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To examine the insulating mechanism of 5d transition metal oxide Sr2IrO4, we study the ground state properties
of a three-orbital Hubbard model with a large relativistic spin-orbit coupling on a square lattice. Using a variational
Monte Carlo method, we find that the insulating state appearing in the ground state phase diagram for one hole per
site varies from a weakly correlated to a strongly correlated antiferromagnetic (AF) state with increasing Coulomb
interactions. This crossover is characterized by the different energy gain mechanisms of the AF insulating state,
i.e., from an interaction-energy-driven Slater-type insulator to a band-energy-driven Mott-type insulator with
increasing Coulomb interactions. Our calculations reveal that Sr2IrO4 is a “moderately correlated” AF insulator
located in the intermediate coupling region between a Slater-type and a Mott-type insulator.
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I. INTRODUCTION

The 3d transition metal oxides have been extensively
studied as typical examples of strongly correlated electron
systems. One of the most fascinating features is represented
by a Mott insulator which emerges as a result of strong electron
correlations beyond the single-particle band theory [1,2]. The
most extensively studied systems are high-temperature cuprate
superconductors where high-temperature superconductivity
(SC) has been observed by introducing mobile carriers into
Mott insulators [3], and subsequently various novel concepts
have been proposed including unconventional SC [4–8],
various symmetry-broken orders [9–11], and pseudogap phe-
nomena [12–18]. The study of strongly correlated electron
systems enlarges our fundamental knowledge of the quantum
states of matter and therefore the search for novel Mott
insulators is valuable for further progress in condensed matter
physics.

Recently, 5d transition metal oxide Sr2IrO4 with the layered
perovskite structure [19,20] has attracted much attention
as a candidate for a novel Mott insulator [21–25]. In this
material, three t2g orbitals of the Ir atom are hybridized
among themselves with a large relativistic spin-orbit coupling
(SOC), inherent in 5d transition metal, and are occupied
nominally by five 5d electrons. Because of this quantum
entanglement of spin and orbital degrees of freedom, an
effective total angular momentum Jeff = | − L + S| = 1/2
state is stabilized locally at each Ir atom [26]. The Coulomb
interactions are generally believed to be smaller compared
with the whole bandwidth of the bands formed by t2g orbitals
in 5d systems. However, when the Jeff = 1/2 state forms a
band and this band is detached from the rest of the bands due
to a large SOC, the width of the Jeff = 1/2 band is narrower
and comparable to the Coulomb interactions, which thus can
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induce a novel Jeff = 1/2 insulating state. This picture is
indeed supported in Sr2IrO4 both experimentally [21,22,27,28]
and theoretically [23–25,29,30]. Further experiments have
revealed various interesting properties of this insulator
[31–37] and its Ba counterpart of Ba2IrO4 [38–42]. Moreover,
theoretical studies have proposed several novel features such as
possible SC and a topological insulator [43–48]. However, the
origin of the Jeff = 1/2 insulating state is still under debate.
While the Mott-type mechanism (i.e., a strongly correlated
insulator) has been originally proposed [21,22,27], recent
reports have suggested the Slater-type mechanism (i.e., a
weakly correlated insulator) [49–52] as well as both characters
coexisting in Sr2IrO4 [53]. The difficulty of this problem
is due to the fact that the Coulomb interactions and the
antiferromagnetic (AF) order can both split the band and make
the system insulating. The aim of this paper is to clarify the
insulating mechanism of Sr2IrO4 from the microscopic point
of view by considering the energy gain mechanism.

In a Mott insulator, the Coulomb interactions are respon-
sible for the insulating behavior and the insulating gap is
determined essentially by the energy difference between the
upper and lower Hubbard bands, where the AF order has
only a secondary effect. To the contrary, in a Slater insulator,
the translational symmetry-breaking AF order induces the
insulating behavior and thus very often the band structure is
essential for its stability. In the experiments on Sr2IrO4, the
temperature dependence of the resistivity is found insulating
up to 600 K and no significant change is observed at the
Néel temperature [54], strongly suggesting that Sr2IrO4 is
a Mott-type insulator. Theoretically, however, the insulating
mechanism in a multiorbital Hubbard system with a large SOC
has not been explored in general and therefore the systematic
study is highly desired.

