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Migdal’s theorem plays a central role in the physics of electron-phonon interactions in metals and
semiconductors, and has been extensively studied theoretically for parabolic band electronic systems in three-,
two-, and one-dimensional systems over the last fifty years. In the current work, we theoretically study the
relevance of Migdal’s theorem in graphene and Weyl semimetals which are examples of 2D and 3D Dirac
materials, respectively, with linear and chiral band dispersion. Our work also applies to 2D and 3D topological
insulator systems. In Fermi liquids, the renormalization of the electron-phonon vertex scales as the ratio of sound
(vs) to Fermi (vF ) velocity, which is typically a small quantity. In two- and three-dimensional quasirelativistic
systems, such as undoped graphene and Weyl semimetals, the one loop electron-phonon vertex renormalization,
which also scales as η = vs/vF as η → 0, is, however, enhanced by an ultraviolet logarithmic divergent correction,
arising from the linear, chiral Dirac band dispersion. Such enhancement of the electron-phonon vertex can be
significantly softened due to the logarithmic increment of the Fermi velocity, arising from the long range Coulomb
interaction, and therefore, the electron-phonon vertex correction does not have a logarithmic divergence at low
energy. Otherwise, the Coulomb interaction does not lead to any additional renormalization of the electron-phonon
vertex. Therefore, electron-phonon vertex corrections in two- and three-dimensional Dirac fermionic systems
scale as vs/v

0
F , where v0

F is the bare Fermi velocity, and small when vs � v0
F . These results, although explicitly

derived for the intrinsic undoped systems, should hold even when the chemical potential is tuned away from the
Dirac points.
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I. INTRODUCTION

Two-dimensional honeycomb lattice, occupied by carbon
atoms, offers an example of a novel state of matter, where
the low energy excitations are described by two-dimensional
pseudorelativistic Dirac equation [1,2]. Conical dispersion of
massless quasiparticles also emerges on the surface of strong
Z2 topological insulators [3], such as Bi2Se3, as well as topo-
logical crystalline insulators [4], SnTe for example [5]. Despite
such universal description at low energies, the microscopic
origins of the quasirelativistic excitations in these materials are
significantly different. While the lack of inversion symmetry
in the honeycomb lattice produces the Dirac quasiparticles
in graphene [6], the time-reversal symmetry and the mirror
symmetry, respectively, give rise to such excitations on the sur-
face of strong Z2 and crystalline topological insulators [3,4,7].
Recently, Weyl semimetals, described by three-dimensional
massless Dirac equation, have also been realized in various
noncentrosymmetric materials, such as Cd3As2 [8], Ni3Bi [9].
In contrast to the conventional Fermi liquids, where low energy
excitations live around a closed surface (Fermi surface), in all
these systems the long-lived quasiparticles can only be found
in the vicinity of few special points in the Brillouin zone,
where the valence and the conduction bands touch each other.
These are the so-called Dirac points, and the diverse materials
containing these Dirac points are often classified together as
Dirac materials.

In addition to the fermionic degrees of freedom, smooth
lattice deformations or motion of charge-neutralizing ionic
background give rise to new excitations in the system,
phonons, which exist in all solid state systems as fundamental
excitations of the lattice degrees of freedom. Phonon modes
can also arise on the surface of topological insulators from its
slowly varying deformations [10]. Mutual couplings of these

two degrees of freedom, the electron-phonon interactions, can
lead to interesting many-body phenomena such as supercon-
ductivity [11]. Phonon driven pairing can also occur for chiral
fermions, living on the surface of topological insulators, where
the chemical potential naturally resides inside the conduction
band, and in turn supports a finite Fermi surface [12]. Even
though electron-phonon interactions can lead to significant
renormalization of various single-particle quantities, such as
electronic self-energy, in a seminal work, Migdal showed a
long time ago that the correction or renormalization of the
electron-phonon vertex due to the quantum fluctuations scales
as (m/M)1/2, where m and M are the electronic and ionic
masses, respectively [13,14]. Therefore, the renormalization of
the electron-phonon vertex is typically small in Fermi liquids,
since m � M . Although Migdal’s original work dealt with
three-dimensional Fermi liquids, later his work has been ex-
tended to two [15] and one [16] dimensional Fermi systems as
well. On the other hand, the electron-phonon vertex correction
can be significant, and consequently the Migdal’s theorem
breaks down, when the Debye frequency is comparable to the
Fermi energy [17], or in the presence of van Hove singularities
[18]. Additionally, the higher order vertex corrections, which
we neglect here, can also become significant at intermediate
coupling [19]. Hence, in the context of recently emerging two-
and three-dimensional Dirac materials, a question arises quite
naturally: Does the electron-phonon vertex renormalization in
the quasirelativistic systems vanish or not as η(=vs/vF ) → 0?
Or, in other words, does the Migdal’s theorem for the smallness
of the electron-phonon vertex renormalization hold for Dirac
materials. This is the question that is addressed and answered
in the current paper.

