈kj ′′|φβ〉〈φβ |kj 〉 + δj ′′j −

∑
β

〈kj ′′|φβ〉〈φβ |kj 〉
⎞
⎠

+
∑

α

(1 − zα)〈kj ′|φα〉εα〈φα|kj 〉 +
∑

α

(�α(0) − VDC,α)zα〈kj ′|φα〉〈φα|kj 〉, (16)

where a subset of correlated orbitals |φα〉 is introduced. Their
levels are given by

εα =
∑
k′′j ′′

εk′′j ′′ 〈φα|k′′j ′′〉〈k′′j ′′|φα〉. (17)

The quasiparticle residues zα and the level shifts �α(0) are
obtained using the Gutzwiller procedure [24]. The double-
counting potential VDC,a corrects for the fact that the LDA
already accounts for some of the correlation effects in a

mean-field manner. The eigenvalue problem∑
j

(〈kj ′|HG|kj 〉 − δj ′jEkn)Bkn
j = 0 (18)

produces renormalized energy bands Ekn and wave functions∑
j Bkn

j |kj 〉 of the quasiparticles.

D. Charge density

In order to find a new density, we calculate a Gutzwiller
density matrix operator in the LDA representation:

ρGk
j ′j =

∑
j ′′

fkj ′′

(∑
α

√
zα〈kj ′|φα〉〈φα|k′′〉 + 〈kj ′|kj ′′〉 −

∑
α

〈kj ′|φα〉〈φα|kj ′′〉
)

×
⎛
⎝∑

β

√
zβ〈kj ′′|φβ〉〈φβ |kj 〉 + 〈kj ′′|kj 〉 −

∑
β

〈kj ′′|φβ〉〈φβ |kj 〉
⎞
⎠ +

∑
α

〈kj ′|φα〉(1 − zα)ρα〈φa|kj 〉, (19)

where

ρα =
∑
kj

fkj 〈kj |φα〉〈φα|kj 〉. (20)

Diagonalizing it produces new occupation numbers nkλ∑
j

(
ρGk

j ′j − δj ′j nkλ

)
Ckλ

j = 0, (21)

so that the density of quasiparticles in real space is given by

ρG(r) =
∑
kλ

nkλ

⎛
⎝∑

j ′
Ckλ

j ′ |kj ′〉
⎞
⎠

⎛
⎝∑

j

Ckλ∗
j 〈kj |

⎞
⎠ . (22)

E. Incompleteness of basis

To see the importance of the issue, let us examine a shift of
the LDA eigenstates εkj by an arbitrary value x. We obtain the
new Gutzwiller Hamiltonian as the old one plus the correction

〈kj ′|H̃G|kj 〉 = 〈kj ′|HG|kj 〉 + xoj ′j (k), (23)

where oj ′j (k) is a matrix that can be proved to be equal to δj ′j
only under the assumption that the LDA wave functions form
a mathematically complete basis set, i.e.,∑

j ′′
〈φα|kj ′′〉〈kj ′′|φβ〉 = δαβ. (24)

Unfortunately, modern electronic-structure methods deal with
finite basis sets, and the last relationship is only approximately
satisfied. As a result, different choices of the energy zero
for the LDA eigenvalues εkj may lead to slightly different
output, although in our application to well-localized cerium 4f

electrons, this introduces only minor noise in our calculated
results. In the following, we always assume that the LDA
eigenvalues are measured with respect to the Fermi energy
which is the only physically relevant energy in this problem.

F. Double-counting potential

As one sees from Eq. (16) the actual self-energy cor-
rection used in the LDA + G calculation is �α(0) − VDC,α.

Frequently, a so-called LDA + U version [46] of the double
counting potential VDC,α is used, that for our case is just an
orbital-independent energy shift given by

V LDA+U
DC = U (dnf − 1/2), (25)

where nf is the average number of f electrons which at the
Ce f shell is close to unity. As one sees, this correction has
just an overall level shift by U/2 and does not modify the
Gutzwiller extracted spin-orbit and crystal fields encoded in
the α dependence of �α(0). Unfortunately, it is not exactly
clear whether the overall level shift of Ce f electrons has a
physical effect, since the standard LDA + U double counting
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was introduced in connection to the Hartree–Fock value of
the self-energy which is the value at infinite frequency �(∞).
It therefore may not be suited for correcting the low-energy
physics of heavy-fermion systems.