In this paper, using a variational Monte Carlo (VMC)
method, we study the ground state properties of a three-orbital
Hubbard model with a large SOC on the square lattice and
examine the insulating mechanism of Sr2IrO4. We find that
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in the ground state phase diagram with one hole per site
the insulating state is always AF ordered and changes its
character from a weakly correlated (Slater-type) insulator to
a strongly correlated (Mott-type) insulator as the Coulomb
interactions increase. These insulating states are differentiated
in the energy gain mechanism which favors the AF insulator
over a paramagnetic state, i.e., an interaction-energy-driven
Slater-type insulator and a band-energy-driven Mott-type
insulator. We also find that there exists an intermediate region
where both energy gain mechanisms work due to the strong
renormalization of the paramagnetic metallic state. Based on
our results, we reveal Sr2IrO4 to be a “moderately correlated”
AF insulator located between a Slater-type and a Mott-type
insulator.

The rest of this paper is organized as follows. In Sec. II, a
three-orbital Hubbard model on the two-dimensional square
lattice is introduced as a low energy effective model for
Sr2IrO4. The detailed explanation of the VMC method and
the variational wave functions are also given in Sec. II. The
numerical results are then provided in Sec. III. In Sec. III A,
the results for the paramagnetic state are shown and the
metal-insulator transition within the paramagnetic state is
discussed. Calculating several physical quantities, we show
that the metallic state is strongly renormalized near the metal-
insulator transition. In Sec. III B, the AF state is considered
and the energy gain mechanism stabilizing the AF insulator
over the paramagnetic state is investigated. Systematically
analyzing each term in the Hamiltonian, we show that the
main sources of the energy gain which favors the AF insulator
are the interaction terms for small Coulomb interactions and
the kinetic terms for larger Coulomb interactions. We assign
Sr2IrO4 as a “moderately correlated” AF insulator located in
the intermediate coupling region. Finally, Sec. IV summarizes
this paper.

II. MODEL AND METHOD

A. Three-orbital Hubbard model

We consider a three-orbital Hubbard model on the
two-dimensional square lattice defined by the following
Hamiltonian:

H = Hkin + HSO + HI, (1)

where the kinetic term Hkin is described by

Hkin =
∑
k,α,σ

εα(k)c†kασ ckασ , (2)

the SOC term HSO with a coupling constant λ is given as

HSO = λ
∑

i

∑
α,β

∑
σ,σ ′

〈α|Li |β〉 · 〈σ |Si |σ ′〉c†iασ ciβσ ′ , (3)

and the Coulomb interaction terms HI are composed of four
terms,

HI = HU + HU ′ + HJ + HJ ′ , (4)

i.e., the intraorbital interaction term

HU = U
∑
i,α

niα↑niα↓, (5)

the interorbital interaction term

HU ′ = U ′ ∑
i,α<β,σ

(niασ niβσ̄ + niασ niβσ ), (6)

the Hund’s coupling term

HJ = J
∑
i,α<β

[
(c†iα↑c

†
iβ↓ciα↓ciβ↑ + H.c.) −

∑
σ

niασ niβσ

]
,

(7)

and the pair-hopping term

HJ ′ = J ′ ∑
i,α<β

(c†iα↑c
†
iα↓ciβ↓ciβ↑ + H.c.). (8)

Here, c
†
iασ is a creation operator of electron at site i with spin

σ (=↑ ,↓) and orbital α (=yz,zx,xy) corresponding to three
t2g orbitals (dyz, dzx , and dxy), and Li (Si) is an orbital (spin)
angular momentum operator at site i. The opposite spin of σ

is indicated by σ̄ and niασ = c
†
iασ ciασ . The Fourier transform

of c
†
iασ is given as

c
†
kασ = 1√

N

∑
i

eik·r i c
†
iασ , (9)

where N is the total number of sites and r i is the position
vector of site i. In the following, we set J ′ = J and U =
U ′ + 2J [55], unless otherwise stated.

