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Finite-temperature phase transitions in the ionic Hubbard model
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We investigate paramagnetic metal-insulator transitions in the infinite-dimensional ionic Hubbard model at
finite temperatures. By means of the dynamical mean-field theory with an impurity solver of the continuous-time
quantum Monte Carlo method, we show that an increase in the interaction strength brings about a crossover
from a band insulating phase to a metallic one, followed by a first-order transition to a Mott insulating phase.
The first-order transition turns into a crossover above a certain critical temperature, which becomes higher as
the staggered lattice potential is increased. Further, analysis of the temperature dependence of the energy density
discloses that the intermediate metallic phase is a Fermi liquid. It is also found that the metallic phase is stable
against strong staggered potentials even at very low temperatures.
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I. INTRODUCTION

The effects of correlations between electrons have been one
of the most fascinating topics in modern condensed matter
physics. A variety of remarkable phenomena such as super-
conductors with high critical temperatures [1] and interaction-
driven metal-insulator transitions [2] is well known to arise
from electron correlations. In describing such electron corre-
lations, the Hubbard model (HM) opened a new paradigm. It
has proved to be successful in capturing the essential physics
of correlation-induced phenomena by incorporating just a
few simple ingredients: tight-binding electrons with the local
Coulomb interaction. Interesting variants of the HM have been
proposed to investigate correlation effects in the band insulator
(BI). One of the popular examples is the ionic Hubbard model
(IHM), where tight-binding electrons interact via the local
Coulomb interaction under a staggered lattice potential [3–5].
It was first applied to the study of the neutral-ionic transition
in a charge-transfer organic chain [6–15] and also suggested
as a model for the polarization phenomena of ferroelectric
perovskite materials [16–21] and Kondo insulators such as
FeSi and FeSb2 [22].

On a bipartite lattice, the staggered lattice potential of the
IHM doubles the periodicity of the system, giving rise to a
gap at the zone boundary. Accordingly, in the noninteracting
limit the system prefers a band insulating phase where most
electrons stay on a sublattice with lower potential. The
resulting BI competes with a Mott insulator (MI) with one
electron per lattice site, which is driven by local interactions.
This competition is expected to enrich the physics in the
transition between the two phases, which has been studied
theoretically for decades.

The emergence of an intermediate phase has been studied in
one dimension [8–10,23–38] and in two dimensions [39–42].
In one dimension, it was revealed by the bosonization method
that a spontaneously dimerized insulating phase shows up
between the BI and the MI [23,32–35], which was confirmed
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subsequently in numerical studies [24–26,36–38]. Some pe-
culiar spectral properties such as spin-charge separation were
also studied by the cellular dynamical mean-field theory
(DMFT) [27,28]. Extensive investigations have also been made
into the effects of additional degrees of freedom on the one-
dimensional IHM, including electron-lattice coupling [7,8,12],
spin-density wave [12,13,29,43], next-nearest-neighbor inter-
action [7–9,13,21,30], asymmetry in electron hopping [9,10],
alternating Hubbard interaction [29], periodicity of the lat-
tice [35], coupling with conducting leads [44], and next-
nearest-neighbor hopping [33]. As to the nature of the interme-
diate phase in two dimensions, there is some controversy: The
determinant quantum Monte Carlo study [39,40] predicted a
metallic phase, while an insulating phase was observed via the
cellular DMFT or the variational cluster approach [41,42].

In infinite dimensions, on the other hand, the single-site
DMFT has revealed two successive metal-insulator transitions
at zero temperature [45–48]. Weak interactions tend to reduce
the single-particle gap, driving the system into a metallic phase.
The system eventually becomes an MI, caused by the further
increase in the interaction strength. Here it is remarkable
that a metallic phase emerges due to correlation effects
of Coulomb interactions; this is in sharp contrast with the
intermediate insulating phase, which is confirmed in the one-
dimensional IHM. The effects of antiferromagnetic ordering
induced by local interactions have also been studied in the
IHM [47,49].