As a result, in this work we adopt a different strategy in
order to elucidate the physics of orbital selectivity in Ce heavy-
fermion compounds: our calculations are first performed
without �a(0) correction assuming that the double-counting
potential

V
(1)

DC,α = �α(0). (26)

It has an important justification that the LDA calculated Fermi
surfaces do not acquire any modifications as was evident from
some heavy-fermion uranium compounds [47]. Second, we
introduce the crystal-field-averaged double counting

V
(2)

DC = 1

N

N∑
α

�α(0), (27)

which keeps the average position of the f level intact but al-
lows for its crystal-field modifications found self-consistently
via the LDA + G procedure. Since both V

(1)
DC,α and V

(2)
DC,α rely

on Gutzwiller extracted �α(0), which itself is obtained from
the LDA + G functional minimization procedure, the entire
method is still variational and allows an accurate estimate of
the total energy. Comparing calculations with two types of
double counting, important conclusions can be drawn about
exactly which orbitals of a given heavy-fermion system play a
major role in its electronic mass enhancement.

III. RESULTS AND DISCUSSION

We are interested in calculating the mass enhancement
parameters of cerium f electrons which in a simple single-
band theory would be given by the ratio of m∗/mLDA. A
common approach to extract this data is to compare the values
of the Sommerfeld coefficient γ evaluated using the LDA
density of states at the Fermi level NLDA(0):

γLDA = π2

3
kBNLDA(0), (28)

with the measured electronic specific heat which, according
to Fermi-liquid theory, behaves at low temperatures as γ T .
However, some care should be taken when adopting this
procedure. First, densities of states of real systems include
multiband features and contributions from both heavy and
light electrons. Second, LDA densities of states assume some
crystal-field effects which should in general be supplemented
by many-body corrections encoded in �a(0). Therefore not
only band narrowing but also level shifts are expected to occur
in real life on top of LDA. Third, many of the materials
discussed in our work undergo either antiferromagnetic or
superconducting transition before reaching T → 0 limit. We
quote the data for γexpt in Table I using the data for their lowest
temperature paramagnetic phases.

There are several other ways to access this information
that we are going to use in this work. Optical spectroscopy
experiments can provide access to effective masses but those
are frequency dependent. Angle-resolved photoemission spec-
troscopy (ARPES) experiments measure directly one-electron

spectral functions

A(k,ω) = |Im�(k,ω)|
[ω − Re�(k,ω)]2 + Im�2(k,ω)

. (29)

Here Re� is the real part and Im� is the imaginary part of the
electronic self-energy. Under the assumption of the locality of
self-energy, the quasiparticle residues

z =
(

1 − ∂Re�(ω)

∂ω

)−1

(30)

can be extracted by comparing ARPES spectra against calcu-
lated LDA energy bands.

The de-Haas—-van-Alphen (dHvA) effect is another pow-
erful experimental technique which measures the properties
of the Fermi surface under applied magnetic field [48]. LDA
calculations can identify each cyclotron orbit seen by the dHvA
experiment and find corresponding effective masses. However,
complexity in the shapes of three-dimensional (3D) Fermi
surfaces in real systems also makes this method not perfect.

It is remarkable that the LDA + G calculation returns the
orbital-dependent quasiparticle residues zα directly. In Table I,
we are quoting these mass enhancement data and not those
obtained via our calculated LDA + G densities of states.

A. α Ce and γ Ce

We first discuss our calculations for the cerium metal which
is famous for its isostructural phase transition from its α to
γ phase that is accompanied by a 15% volume expansion,
and which has attracted great attention in the past [4,5,49–52]
and current [43] literature. It is remarkable that our LDA + G
calculation can correct most of the error in predicting the
volume of the α phase for both types of the double countings
that we explore in this work. Moreover, as Fig. 1 illustrates, it
clearly shows a double-well type of behavior for the energy vs
volume [with smaller (larger) minima corresponding to α (γ )
phases] when using the crystal-field-averaged double counting
V

(2)
DC and the Hubbard Us within the range between 3.5 and

5.5 eV. This is in accord with the previous LDA + DMFT
studies for cerium [50]. Similar behavior has been also found
when studying α → δ transition in metallic plutonium [53].