The kinetic and the SOC terms can be combined,
H0(ti ,μxy,λ) = Hkin + HSO, in the matrix form

H0 =
∑
k,σ

(c†kyzσ ,c
†
kzxσ ,c

†
kxyσ̄ )

×
⎛
⎝ εyz(k) isσ λ/2 −sσ λ/2

−isσ λ/2 εzx(k) iλ/2
−sσ λ/2 −iλ/2 εxy(k)

⎞
⎠

⎛
⎝ckyzσ

ckzxσ

ckxyσ̄

⎞
⎠

=
∑
k,m,s

Em(k)a†
kmsakms, (10)

where sσ = 1 (−1) for σ =↑ (↓). Notice that the SOC
mixes the different electron spins (σ and σ̄ ), and the new
quasiparticles, obtained by diagonalizing H0, are characterized
by band index m (=1,2,3) and pseudospin s (=↑ ,↓) with
a creation operator a

†
kms . In the atomic limit with εyz(k) =

εzx(k) = εxy(k) = 0, the sixfold-degenerate t2g levels are
split into twofold-degenerate Jeff = 1/2 states (m = 1) and
fourfold-degenerate Jeff = 3/2 states (m = 2,3) [26]. Since
the Jeff = 1/2 states are higher in energy than the Jeff = 3/2
states, all states but the Jeff = 1/2 states are fully occupied for
electron density n = 5, i.e., one hole per site.

In Refs. [25,47], we have constructed the noninteracting
tight-binding energy band for Sr2IrO4:

εyz(k) = − 2t5 cos kx − 2t4 cos ky, (11)

εzx(k) = − 2t4 cos kx − 2t5 cos ky, (12)

εxy(k) = − 2t1(cos kx + cos ky) − 4t2 cos kx cos ky

− 2t3(cos 2kx + cos 2ky) + μxy (13)
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FIG. 1. (Color online) (a) Fermi surfaces and (b) energy disper-
sions of the noninteracting tight-binding energy band with electron
density n = 5. The SOC is set to be λ = 1.028t (∼0.37 eV). The
other parameters are given in Eq. (14). Dashed lines in (a) represent
the folded AF Brillouin zone. EF stands for Fermi energy.

with a set of tight-binding parameters

(t1,t2,t3,t4,t5,μxy)

= (0.36,0.18,0.09,0.37,0.06,−0.36) eV. (14)

In the following, t1 ≡ t is used for an energy unit. To study
the effect of the SOC, we choose two different values of λ,
i.e., λ = 1.028t (∼0.37 eV) and 1.4t (∼0.50 eV), both of
which are within the range of realistic values for Sr2IrO4. The
corresponding Fermi surface (FS) and energy dispersions are
shown in Figs. 1 and 2. The noticeable features are summarized
as follows: (i) the topmost band, i.e., the Jeff = 1/2 band with
m = 1, is detached from the other two bands, i.e., the Jeff =
3/2 bands with m = 2 and 3; (ii) the separation in energy
between the topmost band and the other two bands increases
with λ; and (iii) hole pockets appearing at k = (π,π ) (and the
equivalent momenta) for λ = 1.028t disappear as λ increases
and a single circularlike FS is formed by the topmost band for
larger λ.

B. VMC method

The effect of Coulomb interactions is treated using a VMC
method [25,47]. The trial wave function |�〉 considered here
is composed of three parts:

|�〉 = PJcP
(3)
G |	〉 . (15)

The one-body part |	〉 is described by the ground state of
H̃0 = H0(t̃i ,μ̃xy,λ̃αβ) with variational “renormalized” tight-
binding parameters {t̃i ,μ̃xy,λ̃αβ}, where H0 is given in Eq. (10).
Notice that we introduce an orbital dependent “effective” SOC
constant: λ → λ̃αβ .

To treat magnetically ordered states, a term with a different
magnetic order parameter is added to H̃0. Here, we consider
two different magnetic orders, i.e., out-of-plane AF order
(along the z axis, z-AF) described by

H̃ z
AF

(
M̃z

1,M̃
z
2,M̃

z
3

) =
∑
i,m

M̃z
mei Q·r i (a†

im↑aim↑ − a
†
im↓aim↓)

(16)

FIG. 2. (Color online) Same as Fig. 1 but the SOC is set to be
λ = 1.4t (∼0.50 eV).