In this paper, we wish to provide an answer to this
question by taking into account the electron-phonon inter-
actions in undoped (intrinsic) 2D graphene [20] and 3D Weyl
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semimetals. Our results are also applicable to the surface states
of undoped topological insulators, when the chemical potential
(μ) is pinned at the Dirac point. We will also comment on the
doped situation away from the Dirac point, showing that our
results apply equally well to the doped situation.

The rest of this paper is organized as follows. In the
next section, we briefly discuss the electron-phonon vertex
corrections and Migdal’s theorem in three-, two-, and
one-dimensional Fermi liquids with parabolic band dispersion
in order to provide a context and notations for our new
results on the Dirac materials. In Sec. III, we discuss the
renormalization of the electron-phonon vertex in graphene.
Section IV is devoted to the discussion of electron-phonon
interaction and vertex corrections in Weyl semimetals. Our
results are summarized in Sec. V. We relegate some details of
the calculation to the Appendices.

II. MIGDAL’S THEOREM FOR NONRELATIVISTIC
FERMIONS WITH PARABOLIC BAND DISPERSION

We begin our discussion by reviewing the electron-phonon
vertex renormalization for nonrelativistic fermions. Our
derivation closely follows the original work of Migdal [13].
The Hamiltonian describing the electron-phonon interaction
has the form

H =
∑

k

εkc
†
kck +

∑
q

�q(a†
qaq) + He-ph, (1)

where c
†
k and ck are, respectively, the fermionic creation and

annihilation operator. The same quantities for phonons are
represented by a

†
q and aq , respectively. Phonon dispersion is

given by �q = vsq, where vs is the velocity of sound in the
system. For simplicity the spin index of fermions is suppressed
here. The electron-phonon interaction is represented by

He-ph =
∑
k,k′,q

αqc
†
kck′ (a†

q + aq)δk′,k−q, (2)

where

αq = λq

√
�

�qρm

, (3)

and ρm is the ionic mass density in d dimensions. Hereafter
we set � = 1, and λ ∼ EF (Fermi energy) is the deformation
potential, coupling defining the basic electron-phonon inter-
action strength. The fermion and the phonon single-particle
propagator is defined, respectively, by the Green’s function
G0 and D0 given below [21]:

G0(ε,p) = 1

εp − ε − i	(p)
, D0(ω,q) = 2 �q

ω2 − �2
q + iδ

,

(4)

where δ,	 are the standard sign functions for fermionic and
bosonic propagators.

The leading order correction to the electron-phonon vertex
arises from the diagram shown in Fig. 1, and its contribution

(ω ,q)

(ε +ω /2, p +q/2)

(ε+ω /2, p+q/2)

(ε −ω /2, p −q/2)

(ε  −ω /2, p −q/2)

(ε− ε  , p−p )

1

1

1

1
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FIG. 1. One loop correction of the electron-phonon vertex. The
wavy (solid) lines represent phonons (fermions).

reads as

�0(p,q) =
∫

ε1, �p1

α2
p−p1

D0(ε − ε1,p − p1)

×G0

(
ε1 + ω

2
,p1 + q

2

)
G0

(
ε1 − ω

2
,p1 − q

2

)
.

(5)

After completing the frequency integral (over ε1), we obtain

�0 = λ2

ρmvs

∫
�p1

| �p − �p1|
ε �p1+ �q

2
− (

�p1−p + ω
2

) − i	
(
�p1−p + ω

2

)
× 1

ε �p1− �q
2
− (

�p1−p − ω
2

) − i	
(
�p1−p − ω

2

)
+O

(
E−2

F

)
. (6)

In performing the integral over ε1, we have ignored the terms
coming from the poles of the fermion Green function G0,
since these are small in the limit �q � EF . Next we linearize
the spectrum around the Fermi surface. Then,

∫
pd−1dp →∫

ρ(E)dE, where ρ(E) = pd−1/vF is the density of states,
and vF (typically � vs) is the Fermi velocity. For the parabolic
dispersion in two dimensions, the density of states ρ(E) =
kF /vF is independent of E, where kF is Fermi momentum.
Assuming ρ(E) to be a constant near the Fermi energy, one
can write the vertex correction as

�0 = λ̂FL,d (vsq)
∫

d�θ

1

vF q cos θ − ω + iδsign(ω)

×
∫ ∞

−∞
dE

[
1

E + vF q cos θ

2 − ω
2 − i	

(
�kF

− EF + ω
2

)
− 1

E − vF q cos θ

2 − ω
2 − i	

(
�kF

− EF − ω
2

)
]