The specific heat measurement of α Ce gives its Som-
merfeld coefficient γ ∼ 13 mJ/(mol K2) [3]. The optical
spectroscopy experiment [54] estimates the effective mass to
be ∼6me in α Ce and to be ∼20me in γ Ce, indicating the
itinerant (localized) features of the α (γ ) phases. However, the
estimated optical effective masses are frequency dependent.

Figure 2 shows the dependence of the quasiparticle residues
as a function of the Hubbard U for volumes corresponding to α

and γ Ce where the left (right) plots represent our calculations
with V

(1)
DC (V (2)

DC) type of double countings. It is clear when
crystal or spin-orbital corrections are not taken into account
(Fig. 2, left plot), the effective masses for various cerium
orbitals are very similar in values and are not very strongly
enhanced even for large values of U . (We use relativistic
cubic harmonics representation where j = 5/2 level is split
onto �7, �8, and j = 7/2 onto �6,�7,�8 states.) The situation
changes dramatically when we account for the local self-
energy correction (Fig. 2, right plot): a Coulomb renormalized
spin-orbit splitting pushes �7,�8 states of j = 5/2 manifold
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FIG. 1. Calculated total energy vs volume using the LDA + G
method with several values of Hubbard U .

down and �6,�7,�8 states of j = 7/2 manifold up. This results
in redistributing the occupancies of the f electrons which
now reside mainly at the j = 5/2 level. Thus, the effective
degeneracy is 6 instead of 14 and the quasiparticle residues
become much more sensitive to the values of U .

Actual comparison of the quasiparticle residues with
experiment needs an accurate estimate of the Hubbard U for
cerium f electrons which is typically around 5 eV, although,
if the Hund’s rule with J ∼ 1 eV (important for the virtual f 2

FIG. 2. (Color online) Calculated dependence of quasiparticle
residues as a function of Hubbard U in α and γ phases of cerium
metal using the LDA + G approach.

state) is taken into account, the effective interaction is reduced
a little bit to U − J. Due to a great sensitivity of quasiparticle
residues to this parameter, and for the purposes of our work, we
simply show in Table I the range of zs that one can obtain for
the values of U in the range between 4 and 5 eV. For α Ce we
find them to be between 0.55 and 0.33 which are values close
to their experimental estimates. This is also consistent with the
result of the LDA + DMFT calculation [55]. While there is no
specific heat data for the γ phase, optical measurements [54]
show a factor of 3 to 4 enhanced masses as compared to the
ones of the α phase, and our reduced values of zs are in accord
with this trend.

B. Ce-115s

We next discuss our applications to the so-called 115 series
of cerium heavy-fermion compounds CeMIn5 (M = Co, Rh,
Ir). They have a tetragonal HoCoGa5-type structure which
results in additional splitting of all �8 quadruplets into �6

and �7 doublets. Despite having similar crystal structure and
almost identical LDA electronic structures, these systems show
very different properties, a fact which has attracted great inter-
est. CeCoIn5 is a heavy-fermion superconductor with critical
temperature Tc = 2.3 K, highest known in Ce-based systems
[6] and with a Sommerfeld coefficient γ ∼= 290 mJ/(mol K2)
measured just above Tc. CeIrIn5 is also a superconductor with
Tc = 0.4 K [8] with γ = 720 mJ/(mol K2) above Tc that is
nearly temperature independent. CeRhIn5, on the other hand,
is an antiferromagnet with Néel temperature TN = 3 K but
becomes a superconductor with Tc = 2.1 K above a critical
pressure Pc ∼ 16 kbar [7]. From the C/T data, there is a peak
at TN = 3.8 K, indicating the onset of magnetic ordering.
In order to find the electronic specific heat, one needs to
use isostructural, nonmagnetic LaRhIn5 to subtract the lattice
contribution to C. However, it is difficult to define precisely
the electronic specific heat above TN due to the peak at TN .
A simple entropy-balance construction gives a Sommerfeld
coefficient γ � 420 mJ/(mol K2) for T > TN .