and in-plane AF order (along the x axis, x-AF) described by

H̃ x
AF

(
M̃x

1 ,M̃x
2 ,M̃x

3

) =
∑
i,m

M̃x
mei Q·r i (a†

im↑aim↓ + a
†
im↓aim↑),

(17)

where a
†
ims is the Fourier transformation of a

†
kms and Q =

(π,π ). The order parameters (M̃z
1,M̃

z
2,M̃

z
3) for z-AF and

(M̃x
1 ,M̃x

2 ,M̃x
3 ) for x-AF are variational parameters to be

optimized. With an appropriate basis transformation, we
obtain the original t2g orbital representation in real space and
construct the Slater determinant |	〉 with five electrons (i.e.,
one hole) per site for VMC simulations.

The Gutzwiller operator

P
(3)
G =

∏
i,γ

[1 − (1 − gγ )|γ 〉〈γ |i] (18)

in |�〉 is the one extended for the three-orbital system [25,47].
Here, i is a site index and γ represents possible electron con-
figurations at each site, namely, |0〉 = |0 0 0〉, |1〉 = |0 0 ↑〉,
. . . , |63〉 = | ↑ ↓ ↑ ↓ ↑ ↓〉. The variational parameters gγ

vary from 0 to 1, which control the weight of each electron
configuration. Here, we classify the possible 64 local electron
configurations into 12 groups by the local Coulomb interaction
energy EI = 〈γ |HI|γ 〉, and set the same values of gγ for elec-
tron configurations with the same EI. The explicit grouping is
shown in Table I.

The remaining operator

PJc = exp

⎡
⎣−

∑
i �=j

vijninj

⎤
⎦ (19)

in |�〉 is the charge Jastrow factor, which controls the
long-range charge correlations. Here, ni = ∑

ασ niασ is the
electron number at site i. We assume that vij depends only
on the distances, vij = v(|r i − rj |), and consider the range
of r = |r i − rj | < L/2 for a square lattice of N = L × L.
The numbers of independent variational parameters vij are,
for example, 29 for L = 16 and 43 for L = 20.

The ground state energies are calculated with a VMC
method. The variational parameters, as many as 80 parameters
for a 20 × 20 square lattice, are simultaneously optimized to
minimize the variational energy by using the stochastic recon-
figuration method [56]. We employ periodic and antiperiodic
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TABLE I. The Gutzwiller parameters gγ in the Gutzwiller
operator [Eq. (18)] extended for the three-orbital system. 64 different
local electron configurations |γ 〉 (γ = 0,1, . . . ,63) are composed of
four different states, 0, ↑, ↓, and ↑ ↓, for each orbital dyz, dzx , and dxy

indicated in the second column. The corresponding Hartree energy
EI = 〈γ |HI|γ 〉 is given in the third column. These 64 local electron
configurations are divided into 12 groups such that the electron
configurations in the same group have the same EI. We assume that
the Gutzwiller parameters gγ in the same group have the same value,
indicated in the fourth column by wi . Note that γ in the first column is
given by representing the local electron configurations in quaternary
notation, i.e., γ = mdyz

42 + mdzx
41 + mdxy

40 where mdα
= 0, 1, 2,

and 3 for electron configurations of orbital α with 0, ↑, ↓, and ↑ ↓,
respectively.