, (7)

where λ̂FL,d = λ2kd−1
F

vF ρmv2
s

is the dimensionless electron-phonon
coupling in d-dimensional Fermi liquid. The integral over E

leads to a combination of 
 functions, [
(�kF
− EF + ω

2 )
−
(�kF

− EF − ω
2 )], which can yield only a factor of unity.
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Upon completing the angular integrations, and assuming
ω ∼ vsq � vF q, the electron-phonon vertex correction in d =
3,2 becomes

�0 = λ̂FL,d

[
vs

vF

(
vs

vF

+ iπ

) ]
≡ λ̂FL,d η (η + iπ ) , (8)

where η = vs/vF . In one dimension there is no angular inte-
gral, and for vF � vs , the electron-phonon vertex correction
is simply �0 = ηλ̂FL,1. Therefore, when the velocity of sound
(vs) is much smaller than the Fermi velocity (vF ), which is
typically the situation in solid state materials, the correction
to the electron-phonon vertex is always suppressed by a
factor vs/vF , and can therefore be neglected in two and three
dimensions. In one dimension, however, this result is true
only if we neglect the backscattering, which leads to Peierls
instability at weak interactions [22]. We do not discuss the
rather special (and pathological) 1D case any more in this
work, concentrating entirely on 2D and 3D systems with our
focus being on graphene (2D) and Weyl semimetals (3D).

Notice, we here present the electron-phonon vertex cor-
rection as a function of the ratio vs/vF , which is slightly
different from the results quoted in standard text books, stating
�0 ∼ (m/M)1/2 [14,23]. These two results are, however,
completely equivalent. On the other hand, upon casting �0 as a
function of vs/vF , we can compare the electron-phonon vertex
corrections in Fermi liquids with the ones in graphene and
Weyl semimetals, which we discuss next. In fact, expressing
the electron-phonon vertex function in terms of a ratio of the
characteristic phonon (sound) velocity and the electron (Fermi)
velocity is the appropriate theoretical (as well as physical)
approach, since this result is more general than introducing an
unnecessary ionic (or electronic) mass into the formalism.

III. ELECTRON-PHONON INTERACTION
AND MIGDAL’S THEOREM IN GRAPHENE

We now consider the interaction of low energy Dirac
quasiparticles in half-filled (intrinsic) undoped graphene with
in-plane 2D acoustic phonon. Let us define a two component
spinor �
 = [u( �K + �p), v( �K + �p)], where u and v are the
fermionic annihilation operators on two triangular sublattices
of the honeycomb lattice, and �K corresponds to the Dirac
point [1,2]. In this basis the noninteracting Hamiltonian
with only nearest-neighbor hopping in graphene takes the
form ĤD(p) = vF (σ1px + σ2py), at low energies (| �p| � | �K|),
where σ1,2 are the standard two-dimensional Pauli matrices.
For simplicity, we here suppress the valley and spin degrees
of freedom of Dirac fermions since acoustic phonons, which
we are considering in the current paper, do not couple the
valleys or spins. The coupling of Dirac fermions with acoustic
phonons is given by He-ph = αq(�†�)�, where � represents
phonon field, and αq is defined in Eq. (3) [20,24]. Hereafter,
we set � = 1.

The Euclidean action corresponding to the electron-phonon
interaction in d dimensions reads as S = ∫

dd �xdτL, where τ

is the imaginary time and

L = �†[∂τ + ĤD]� + �†[∂τ + vsq]� + He-ph. (9)

Scale invariance of the effective Euclidean action man-
ifests the scaling dimensions of various quantities as

follow: [x] = −1,[τ ] = −z, yielding [�] = [�†] = d/2 =
[�] = [�†], where z is the dynamical critical exponent, which
in our problem is unity. The Fermi and the sound velocity
scales as [vF ] = [vs] = z − 1. The electron-phonon vertex
αq ∼ √

q, and its scaling dimension is [αq] = z − d/2 − 1/2.
Therefore, the bare electron-phonon coupling is irrelevant
in graphene (d = 2), and the one loop correction to the
electron-phonon vertex scales ∼ �, where � is the ultraviolet
cutoff for the conical dispersion.

Next we evaluate the one loop renormalization of the
electron-phonon vertex in graphene (see Fig. 1), which reads
as

�0 =
∫

dν

2π

d2 �p
(2π )2

α2
pD0(ν,p)G0(ω − ν,k − p)

×G0(ω + α − ν,k + q − p), (10)

where

D0(ν,p) = 2vsp

ν2 + (vsp)2
, G0(ν,p) = −iν + ĤD(p)

ν2 + v2
F p2

. (11)

Notice that the momentum routing here is slightly different
than that in the previous section (consult first paragraph
of Appendix A). We here only present the central results,
but details of the calculation can be found in Appendix A.
Combining the denominators in Eq. (10) using the Feynman
parameters (x,y) and completing the frequency integral over
ν, we obtain

�0 = λ2

8ρm

∫ 1

0
dxdy

∫
d2 �p

(2π )2

[
− p2

[	]3/2
+ 3

p2F

[	]5/2

]
, (12)

where 	(=	1 + 	2) and F are lengthy functions of frequen-
cies, momenta, and two velocities (vF , vs), shown in Eqs. (A3)
and (A5), respectively.