In this paper, we focus on the finite-temperature proper-
ties of the transitions between paramagnetic phases in the
infinite-dimensional IHM at half-filling. We adopt the DMFT
combined with the continuous-time quantum Monte Carlo
(CTQMC) method [50–53]. First, the spectral properties of
the IHM are examined at finite temperatures. The Fermi-level
spectral weight, which can be estimated from the imaginary-
time Green function, demonstrates that with an increase in
the local interaction the system exhibits a crossover from
BI to metal, which is followed by a discontinuous transition
to an MI. The spectral function as well as local quantities
such as double occupancy and staggered charge also supports
the above description of the transition behaviors. The energy
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density, which can be measured directly from the CTQMC
method, shows that the metallic phase always has a lower
energy than the Mott insulating phase within the coexistence
region as in the standard HM. The resulting finite-temperature
phase diagram illustrates that the crossover interaction strength
between BI and metal decreases with the temperature. It
is also found that the metal-MI transition is similar to that
in the HM, while the critical temperature tends to increase
as the staggered lattice potential becomes stronger. The
dependence of the total energy density on the temperature
indicates that the correlation-driven metallic phase is a Fermi
liquid. The phase diagram at very low temperatures shows that
the metallic phase persists for very strong staggered lattice
potentials.

This paper is organized as follows: In Sec. II we introduce
the IHM and describe how to deal with the model by the single-
site DMFT with the CTQMC as an impurity solver. Section III
presents the results of our numerical calculations. We examine
spectral properties, local quantities, and several components
of energy densities, based on which the phase diagram is
constructed. We also investigate the nature of the intermediate
metallic phase and the dependence of the transition on the
strength of the staggered lattice potential. Finally, we conclude
the paper by summarizing the results in Sec. IV.

II. MODEL AND METHODS

We consider the IHM on a bipartite lattice, the Hamiltonian
of which is given by

H = −t
∑
〈ij〉σ

(ĉ†jσ ĉiσ + ĉ
†
iσ ĉjσ ) + U

∑
i

n̂i↑n̂i↓

+
∑
iσ

εi n̂iσ − μ
∑
iσ

n̂iσ , (1)

where ĉiσ /ĉ†iσ is the annihilation/creation operator of an
electron with spin σ at the ith lattice site. The corresponding
number operator is defined to be n̂iσ ≡ ĉ

†
iσ ĉiσ . The parameters

t and U represent the nearest-neighbor hopping amplitude and
the Hubbard interaction, respectively. The lattice is a bipartite
one composed of two sublattices, A and B, and the local lattice
potential energy εi is given by

εi =
{
� for i ∈ A,

−� for i ∈ B.
(2)

In this work we adopt the single-site DMFT, which is exact
in infinite dimensions [54]. Within the DMFT, the original
lattice model is mapped onto a single-impurity Anderson
model, which is described by the Hamiltonian

Hα
SIAM = (εα − μ)n̂ασ +

∑
k

(Vkασ ĉ†ασ âkσ + H.c.)

+ Un̂α↑n̂α↓ +
∑

k

εkσ â
†
kσ âkσ . (3)

Here ĉασ /ĉ†ασ is the annihilation/creation operator of an
electron at the impurity corresponding to sublattice α, and
âkσ /â†

kσ is the annihilation/creation operator of an electron at
the kth bath site which has on-site energy εkσ and is coupled
with the impurity via the hybridization matrix element Vkασ .

The structure of a bipartite lattice leads to an impurity Green
function of the form

Gα(iωn) = ζᾱ

∫ ∞

−∞
dε

ρ0(ε)

ζαζᾱ − ε2
(4)

for (α,ᾱ) = (A,B) and (B,A), where ρ0(ε) is the bare
density of states (DOS) of the lattice and ζα ≡ iωn −
εα + μ − 
α(iωn) with the self-energy 
α and Matsubara
frequency ωn. The calculation is performed on the Bethe
lattice, where the DOS is given in the semicircular form:
ρ0(ε) = (2/πD)

√
1 − (ε/D)2. Through this paper we use the

half-bandwidth D = 2t as the unit of energy.
The DOS of a semicircular form allows analytic integration

of Eq. (4), which yields

G−1
α (iωn) = ζα − D2

4
Gᾱ(iωn). (5)

With the help of the particle-hole symmetry, we have the
following relations:


α(iωn) = U − 
ᾱ(−iωn),
(6)

Gα(iωn) = −Gᾱ(−iωn).