Those different properties are considered as the result of
the localized vs itinerant nature of the 4f electrons. The
dHvA measurements for CeCoIn5 have shown the effective
cyclotron masses to be within the range from 9m0 to 20m0

which is consistent with the specific heat data [56,57]. The
LDA calculation with a model of itinerant f electrons shows a
reasonable agreement with the dHvA data [58] while complete
localization of the f electrons is needed to get the agreement
with the angle-resolved photoemission spectroscopy (ARPES)
data [59]. The dHvA experiment has been performed also
for the antiferromagnetic state of CeRhIn5 [60,61]. Although
an earlier LDA calculation with the itinerant model shows
some agreement with the experimental data [61], the localized
nature of the f electrons was confirmed by the dHvA
measurements in CexLa1−xRhIn5 [62] and by comparing the
Fermi surfaces between CeRhIn5 and LaRhIn5 [63]. With the
application of pressure, the dramatic change of the Fermi
surface was observed indicating the change from the localized
antiferromagnetic state to the itinerant heavy-fermion state
[64]. For CeIrIn5, there is some experimental controversy. The
effective cyclotron mass m∗

c is observed in the range from
6.3me to 45me, indicating a large enhancement [65]. LDA
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FIG. 3. (Color online) Calculated dependence of quasiparticle
residues as a function of Hubbard U in CeCoIn5 using the LDA + G
approach.

with itinerant f electrons [58,65] explains well the geometry
and the volume of the Fermi surface but the band masses are
much smaller than the cyclotron masses. The photoemission
spectrum is well described by the LDA + DMFT calculation
[27] where the degree of itineracy in CeIrIn5 is thought to be
even larger than in CeCoIn5 [66]. Also, this method shows
the calculated effective masses to be of the same order as the
experimental ones [67]. On the other hand, the ARPES study
[68,69] shows that CeIrIn5 and CeRhIn5 have nearly localized
4f electrons.

The results of our paramagnetic LDA + G calculations for
all three 115 compounds are presented in Table I. Similar to
our calculation for cerium, we find that the calculated effective
masses are only moderately enhanced (z ∼ 0.3 to 0.5) if we
do not account for the crystal-field or spin-orbit corrections
to the self-energy on top of the LDA. When we perform self-
consistent calculations including level shifts, much smaller
values of the quasiparticle residues can be reached. Figure 3
illustrates this behavior for CeCoIn5. The situation here
is similar to cerium where the spin-orbit coupling gets
renormalized by correlations making the effective degeneracy
of the f electrons equal 6. Actual values of the quasiparticle
residues in Table I are given for U equals 4 and 5 eV: we
see that the estimated z is the largest for CeCoIn5 while the
f electrons are more localized in CeRhIn5 and CeIrIn5. The
residual discrepancies can be attributed to the above-discussed
uncertainties seen in experiments and also to the intrinsic error
connected to the Gutzwiller procedure, as our prior studies of
the performance of this method against quantum Monte Carlo
have shown a 30% overestimation of zs [70].

C. Ce-122s

We finally discuss our applications to Ce 122 types of
systems. By itself, RM2X2 is an enormous class of ternary
intermetallic compounds with over a hundred members, where
R is a rare-earth element, M denotes a transition metal
(3d, 4d, or 5d), and X is either silicon or germanium.

After its first discovery of superconductivity with a transition
temperature Tc � 0.5 K in CeCu2Si2 [13], the interest in
this family awakens, especially due to the interplay between
antiferromagnetic and superconducting orders. Here we focus
on the subclass CeM2Si2 (M = Mn, Fe, Co, Ni, Cu, Ru, Rh,
Pd, Ag) where all members have body-centered tetragonal
ThCr2Si2-type structure with space group I4/mmm.