Next we evaluate the momentum integral over p, after
promoting it from physical two dimensions to d dimensions,
where d = 1 + ε, since the electron-phonon interaction (αq)
is marginal for d = 1. This procedure allows us to capture the
divergent terms in �0 quite efficiently. Otherwise, with β =
(1 − x − y)v2

s + (x + y)v2
F , the total divergent contribution in

�0 goes as

�div
0 = λ2

16πρm

∫ 1

0
dxdy

[
− 1

β3/2
+ 3v2

F

β5/2

]
�

(
− ε

2

)

=
[

λ2�

4πvF ρmv2
s

]
log

(
�

�̃

)
G(η) ≡ λ̂D,2 log

(
�

�̃

)
G(η),

(13)

where λ̂D,2 = λ2�
4πvF ρmv2

s
is the dimensionless electron-phonon

coupling in graphene, and for η(=vs/vF ) < 1

G(η) = η(1 − η(2 − η2)−1/2)

1 − η2
. (14)

The final expression in Eq. (13) is obtained by rewriting the
divergent term �(− ε

2 ) = �ε log(�/�̃) with ε = 1, in terms of
the ultraviolet cutoff �∼1/a, where a is the lattice spacing
in graphene and �̃(� �) ∼

√
k2 + q2 + k · q or ( |ω|

vF
+ |α|

vs
)

(whichever is larger) in d = 2. Variation of G(η) with η is
shown in Fig. 2 (left), and as η → 0, G(η) → η + O(η2).
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FIG. 2. (Color online) G(η)(left) and H (η)(right) as functions of η = vs/vF .

Comparing λ̂D,2 and λ̂FL,2, we find that the ultraviolet cutoff �

for the conical Dirac dispersion plays the role of Fermi momen-
tum kF of the nonrelativistic fermions. The leading order finite
term in �0 as k,q,ω → 0, while the frequency of the incoming
phonon (α) is kept finite, reads as �

f in

0 = λ̂D,2H (η)( α
vF �

). The
velocity dependent function H (η) is shown in Fig. 2 (right),
and as η → 0, H (η) → (2 − √

2)η2 + O(η3). However, �
f in

0
vanishes as we send the ultraviolet cutoff � → ∞, and does
not contribute to the renormalization of the electron-phonon
vertex, and �0 = �div

0 .
Therefore, the renormalization of the electron-phonon

vertex αq develops a logarithmic divergent contribution [see
Eq. (13)], and as η → 0 it becomes �0 = ηλ̂D,2 log (�/�̃).
The extra logarithmic divergence in the Dirac system can be
understood in the context of the derivation of Migdal’s theorem
in the parabolic band electronic systems (presented in Sec. II)
in terms of the difference in the density of states ρ(E) between
graphene and systems with a Fermi surface. While the density
of states in two dimension systems with parabolic dispersion
is independent of energy [as assumed in Eq. (7)], the density
of states in the Dirac system vanishes linearly as the energy
(E) goes to zero at the Dirac point. Introducing such a linear E

dependence in the density of states at the Fermi energy allows
us to obtain the same logarithmic divergent result from Eq. (7)
as we have obtained for the conical dispersion.

If we take the long range Coulomb interaction in graphene
into account, the Fermi velocity (vF ) also increases logarith-
mically as

vF = v0
F

[
1 + αFS log

(
�

�e

)]
, (15)

where αFS is the fine-structure constant, �e is the electron
momentum, and v0

F is the bare Fermi velocity [25,26].
Otherwise, in two spatial dimensions electronic charge does
not get renormalized due to the nonanalytic nature of the
Coulomb propagator (∼1/|q|). Consequently, the velocity
dependent function G(η) → η + O(η2) is suppressed at least
by a factor log(�/�e). Hence, the logarithmic enhancement
of Fermi velocity softens the logarithmic divergence in �0,
and the electron-phonon vertex correction in graphene scales
as η0 = vs/v

0
F , which is precisely consistent with Migdal’s

theorem, and is small when η0 is small, as in ordinary
parabolic band metallic Fermi liquids. We note, however,
that if electron-electron interaction is neglected and only

electron-phonon interaction is taken into account, then the
vertex correction to the electron-phonon coupling at the Dirac
point develops an ultraviolet divergence as the renormalization
group flow goes to lower energy. This is an inevitable feature of
all Dirac materials, implying that although Migdal’s theorem
remains formally valid, the coupling develops an ultraviolet
logarithmic divergence at the Dirac point.