Then the Dyson’s equation, G−1
0α = 
α(iωn) + G−1

α (iωn), re-
duces to

G−1
0α (iωn) = iωn − εα + μ + D2

4
Gα(−iωn), (7)

which imposes the self-consistency relation on the impurity
problem.

We solve the impurity problem only in sublattice A to
obtain GA(iωn) from G0A(iωn) by means of the CTQMC
method based on the hybridization expansion, which has
proven to be efficient particularly in the strong-interaction
regime. We typically use 108 Monte Carlo steps for each
DMFT iteration, which turns out to be sufficient to achieve
the required accuracy of the Green function at the lowest
temperature, T = 1/128. The self-consistency loop is iterated
50 times for the convergence of the solution within the DMFT.

III. RESULTS

A. Spectral properties

To probe the metal-insulator transitions, we consider the
Fermi-level spectral weight:

Ãα ≡ − 1

πT
Gα(τ=1/2T )

= 1

2πT

∫ ∞

−∞
dω

1

cosh(ω/2T )
Aα(ω), (8)

where Aα(ω) ≡ −(1/π )ImGα(ω + i0+) is the spectral func-
tion of sublattice α. At very low temperatures Ãα is ap-
proximately the same as the Fermi-level spectral function
Aα(ω = 0). Since the imaginary-time Green function can be
measured directly from Monte Carlo sampling, it is frequently
used to examine the metal-insulator transition [52,55,56].

In Fig. 1, we present the Fermi-level spectral weight as a
function of the temperature T and the interaction strength U .
The colored plot on the plane of U and T clearly demonstrates
that two insulating phases (dark regions) are separated by an
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FIG. 1. (Color online) Fermi-level spectral weight Ãα for � =
0.5. (a) The colored plot displays Ãα on the plane of the interaction
strength U and temperature T , obtained via increasing U . (b) Ãα at
temperatures T = 1/32 [(red) squares] and 1/128 [(blue) circles].
Filled and open symbols for T = 1/128 represent data obtained via
increasing and decreasing U , respectively.

intermediate metallic phase (bright region). As clarified in the
existing zero-temperature studies [45–47], the insulating phase
for weak interactions correspond to a BI, while that at strong
interactions represents an MI.

The BI connects smoothly with the metallic phase via a
finite-width crossover region at finite temperatures. As the
temperature is lowered, the onset value of Ã becomes steeper
and the size of the crossover region decreases appreciably; this
is consistent with the continuous transition observed at zero
temperature.

For strong interactions, on the other hand, we observe a
rather steeper transition between the metal and the MI at finite
temperatures. Below a certain critical temperature, the Mott
transition turns out to be of first order, which is evidenced by
the presence of the hysteretic behavior displayed at T = 1/128
in Fig. 1(b). Accordingly, we have lower and upper transition
interaction strengths, Uc1 and Uc2, at which MI and metallic
phases become unstable, respectively. Thermodynamic phase
transitions occur between Uc1 and Uc2 at finite temperatures;
the determination of the phase transition line is discussed
later. Above the critical temperature, the boundary between
the metal and the MI also appears as a crossover, and the
crossover region expands as the temperature is increased.

We use the maximum entropy method (MEM) for analytic
continuation of the Matsubara Green function to the real
frequency domain and obtain the spectral function A(ω). The
resulting spectral function is presented in Fig. 2. In the region
of weak interactions, the single-particle gap is formed around
the Fermi level with singular behavior at the band edge, which
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FIG. 2. (Color online) Spectral function A(ω) for � = 0.5 and
T = 1/128. Corresponding interaction strengths are (a) 1.0, (b) 2.5,
(c) 2.8 (increasing U ), (d) 2.8 (decreasing U ), and (e) 4.0. Solid (red)
and dotted (blue) lines represent the spectral function at sublattices
A and B, respectively.

is reminiscent of the noninteracting DOS with a van Hove
singularity. We also observe that in the occupation of each
sublattice there is a significant imbalance between A and B

sublattices, which is a characteristic feature of the BI.
On the other hand, the Mott gap emerges with a prominent

four-peak structure for strong interactions. For a given sublat-
tice, two peaks correspond to the upper and the lower Hubbard
bands, respectively. The upper or lower Hubbard bands on
different sublattices are separated by the staggered lattice
potential �. Both Hubbard bands on sublattice B, having the
lower lattice potential, are located at a lower energy compared
with those on sublattice A.