For the M = 3d series, no magnetic order is found except
for CeMn2Si2 where the Mn local moments order below 379 K
[71]. For CeCu2Si2, the electronic specific heat coefficient
γ � 1000 mJ/(mol K2) is the largest one among this family.
On the other hand, CeFe2Si2, CeCo2Si2, and CeNi2Si2 are
weak paramagnets with relatively small values of γ which are
shown in Table I. These three compounds are also known as
valence fluctuation systems.

For M = 4d series, first, CeRu2Si2 is known as a archetypal
Kondo lattice compound: it is a paramagnet with a relative
large γ � 350 mJ/(mol·K2). The other three are antiferromag-
nets at low temperatures: CeRh2Si2 has the highest ordering
temperature 36–39 K [72,73] while CePd2Si2 [21,72] and
CeAg2 Si2 [72,74] order antiferromagnetically at 8.5–10 K an
8–10 K, respectively. With the application of pressure, super-
conductivity was found in CeRh2Si2 [75] and in CePd2Si2 [76].
CeRu2Si2 is unique in this subclass since the superconductivity
is not observed down to a few mK. This makes it the best target
material for studying its heavy-fermion state. Interestingly,
here a metamagnetic transition was found and extensively
studied [77]. The cyclotron effective mass mc ∼ 120me is
observed in the dHvA experiment indicating the renormalized
heavy-fermion state [78]. The electronic structure calculation
using LDA with itinerant f -electron model qualitatively
explains the dHvA data [79–81]. The metamagnetic transition
was also studied by dHvA experiments [82–84] demonstrating
that the f -electron character is changed from itinerant to
localized across the metamagnetic transition. All members
of this family of compounds were put into the Doniach
(TN vs JK ) phase diagram [85]. Later, using the LDA + DMFT
scheme, the phase diagram was renewed [28].

FIG. 4. (Color online) Calculated dependence of quasiparticle
residues as a function of Hubbard U in CeMn2Si2 and CeRu2Si2

using the LDA + G approach.
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Results of our applications to Ce 122s are presented in
Table I. They assume a paramagnetic heavy-fermion state
for all systems and the experimental γ s are extracted from
the specific heat data measured above the temperatures of
antiferromagnetic-superconducting transition. For the 122
systems with 3d elements, such as Mn, Fe, Co, and Ni,
the LDA + G procedure returns only moderately enhanced
electron masses which we find in agreement with experiment.
An example of the dependence of zα vs U is shown in Fig. 4 for
Mn based 122, where the Coulomb interaction renormalizing
spin-orbit splitting is essential to reduce the orbital degeneracy
from 14 to 6 when using the crystal-field-averaged double
counting, V (2)

DC. This is similar to our findings in Ce and Ce-115
systems. Our calculation for Cu based 122 shows that its
quasiparticle residues are very sensitive to the values of U

above 4 eV. In fact, they begin to reach almost zero when
U approaches 5 eV. It is also known experimentally that this
system shows enormous mass enhancement just before it goes
into the superconducting state.

The 122 compounds with 4d elements (Ru, Rh, Pd,
Ag) exhibit strongly renormalized quasiparticle masses. Our
LDA + G calculations listed in Table I correctly follow this
trend where we see a strong reduction of zs as compared
to our calculations with 3d elements. We also find another
interesting effect: with increasing U the effective degeneracy
of the f electrons acquires a reduction not only due to the
Coulomb-assisted renormalization of spin-orbit splitting but
also due to renormalization of the crystal fields: Fig. 4 shows

this behavior for Ru-122 where we see that the values of z

become different for various crystal-field levels of the j = 5/2
manifold: one �6 and two �7 doublets. We find that a similar
effect occurs in all other 4d types of Ce 122s and the last
column of Table I lists our results showing which particular
orbitals exhibit the strongest mass enhancement.

IV. CONCLUSION

In conclusion, using a recently proposed LDA + G ap-
proach we have studied quasiparticle mass renormalizations
in several classes of Ce heavy-fermion compounds. We
find that the calculation gives correct trends across various
systems as compared to the measured Sommerfeld coefficient
and reproduces the order of magnitude of the experimental
value. We also uncover an interesting orbital dependency of
the quasiparticle residues for each studied compound which
provides an important physical insight to how correlations
affect the effective degeneracy of cerium f electrons placed
in various crystallographic environments.
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