Coulomb interaction, in principle, can lead to additional
renormalization of the electron phonon vertex [27], which
reads as

�C
0 = e2

∫
dν

2π

d2 �p
(2π )2

DC
0 (ν,p)G0(ω − ν,k − p)

×G0(ω + α − ν,k + q − p), (16)

where DC
0 (ν,p) = 1/|p| is the Coulomb propagator, and e is

electronic charge. The only term that remains finite as we send
the ultraviolet cutoff � → ∞ is obtained simply by setting
k,q,ω,α = 0 in the above expression. However, this term

�C
0 = e2

∫
d2 �p

(2π )2
DC

0 (ν,p)
∫ ∞

−∞

dν

2π

−ν2 + v2
F p2(

ν2 + v2
F p2

)2 ≡ 0,

(17)

dictating that Coulomb interaction by itself does not renor-
malize the electron-phonon vertex in graphene. But, Coulomb
interaction among the electrons themselves produces an ultra-
violet divergence in the bare Fermi velocity which precisely
cancels the ultraviolet enhancement arising in the electron-
phonon vertex, maintaining the strict validity of Migdal’s
theorem in graphene.

IV. MIGDAL’S THEOREM IN WEYL SEMIMETAL

Next we evaluate the renormalization of the electron-
phonon vertex in 3D Weyl semimetals. The massless Dirac
Hamiltonian in three dimensions takes the form ĤD =
vF (σ1px +σ2py + σ3pz), and the electron-phonon coupling is
He-ph = αq(�†�)�. Scaling dimension of αq (see previous
section) dictates that the bare electron-phonon vertex is
irrelevant in Weyl semimetals (d = 3), and one loop correction
of αq scales as �2.

The vertex correction is once again given by Eq. (10), with
a three-dimensional momentum integral. However, by virtue
of computing the momentum integral in general d-spatial
dimensions, we can immediately extract the leading ultraviolet
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FIG. 3. (Color online) Solutions of the renormalized Fermi ve-
locity vF (red) and fine structure constant α (blue), as a function of
momentum cutoff log (�/�e), for a particular choice of initial values
v0

F = 0.3 and α0
FS = 1.

divergent term in �0 in terms of � and �̃ in Weyl semimetals
from Eq. (13), since �(− ε

2 ) = �2 log(�/�̃) in d = 3, yielding

�0 = �2λ2

4πvF ρmv2
s

G(η) log

(
�

�̃

)
≡ λ̂D,3G(η) log

(
�

�̃

)
,

(18)

where λ̂D,3 = �2λ2

4πvF ρmv2
s

is the dimensionless electron-phonon
coupling in Weyl semimetals. We here neglect the contribution
from the finite terms, since they all vanish upon setting the
ultraviolet cutoff � → ∞.

Hence, the electron-phonon vertex correction for three-
dimensional Weyl semimetals, which as η(=vs/vF ) → 0
reads as �0 = ηλ̂D,3 log(�/�̃), also develops an ultraviolet
logarithmic divergent contribution. However, in three dimen-
sions, due to the analytic structure of the Coulomb propagator
(∼1/q2), both the electronic charge and the Fermi velocity
get renormalized, which can be captured from the following
renormalization group flow equations [28–31]

dαFS

d log (�/�e)
= −4α2

FS

3π
,

dvF

d log (�/�e)
= vF

2αFS

3π
.

(19)
Solution of these two coupled flow equations is shown in
Fig. 3. Therefore, the long range Coulomb interaction in Weyl
semimetals also produces a logarithmic enhancement of the
Fermi velocity, similar to graphene. Thus the logarithmic
divergence in �0 gets suppressed even in d = 3. As a result, the
electron-phonon vertex correction scales as η0 = vs/v

0
F , where

v0
F is bare Fermi velocity in Weyl semimetals. Thus, Migdal’s

theorem remains formally valid in the 3D Weyl semimetals
when vs � v0

F , just as in 2D graphene.
Renormalization of the electron-phonon vertex in Weyl

semimetals, arising from the Coulomb interaction, is given
by Eq. (16), with DC

0 (ν,p) = 1/|p|2. However, the term that
survives when we send the cutoff � → ∞ is zero, as shown
in Eq. (17). Therefore, the electron-phonon vertex in Weyl
semimetals does not get renormalized due to the Coulomb
interaction, similar to the corresponding situation in graphene.