In the intermediate-interaction region, we observe a metal-
lic phase with a finite spectral weight at the Fermi level.
In this phase a quasiparticle peak near the Fermi level is
surrounded by four Hubbard bands, and the disappearance
of the quasiparticle peak signifies the onset of a Mott phase.
The quasiparticle peak also shows pseudogap-like behavior
around the Fermi level, which is discussed in the zero-
temperature study [46]. At temperature T = 1/128, there
exists a coexistence region where both metal and MI are
locally stable. Figures 2(c) and 2(d) correspond to metallic
and insulating solutions, respectively. The overall features of
the spectral functions are in good agreement with the previous
zero-temperature results obtained via NRG [47].
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Before going on to the next section, we make some
comments on the stability of our MEM procedure. The stability
investigation shows that our MEM procedure is reliable
enough to characterize the fine structures of spectral function.
For example, the pseudogap-like behavior around the Fermi
level in Fig. 2(b) is robust against the statistical fluctuations
of the imaginary-time Green function. In our calculations the
statistical error of the imaginary-time Green function is around
order 10−4. We have also checked the stability of the MEM
procedure by examining the dependence on the model function
and the scaling parameter selection, which turns out to have
negligible effects on the resulting spectral function.

B. Local quantities

The staggered charge density is given by the difference
between the number densities at two sublattices, nA − nB , with
the sublattice number density defined to be nα ≡ ∑

σ 〈n̂ασ 〉 for
α = A and B. We also compute the double-occupancy dO ,
given by

dO ≡ 1

2

∑
α

〈n̂α↑n̂α↓〉. (9)

The results for the double-occupancy and the staggered
charge density are shown in Figs. 3 and 4. In the IHM, the
interaction strength U competes with the staggered lattice
potential � due to different favorable electron configurations.
While the staggered lattice potential forces electrons to stay
at the lower potential sites on sublattice B, the interaction,
giving rise to energy cost, tends to prevent two electrons
from occupying the same site. In the weak-interaction region,
electrons prefer to gather on sublattice B and the system
experiences an imbalance between the two sublattices, result-
ing in a higher double-occupancy, compared with the HM,

0.0

0.1

0.2

0.3

0.4

d O

(a)

0.02

0.06

0.10

2.5 2.7 2.9

0.0

0.2

0.4

0.0 1.0 2.0 3.0 4.0

d O

U

(b)

FIG. 3. (Color online) Double-occupancy dO as a function of U :
(a) for staggered lattice potential � = 0.5 at temperatures T = 1/32
[(red) squares] and T = 1/128 [(blue) circles] and (b) at temperature
T = 1/128 for various values of the staggered lattice potential—from
top to bottom, � = 1.0, 0.5, and 0.0. Inset in (a): Detailed behavior
in the coexistence region. Data for T = 1/64, (green) diamonds;
T = 1/128, (blue) circles. Data obtained via increasing U , filled
symbols; via decreasing U , open symbols.
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FIG. 4. (Color online) Staggered charge density nB − nA as a
function of U : (a) for staggered lattice potential � = 0.5 at tem-
peratures T = 1/32 [(red) squares] and T = 1/128 [(blue) circles]
and (b) at T = 1/128 for � = 0.5 [(green) circles] and � = 1.0
[(blue) triangles]. Inset in (a): Details in the coexistence region. Data
for T = 1/64, (green) diamonds; T = 1/128, (blue) circles. Data
obtained via increasing U filled symbols; via decreasing U , open
symbols.

corresponding to � = 0, and a nonzero staggered charge
density. Such tendencies become stronger as � grows.