γ dyz dzx dxy EI gγ

0 0 0 0 0 w1

1 0 0 ↑ 0
2 0 0 ↓ 0
4 0 ↑ 0 0
8 0 ↓ 0 0
16 ↑ 0 0 0
32 ↓ 0 0 0

3 0 0 ↑↓ U w2

12 0 ↑↓ 0 U

48 ↑↓ 0 0 U

5 0 ↑ ↑ U ′ − J w3

10 0 ↓ ↓ U ′ − J

17 ↑ 0 ↑ U ′ − J

20 ↑ ↑ 0 U ′ − J

34 ↓ 0 ↓ U ′ − J

40 ↓ ↓ 0 U ′ − J

6 0 ↑ ↓ U ′ w4

9 0 ↓ ↑ U ′

18 ↑ 0 ↓ U ′

24 ↑ ↓ 0 U ′

33 ↓ 0 ↑ U ′

36 ↓ ↑ 0 U ′

7 0 ↑ ↑↓ U + 2U ′ − J w5

11 0 ↓ ↑↓ U + 2U ′ − J

13 0 ↑↓ ↑ U + 2U ′ − J

14 0 ↑↓ ↓ U + 2U ′ − J

19 ↑ 0 ↑↓ U + 2U ′ − J

28 ↑ ↑↓ 0 U + 2U ′ − J

35 ↓ 0 ↑↓ U + 2U ′ − J

44 ↓ ↑↓ 0 U + 2U ′ − J

49 ↑↓ 0 ↑ U + 2U ′ − J

50 ↑↓ 0 ↓ U + 2U ′ − J

52 ↑↓ ↑ 0 U + 2U ′ − J

56 ↑↓ ↓ 0 U + 2U ′ − J

21 ↑ ↑ ↑ 3U ′ − 3J w6

42 ↓ ↓ ↓ 3U ′ − 3J

22 ↑ ↑ ↓ 3U ′ − J w7

25 ↑ ↓ ↑ 3U ′ − J

26 ↑ ↓ ↓ 3U ′ − J

37 ↓ ↑ ↑ 3U ′ − J

38 ↓ ↑ ↓ 3U ′ − J

41 ↓ ↓ ↑ 3U ′ − J

TABLE I. (Continued.)

γ dyz dzx dxy EI gγ

15 0 ↑↓ ↑↓ 2U + 4U ′ − 2J w8

51 ↑↓ 0 ↑↓ 2U + 4U ′ − 2J

60 ↑↓ ↑↓ 0 2U + 4U ′ − 2J

23 ↑ ↑ ↑↓ U + 5U ′ − 3J w9

29 ↑ ↑↓ ↑ U + 5U ′ − 3J

43 ↓ ↓ ↑↓ U + 5U ′ − 3J

46 ↓ ↑↓ ↓ U + 5U ′ − 3J

53 ↑↓ ↑ ↑ U + 5U ′ − 3J

58 ↑↓ ↓ ↓ U + 5U ′ − 3J

27 ↑ ↓ ↑↓ U + 5U ′ − 2J w10

30 ↑ ↑↓ ↓ U + 5U ′ − 2J

39 ↓ ↑ ↑↓ U + 5U ′ − 2J

45 ↓ ↑↓ ↑ U + 5U ′ − 2J

54 ↑↓ ↑ ↓ U + 5U ′ − 2J

57 ↑↓ ↓ ↑ U + 5U ′ − 2J

31 ↑ ↑↓ ↑↓ 2U + 8U ′ − 4J w11

47 ↓ ↑↓ ↑↓ 2U + 8U ′ − 4J

55 ↑↓ ↑ ↑↓ 2U + 8U ′ − 4J

59 ↑↓ ↓ ↑↓ 2U + 8U ′ − 4J

61 ↑↓ ↑↓ ↑ 2U + 8U ′ − 4J

62 ↑↓ ↑↓ ↓ 2U + 8U ′ − 4J

63 ↑↓ ↑↓ ↑↓ 3U + 12U ′ − 6J w12

boundary conditions in x and y directions, respectively [57].
The largest system size treated in this paper is L = 20.

III. RESULTS

A. Paramagnetic state and metal-insulator transition

In the previous paper [25], we have found that the ground
state of the three-orbital Hubbard model given in Eq. (1) for
Sr2IrO4 is well described by the Gutzwiller-Jastrow-type wave
function |�〉 [Eq. (15)] with in-plane AF order (see Sec. II B).
Before discussing this AF state in detail, let us first focus on a
paramagnetic state and examine the metal-insulator transition
in the paramagnetic phase. Since the electron density per unit
cell is an odd integer (n = 5), this transition should be a “true”
Mott transition without breaking translational symmetry by
any magnetic order. As shown below, the FS deformation due
to the renormalization of the one-body parameters {t̃i ,μ̃xy,λ̃αβ}
in |	〉 is quite important for describing the metal-insulator
transition. Therefore, care must be taken in considering all
possible FSs in the wave functions by properly occupying k
points with electrons [58].