V. SUMMARY AND DISCUSSION

To summarize, we here address the relevance of electron-
phonon vertex correction in graphene and Weyl semimetals. In
two- and three-dimensional Fermi liquids the vertex correction
at one loop level scales as the ratio of sound (vs) to Fermi
velocity (vF ), which is typically a small quantity. In one-
dimensional Fermi gas, a similar conclusion holds only if we
neglect the effect of backscattering, which leads to Peierls in-
stability at arbitrarily weak couplings [22]. Taking into account
the coupling of linearly dispersing acoustic phonons [20,24]
with massless Dirac fermions in graphene (d = 2) and Weyl
semimetals (d = 3), we show that renormalization of electron-
phonon vertex is �0 = ηλ̂D,d log(�/�̃), as η(= vs/vF ) → 0,
where λ̂D,d (= λ2�d−1

4πvF ρmv2
s
) is the dimensionless electron-phonon

coupling in the d-dimensional Dirac system. Here, � cor-
responds to the ultraviolet cutoff for the conical dispersion
of Dirac quasiparticles, and �̃ is a combination of electron
and phonon momenta/frequencies. Therefore, the electron-
phonon vertex corrections in graphene and Weyl semimetals
suffer ultraviolet logarithmic divergent correction, which,
however, gets suppressed due to the logarithmic enhancement
of the Fermi velocity, arising from the long range Coulomb
interaction between the electrons themselves, yielding vF ∼
v0

F log(�/�e), where v0
F is the bare Fermi velocity and �e ∼

electron momentum [25,26,28–31]. The Coulomb interaction
otherwise does not renormalize the electron-phonon vertex in
graphene or Weyl semimetals. Hence, the vertex correction in
two- and three-dimensional Dirac fermionic systems scales as
vs/v

0
F , and Migdal’s theorem, associated with the smallness of

the electron-phonon vertex corrections in Fermi liquids, is also
valid for pseudorelativistic systems, at least when vs � v0

F .
It is interesting to contrast electron-electron and electron-

phonon interaction effects on graphene with respect to the
ultraviolet logarithmic divergence arising from the large
momentum cutoff inherent in the chiral, linear band dispersion
of Dirac materials. It is well known that the ultraviolet
divergence does not affect the electron-electron interaction
vertex correction, affecting only the self-energy function, and
thus leading to a logarithmic velocity renormalization [26] and
consequently to a logarithmic running of the graphene effective
fine structure constant characterizing the electron-electron
interaction strength. By contrast, electron-phonon interaction
does not affect the self energy of graphene [12] while affecting
the electron-phonon vertex function through the logarithmic
ultraviolet factor. Including both effects to the leading order,
however, the divergent logarithm drops out of the vertex
correction restoring the usual Migdal’s theorem, since the
ultraviolet logarithmic term cancels out, as we argue above. We
believe that this result of ours, although derived in the leading
order, remains valid to all orders in the electron-phonon vertex
function as can be verified by a dimensional power counting.

We expect that our results hold even for doped (extrinsic)
graphene and Weyl semimetals, as well as for the surface states
of topological insulators, where the chemical potential (μ) is
inside the conduction band. At finite doping electron-phonon
interactions give rise to both intraband as well as interband
excitations. The ultraviolet divergent term in the vertex
correction �0, arising from interband excitations, is similar
to the μ = 0 situation, and scales as (vs/vF ) log(�/kF ),
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where kF = μ/vF . Such divergent correction can again be
compensated by the similar logarithmic enhancement of the
Fermi velocity due to the electron-electron interactions [32].
Otherwise, the intraband excitations in the vicinity of the
Fermi pocket give rise to a finite contributions, as in regular
Fermi liquids. Hence, at finite chemical potential, the one-loop
electron-phonon vertex correction is also expected to scale as
vs/v

0
F , and remain small as long as vs � v0

F . Thus, Migdal’s
theorem remains formally valid in Dirac materials, both in the
doped and the undoped situation.

Finally, we mention that although we have worked with
a particular model of electron-phonon interaction, namely,
the deformation potential coupling (which is always present
in any solid state materials involving a lattice, including
2D [20] and 3D [12] Dirac materials) in this paper, other
possible models of electron-phonon coupling would give the
same formal result about the formal validity of Migdal’s
theorem in Dirac materials. We provide in Appendix B our
results for an alternative model of electron-phonon coupling
in graphene [33], which is not very physical, but nevertheless
obeys Migdal’s theorem.
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APPENDIX A: DETAIL OF ELECTRON-PHONON VERTEX
CORRECTION FOR DIRAC FERMIONS

We here provide some details of the calculation of
electron-phonon vertex correction (�0) in graphene and Weyl
semimetals, presented in Secs. III and IV, respectively.
The expression of �0 in Eq. (10) arises from Fig. 1, by
using a slightly different momentum and frequency routing,
where we take (ω,q) → (α,q), (ε − ε1,p − p1) → (ν,p),
(ε ± ω/2,p ± q/2) → (ωT + ω±,kT + k±), (ε1 ± ω/2,p1 ±
q/2) → (ωT + ω± − ν,kT + k± − p), with ωT = (ω + α)/2,
kT = (k + q)/2, ω± = (ω ± α)/2, k± = (k ± q)/2. In this
notation ν and p are the internal frequency and momentum
(hence these are the integral variables), respectively, as shown
in Eq. (10).