As the interaction strength is increased, both the double-
occupancy and the staggered charge density decrease mono-
tonically with the imbalance between the two sublattices
becoming weaker. In the MI phase, the staggered charge
density is close to 0. However, the sublattice symmetry is
broken in the Hamiltonian of the IHM and the staggered charge
density does not exactly vanish for any finite U .

In the coexistence region, the metallic phase always exhibits
higher values of the staggered charge density and double-
occupancy than those in the MI phase. The data at two
temperatures, T = 1/64 and 1/128, are compared in the insets
in Figs. 3 and 4. It is observed that the coexisting region
widens as the temperature is lowered. Further, the critical
interaction strength is shown to increase with the staggered
lattice potential.

C. Energy density

Here we attempt to analyze the competition of the phases in
terms of energy densities. At finite temperatures the free energy
will also have the contribution of the entropy. We expect that
the energy analysis given below is still valid for explaining
the qualitative behaviors at low temperatures considered. The
DMFT solution gives the total, kinetic, lattice potential, and
interaction energies per site in the forms

ε = εk + ε� + εU ,

εk = T

2

∑
ασ

〈kασ 〉,
(10)

ε� = �

2
(nA − nB),

εU = UdO,
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FIG. 5. (Color online) Energy densities as functions of U at
temperature T = 1/128 and � = 0.5. (a) Interaction energy εU ,
(b) kinetic energy εk , (c) staggered lattice potential energy ε�, and
(d) total energy ε (see text for definitions). The (blue) circles and (red)
squares represent data for the IHM and the HM, respectively. Inset
in (d): Total energy density in the coexisting region; DMFT solutions
obtained via increasing U (filled symbols) and decreasing U (open
symbols).

where 〈kασ 〉 is the average perturbation order of the spin σ

electron at the impurity of sublattice α. This can be directly
measured from CTQMC simulations [51,57,58].

In Fig. 5 we plot all four energy densities for � = 0.5,
together with those in the HM. Comparison between HM and
IHM results indicates that for weak interactions, the gain in the
staggered lattice potential energy exceeds the sum of the loss
of both interaction and kinetic energies. In consequence, the
total energy of the IHM is lower than that of the HM, which
agrees with the characteristic behavior of the BI.

In the metallic region, the kinetic and interaction energies
of the IHM behave qualitatively the same as those of the
HM. Quantitatively, the kinetic energy of the IHM is, in
general, lower than that of the HM with the same interaction
strength. We also observe that the kinetic energy increases
with the interaction strength U , which is in sharp contrast to
the generally decreasing behavior in the BI. Such different
behaviors of the metal and the BI give rise to a minimum of
the kinetic energy at the interaction strength which generally
coincides with the boundary between the BI and the metal.

In the MI phase, the staggered lattice potential energy
becomes negligible; as a result, the total energy difference

between the HM and the IHM decreases significantly and
monotonically as the interaction strength U is increased. At
the boundary between the MI and the metal, a first-order Mott
transition is also present in the IHM. The critical interaction
strength increases when the staggered lattice potential is intro-
duced. In the coexistence region, the total energy density in the
metallic phase is always lower than that in the MI phase, which
also holds in the case of the HM [54]. We expect that at zero
temperature the IHM also undergoes a continuous phase tran-
sition between the MI and the metal at the critical strength Uc2.

D. Finite-temperature phase transition

Based on the spectral properties as well as the local
quantities, we may now construct the phase diagram of the
IHM. Figure 6 exhibits the phase diagram for � = 0.5 on the
plane of the temperature T and the interaction strength U .
There exist three phases: metal, BI, and MI. The BI and metal
are connected through a crossover region, while a first-order
Mott transition separates the metal from the MI.