The metal-insulator transition is identified by the disappear-
ance of discontinuities in the momentum distribution function.
For convenience, we calculate the momentum distribution
function of holes,

nα(k) = 1

2

∑
σ

〈�|ckασ c
†
kασ |�〉

〈�|�〉 , (20)

where α denotes the three t2g orbitals dyz, dzx , and dxy [59].
Figure 3 shows nα(k) for U/t = 6.5 and 7.5 with (λ/t,J/U ) =
(1.028,0.0). Although the Hamiltonian H and the variational
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FIG. 3. (Color online) Hole momentum distribution functions
nα(k) for (a) U/t = 6.5 and (b) U/t = 7.5 with (λ/t,J/U ) =
(1.028,0.0) and L = 20. For comparison, the unprojected momentum
distribution function n0

α(k) (see the text for definition) for U/t = 7.5
is also shown in (c). The momentum pass taken in the first Brillouin
zone is indicated in the upper panel.

wave function |�〉 have a fourfold rotational symmetry,
the dyz and dzx components have a strong one-dimensional
character and each of them does not have a fourfold rotational
symmetry by itself. Therefore, as indicated in the upper panel
of Fig. 3, we take the momentum pass in the first Brillouin
zone through (0,0) → (π,0) → (π,π ) → (0,0) → (π,π ) →
(0,π ) → (0,0) to show the behavior of each component more
clearly. Figure 3(a) clearly exhibits discontinuities in nα(k) for
U/t = 6.5, indicating the presence of a well-defined FS, i.e.,
a typical metallic behavior. To the contrary, in Fig. 3(b) we see
rather continuous variations of nα(k) for U/t = 7.5, a typical

insulating behavior. It is interesting to note that the one-body
part |	〉 without the Gutzwiller-Jastrow projection for U/t =
7.5 is metallic and its momentum distribution function n0

α(k) =
1/2

∑
σ 〈	|ckασ c

†
kασ |	〉/〈	|	〉 exhibits clear discontinuities

as shown in Fig. 3(c). Namely, the Gutzwiller and Jastrow
factors remove these discontinuities in nα(k) and make the
system insulating, i.e., a “true” Mott insulator is induced by
electron correlations without breaking translational symmetry
by any magnetic order.

To confirm the presence of the metal-insulator transition
in a different perspective, we examine the low-lying charge
excitations by studying the charge structure factor. Following
seminal work by Feynman and Cohen [60], a different behavior
is expected in the charge structure factor N (q) for a metal
and an insulating state because N (q) in the limit of q →
0 is related to the charge excitation gap. Assuming a wave
function |�(q)〉 = nq |�〉 for an excited state, the upper bound
of the low-lying collective charge excitation energy �C(q) is
evaluated by

�C(q) = 〈�(q)|H |�(q)〉
〈�(q)|�(q)〉 − 〈�|H |�〉

〈�|�〉 , (21)

where nq = ∑
kασ c

†
k+qασ ckασ and |�〉 is the optimized ground

state wave function given in Eq. (15). Because of the f -sum
rule [60–62], one can readily show that

�C(q) = 1

2N (q)

∑
k,α,σ

[εα(k + q) + εα(k − q) − 2εα(k)]

× 〈�|c†kασ ckασ |�〉/〈�|�〉, (22)

where N (q) is the charge structure factor calculated for the
ground state wave function |�〉, i.e.,

N (q) = 1

N

〈�|n−qnq |�〉
〈�|�〉 . (23)

Taking the limit of q → 0 in Eq. (22), we find that �C(q) ∝
|q|2/N (q). Therefore, the system is metallic if limq→0 N (q) ∼
|q| and insulating if limq→0 N (q) ∼ |q|2.

Figure 4 shows N (q) for U/t = 6.5 and 7.5 with
(λ/t,J/U ) = (1.028,0.0), the same parameter sets as those in

FIG. 4. (Color online) Charge structure factor N (q) for U/t =
6.5 and 7.5 with (λ/t,J/U ) = (1.028,0.0) and L = 20. For
comparison, the unprojected charge structure factor N0(q) =
1
N

〈	|n−qnq |	〉/〈	|	〉 for U/t = 7.5 is also shown. Inset: N (q)/|q|2
and N0(q)/|q|2 for |q| ∼ 0 are plotted.
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FIG. 5. (Color online) Distance r dependence of charge Jastrow
factor v(r) in PJc [Eq. (19)] for (λ/t,J/U ) = (1.028,0.0) and L = 20.
The values of U/t used are indicated in the figure.