To evaluate �0, first we need to combine the denominators
of Eq. (10) and cast it as a symmetric function of internal
frequency ν. This can be achieved by introducing two Feynman
parameters (x,y) as follows [34]:

1

ν2 + v2
s p

2
× 1

(ω − ν)2 + v2
F (k − p)2

× 1

(ω + α − ν)2 + v2
F (k + q − p)2

= 2
∫ 1

0
dx dy

[
(1 − x − y)

(
ν2 + v2

s p
2
)

+ x
(
(ω − ν)2 + v2

F (k − p)2)
+ y

(
(ω + α − ν)2 + v2

F (k + q − p)2)]−3
. (A1)

Taking ν − (x + y)ω − yα → ν, the above expression reads
as

2
∫ 1

0
dx dy [ν2 + 	1 + 	2]−3, (A2)

where

	1 = [
(1 − x − y)v2

s + (x + y)v2
F

]
p2 − 2v2

F (x + y)(k · p)

− 2v2
F y(q · p) + (x + y)v2

F k2 + y2v2
F q2+2yv2

F (k · q),

	2 = (x+y)(1 − x − y)ω2+y(1 − y)α2+2y(1 − x − y)ωα.

(A3)

After performing the same change of variable in the numerators
of Eq. (10), a set of standard integrals∫ ∞

−∞

dν

2π

ν2

[ν2 + 	]3
= 1

16

1

[	]3/2
,

(A4)∫ ∞

−∞

dν

2π

1

[ν2 + 	]3
= 3

16

1

[	]5/2
,

where 	 = 	1 + 	2, leads to Eq. (12), with

F = [−i[(x + y − 1)ω + yα] + vF σj (k − p)j ]

× [−i[(x + y − 1)ω + (y − 1)α] + vF σj (k + q − p)j ].

(A5)

Summation over the repeated index (j ) is assumed throughout.
Next we need to perform the integration over the internal

momentum p. In order to evaluate the integrals over p, we first
express the function 	 in the denominators of Eq. (12) as a
rotationally symmetric function of p. It can be accomplished
by rewriting

[	]n = [β]n
[

(p − ak − bq)2 + a(1 − a)k2

+ b(1 − b)q2 + 2b(1 − a)(k · q) + 	2

β

]n

, (A6)

where a = v2
F (x+y)

β
, b = v2

F y

β
, and β = (1 − x − y)v2

s + (x +
y)v2

F . Upon taking p − ak − bq → p, 	 becomes rotationally
symmetric in p2. Performing the same shift of variable in the
numerators of Eq. (12), we can separate it into two categories:
(i) terms that give rise to ultraviolet divergences, which for
two entries in Eq. (12)

I1 =
∫

d2 �p
(2π )2

p2

[	]3/2
, I2 =

∫
d2 �p

(2π )2

p2F

[	]5/2
, (A7)

are given by

I div
1 = 1

β3/2

∫
ddp

(2π )d
p2

(p2 + 	̃)3/2
= 1

β3/2

1

2π
�

(
− ε

2

)
,

I div
2 = v2

F

dβ5/2

∫
ddp

(2π )d
p4

(p2 + 	̃)5/2
= v2

F

β5/2

1

2π
�

(
− ε

2

)
,

(A8)

respectively, yielding Eq. (13), where

	̃ = a(1 − a)k2 + b(1 − b)q2 + 2b(1 − a)(k · q) + 	2

β
.
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(ii) The rest of the terms give finite contributions, which,
however, vanish as we send the ultraviolet cutoff � → ∞.
Otherwise, the leading order finite term in �0, as k,q,ω → 0
is given by �

f in

0 , shown in Sec. III of the paper.

APPENDIX B: VERTEX CORRECTION OF ALTERNATIVE
ELECTRON-PHONON INTERACTIONS IN GRAPHENE

In graphene there are other models for electron-phonon
interactions [33], given by

H̃e-ph = gq

√
�

ρm�q

∑
j=1,2

d̂j (�†σj�)�, (B1)

where (d̂1,d̂2) = (q̂2
x − q̂2

y ,2q̂x q̂y). Such electron-phonon in-
teractions arise from the modification of the nearest-neighbor
hopping amplitudes in honeycomb lattice. In an alternative
approach, the effect of the modulated hopping can be captured
by introducing time-reversal symmetric axial gauge potentials,
coupled minimally to the Dirac fermions in graphene [35].
For simplicity, we here only consider the longitudinal phonon
mode. Renormalization of the above electron-phonon coupling
(gq) is