As shown in Fig. 1(b), the onset of Ã becomes steeper as
the temperature is lowered. Accordingly, at zero temperature,
the transition between the BI and the metal is expected to be
continuous with a kink in Ã. In order to estimate the crossover
interaction strength Uco at low temperatures, we obtain a best
linear fit of the area in which Ã grows rather linearly in the
metallic region. We then estimate Uco by the intersection point
of the fitting line and Ã = 0. The half-width of the crossover
region is also identified as the distance from Uco to the linear
region. As the temperature is raised, the resulting Uco tends
to decrease and the width of the crossover-region increases.
It is also notable that Uco estimated via CTQMC-DMFT in

 0

 0.02

 0.04

 0.06

0.0 1.0 2.0 3.0 4.0

T

U

M
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MI

FIG. 6. (Color online) Phase diagram for � = 0.5 on the plane
of T and U . Filled (red) circles and surrounding horizontal bars
indicate the crossover strength Uco and estimated crossover regions,
respectively. Two transition points for the Mott transition, Uc1 and
Uc2, are plotted by squares for various temperatures. The critical
point of the Mott transition is represented by diamonds, along with
the first-order transition line. Regions of the band insulator (BI), metal
(M), and Mott insulator (MI) phases. The three open (blue) circles
on the horizontal axis correspond to Uco, Uc1, and Uc2, respectively,
obtained from NRG-DMFT at zero temperature [47].
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this work gradually approaches the zero-temperature value
obtained via NRG-DMFT [47].

At low temperatures we observe the coexistence region
of the MI and metal between Uc1 and Uc2, which can be
identified by spectral functions and local quantities such as
double-occupancy and staggered charge densities. With an
increase in the temperature, Uc1 and Uc2 become closer, and
the coexistence region ceases to exist at a certain critical
temperature, above which the transition between the MI
and the metal also appears as a crossover. These general
features are rather similar to those of the Mott transition
in the HM. Further, the extrapolation of Uc1 and Uc2 to
zero temperature is quite consistent with that of NRG-DMFT
results [47].

By solving the differential equations constructed from
the free-energy analysis, we can obtain the first-order phase
transition line, which is denoted by the solid line in Fig. 6.
Using the thermodynamic relation

∂(βf )

∂β

∣∣∣∣
U

= ε, (11)

we construct the differential equation of the interaction
strength Uc of the first-order transition as a function of T ,

dUc(T )

dT
= δε(T ,U )

T δdO(T ,U )
, (12)

with � being fixed. Here f is the free-energy density
and δε and δdO are the differences in the energy and the
double-occupancy between metal and MI in the coexistence
region, respectively. The numerical integration of Eq. (12)
gives the first-order transition line. The CTQMC procedure has
the advantage that one can obtain the quantities necessary for
the differential equations directly from Monte Carlo sampling
without any further approximation. The details of the method
can be found in Ref. [58], where the HM is investigated by
the same method. The resulting transition line is plotted by
the solid line in Fig. 6. The phase transition point at zero
temperature is very close to Uc2 obtained from NRG-DMFT,
implying that the transition is continuous at zero temperature;
this is also the case in the HM without a staggered lattice
potential.

E. Nature of the intermediate metallic phase

One interesting issue is the nature of the metallic phase
present in the region of intermediate interaction strengths. The
metallic phase, which is driven by correlations from the BI,
displays a peculiar pseudo-gap-like structure in the spectral
function near the Fermi level, as demonstrated in Fig. 2. Such
features raise the question whether the phase exhibits Fermi-
liquid behavior.

According to the Fermi-liquid theory, the total energy
density ε is proportional to T 2 at low temperatures. As a
relevant check, we calculate the total energy density at various
temperatures and show the results in Fig. 7 for various values of
�. Indeed ε appears to be proportional to T 2 within statistical
errors for all values of � examined and we presume that the
metallic phase appearing in the IHM is a Fermi liquid. In
addition, we have also computed the imaginary part of the
self-energy, to find that the quasiparticle has an infinite lifetime

-0.09
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-0.07

0.0 1.0 2.0 3.0 4.0

ε

T2
(×10-4)

FIG. 7. (Color online) Total energy density ε as a function of tem-
perature T . From top to bottom, the staggered lattice potential and in-
teraction strength are given by (�,U ) = (0,2.2) (squares), (�,U ) =
(0.5,2.5) (circles), (�,U ) = (1,3.2) (triangles), and (�,U ) = (3,6.9)
(inverted triangles). The horizontal axis is drawn on the scale of T 2.

at the Fermi level; this is also consistent with the Fermi-liquid
picture.

F. Critical point of the Mott transition

In this subsection, we consider how the phase diagram
depends on the staggered lattice potential �. Specifically,
we compute the critical temperature Tc of the Mott-Hubbard
transition for various values of �. One way of obtaining Tc

is to utilize the divergence of the susceptibility at the critical
point. By analogy with a fluid system [59], we define the
susceptibility as

χ ≡ Max
U

∣∣∣∣∂dO

∂U

∣∣∣∣ (13)

at given temperature T . In view of the divergence at the
critical point, one can identify the critical temperature as the
temperature where the inverse susceptibility vanishes. In Fig. 8
we plot the inverse susceptibility χ−1 versus temperature T for
several values of �. For given �, as the temperature is lowered,
the inverse susceptibility decreases and eventually vanishes,
from which the critical temperature can be estimated. Figure 8

0.0

1.0

2.0

3.0

 0.02  0.03  0.04  0.05

χ-1

T

FIG. 8. (Color online) Inverse susceptibility χ−1 versus temper-
ature T for the staggered lattice potential � = 0.5 [(red) squares],
� = 1.0 [(orange) triangles], � = 3.0 [(green) inverted triangles],
and � = 5.0 [(blue) circles].
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0.005

0.015

0.025

 2.3  2.4  2.5  2.6

T

U

FIG. 9. (Color online) Coexistence region for � = 0.5 (dia-
monds), 1.0 (triangles), and 3.0 (inverted triangles). For clear
comparison with the Hubbard model [represented by (red) squares],
data for � = 0.5, 1.0, and 3.0 are shifted to the left by the amount
δU = 0.3, 1.0, and 4.69, respectively.

illustrates that the critical temperature generally increases with
the strength of the staggered lattice potential.

We can reach a similar conclusion when we consider
the critical interaction strengths Uc1 and Uc2 directly. As
demonstrated in Fig. 9, variations in Uc1 with temperature
T are rather insensitive to the value of �, while the increase
in � suppresses the change in Uc2 with the temperature. This
implies that the critical point is located at higher temperatures
for larger values of �.

G. Phase diagram at low temperatures

Figure 10 depicts three regions, corresponding to the BI,
metal, and MI phases on the plane of � and U at temperature
T = 1/128, which is the lowest temperature examined. We
can observe two prominent differences between the resulting
phase diagram and the two zero-temperature phase diagrams
obtained in IPT-DMFT studies [45,46].

First, in our phase diagram the crossover interaction
strength Uco increases gradually from 0 as � is turned on.
This is quite in contrast with the rather drastic increase
for small � in Ref. [45]. Further, here the width of the
metallic region apparently remains constant above � = 2,
which suggests that the metallic phase should extend to high
values of �. We have indeed confirmed its existence even for
� = 8. This qualitatively contradicts the existing prediction
that the metallic phase would cease to exist around � = 1.5,
beyond which a coexistence region between the BI and the MI

0.0

2.0

4.0

6.0

8.0

10.0

0.0 1.0 2.0 3.0 4.0

U

Δ

MI

M BI

FIG. 10. (Color online) Phase diagram on the plane of � and U

at temperature T = 1/128. Band insulator (BI), metal (M), and Mott
insulator (MI) phases. The (blue) squares represent Uc1 and Uc2 of
the Mott transition. The (red) circles and vertical bars describe Uco

and the crossover region between the BI and the metal.

develops [46]. At this stage the origin of the discrepancy is not
clear and its resolution may require further study.

IV. SUMMARY

We have studied the IHM in infinite dimensions by
means of the DMFT combined with the CTQMC method. The
dependence of the double-occupancy and the staggered charge
density on the interaction strength as well as the Fermi-level
spectral weight exhibits crossover behavior from a BI to a
metal and, subsequently, a transition to an MI. The transition
to an MI is of the first order, and the critical temperature
has been found to be higher for stronger staggered lattice
potentials. Analyzing the temperature dependence of the
energy density, we have shown that the intermediate metallic
phase is a Fermi liquid. Finally, when the staggered lattice
potential is strong, this metallic phase has been found to
persist even at very low temperatures.
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