�l = σl

∫
dν

2π

d2p

(2π )2
D0(ν,p)

[
α2

pG0(ω − ν,k − p)

× σlG0(ω + α − ν,k + q − p) + g2
p

∑
j=1,2

d̂j σj

×G0(ω − ν,k − p)σlG0(ω + α − ν,k + q − p)d̂j σj

]
,

(B2)

where l = 1 or 2, and gq = gq/
√

ρm�q (after setting � = 1).
Due to the underlying rotational symmetry of the system, one
finds �1 = �2 = �̄(say). Following the steps shown in Sec. III
and Appendix A, upon completing the frequency integral we
obtain

�̄ = λ2

8ρm

∫ 1

0
dxdy

∫
d2p

(2π )2

[
− p2

[	]3/2
+ 3

p2F̃

[	]5/2

]

+ g2

8ρm

∫ 1

0
dxdy

∫
d2p

(2π )2
(d̂1σ1 − d̂2σ2)

×
[

− p2

[	]3/2
+ 3

p2F̃

[	]5/2

]
(d̂1σ1 + d̂2σ2), (B3)

where

F̃ = [−i[(x + y − 1)ω + yα] − vF (−1)j σj (k − p)j ]

× [−i[(x + y − 1)ω + (y − 1)α] + vF σj (k + q − p)j ].

(B4)

Using the integral identities∫
d2p

(2π )2

p2
1 − p2

2

(p2 + 	̃)
≡ 0,

∫
d2p

(2π )2

p1p2

(p2 + 	̃)
≡ 0, (B5)

it can be immediately shown that the divergent contributions
from all the terms in the last equations, except the first term,

is precisely zero. Therefore, renormalization of the electron-
phonon vertex gq is given by

�̄ = λ2H (η)

4πvF ρmv2
s

�

(
− ε

2

)
≡ λ̂D,2H (η) log

(
�

�̃

)

→ λ̂D,2(2 −
√

2)η2 log

(
�

�̃

)
, (B6)

as η(= vs/vF ) → 0. Hence, the one loop renormalization of
the electron-phonon vertex gq also suffers ultraviolet divergent
logarithmic correction. However, the logarithmic enhance-
ment of the Fermi velocity (vF ), arising from the electron-
electron (Coulomb) interaction, suppresses such enhancement
of electron-phonon vertex. Consequently, the renormalization
of the electron-phonon vertex gq scales as v2

s /(v0
F )2, and

Migdal’s theorem remains valid when vs � v0
F .

Coulomb interaction also leads to renormalization of the
electron-phonon vertex gq , given by

�̄C = e2σl

∫
dν

2π

d2p

(2π )2
DC

0 (ν,p)G0(ω − ν,k − p)σl

×G0(ω + α − ν,k + q − p), (B7)

with l = 1 or 2. Upon setting the ultraviolet cutoff (�) to
infinity, the vertex correction due to the Coulomb interaction
goes as

�̄C = −e2
∫

d2p

(2π )2

∫ ∞

−∞

dν

2π

−ν2 + v2
F

(
p2

1 − p2
2

)
(ν2 + p2)2

=
(

e2

8πvF

)
log

(
�

�e

)
. (B8)

Therefore, correction to the electron-phonon vertex, arising
from the Coulomb interaction, has ultraviolet logarithmic cor-
rection. Nevertheless, logarithmic enhancement of the Fermi
velocity once again suppresses such logarithmic divergent
correction of the vertex renormalization, and �̄C ∼ e2

8πv0
F

,

where v0
F is the bare Fermi velocity. Therefore, the electron-

phonon vertex correction �̄C is small as long as the bare
dimensionless Coulomb coupling or the bare fine structure
constant in graphene e2/(8πv0

F ) � 1.
The electron-phonon interactions gq also provide additional

renormalization (�̃0) of the original electron-phonon coupling
αq in graphene, introduced in Sec. III, where

�̃0 =
∑
j=1,2

∫
dν

2π

d2p

(2π )2
g2

qD0(ν,p)d̂j σjG0(ω − ν,k − p)

×G0(ω + α − ν,k + q − p)d̂j σj . (B9)

After some straightforward algebra, as shown in Sec. III and
Appendix A, we obtain

�̃0 = ĝG(η) log

(
�

�̃

)
→ ĝη log

(
�

�̃

)
, (B10)

as η(=vs/vF ) → 0, where ĝ = g2�

4πvF ρmv2
s

is another dimen-
sionless electron-phonon coupling in graphene. Taking the
enhancement of the Fermi velocity due to the Coulomb
interaction into account, we find that �̃0 scales as vs/v

0
F , and

Migdal’s theorem remains valid when vs � v0
F .
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