Fig. 3. Indeed, we can see, for q around |q| ∼ 0, N (q) ∼ |q|
behavior in the metallic state (U/t = 6.5) and N (q) ∼ |q|2
behavior in the insulating state (U/t = 7.5). Namely, as shown
in the inset of Fig. 4, limq→0 N (q)/|q|2 clearly exhibits the
diverging (converging) behavior for the metallic (insulating)
state, indicating the absence (presence) of a finite charge gap.
Consistently with the result shown in Fig. 3(c), the one-body
part |	〉 alone without the Gutzwiller-Jastrow projection for
U/t = 7.5 exhibits the metallic behavior (Fig. 4), indicating
the importance of the Gutzwiller-Jastrow projection to de-
scribe an insulating state without breaking the translational
symmetry.

Indeed, the insulating state is properly described by the
paramagnetic wave function |�〉 with a long-range charge
Jastrow factor. Figure 5 shows the optimized charge Jastrow
factor v(r = |r i − rj |) in both metallic and insulating states
for (λ/t,J/U ) = (1.028,0.00). Since the wave function |�〉
represents the same state even when an arbitrary constant
is added to v(r), we fix v(r) = 0 for the longest distance
r(=L/2) considered here. As shown in Fig. 5, not only the
short-range terms but also the long-range terms give significant
contribution in the insulating state, while v(r) is much smaller
and rapidly decays in the metallic state. This indicates that the
long-range charge correlation is essential for describing the
Mott insulator, although the Coulomb interactions themselves
in H are only short ranged. This is known in a single-orbital
Hubbard model [63] and here we demonstrate that it is also
the case in a multiorbital Hubbard model with a large SOC.

Systematically studying nα(k) and N (q) for different values
of U/t and J/t , we obtain in Fig. 6(a) the ground state phase
diagram within the paramagnetic state for two different values
of λ/t = 1.028 and 1.4. It is expected that larger λ favors the
insulating state because the energy split between the Jeff = 1/2
originated band and the Jeff = 3/2 originated bands becomes
larger and thus the band overlap between the Jeff = 1/2 and
Jeff = 3/2 bands becomes smaller (see Figs. 1 and 2), which
makes it easier to open the insulating gap with less electron
correlations. Although this intuitive expectation is valid, the
critical value Up-MIT of U at which the paramagnetic metal-
insulator transition occurs is not much affected by λ used here:
Up-MIT decreases only slightly by 0.1–0.2 t with increasing
λ for a given J/U as shown in Fig. 6(a). Instead, we find

FIG. 6. (Color online) Ground state phase diagrams within a
paramagnetic state in the (a) U/t-J/U and (b) U ′/t-J/U planes for
λ/t = 1.028 (solid lines) and 1.4 (dashed lines). PM and PI denote a
paramagnetic metal and a paramagnetic insulator, respectively. Note
that U = U ′ + 2J is imposed.

that Up-MIT is rather sensitive to J/U in the U/t-J/U phase
diagram: Up-MIT increases with J/U , i.e., larger J/U favoring
the metallic state.

To understand the λ and J/U dependence of Up-MIT, we
should point out that the single-particle excitation gap in the
atomic limit, i.e., εyz(k) = εzx(k) = εxy(k) = 0, with n = 5 is
evaluated as

�c = E(d4) + E(d6) − 2E(d5) (24)

= U + U ′ − J + 2J ′ + 6λ

2

−
√

(U − U ′ + J + 2J ′ + 2λ)2

4
+ 8λ2 (25)

= U − J

2
+ 3λ −

√
(2λ + 5J )2

4
+ 8λ2, (26)

where in the third line J ′ = J and U = U ′ + 2J are assumed.
E(dl) denotes the ground state energy for l electrons. Thus, for
a fixed U , �c monotonously increases with increasing λ and
monotonously decreases with increasing the Hund’s coupling
J . One can readily see that �c is not very sensitive to λ because
of the opposite contribution from the linear term and the square
root term. Indeed, �c = U when J = 0 [64]. On the other
hand, �c is rather sensitive to J because both the linear and
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the square root terms give the same (negative) contribution.
In fact, �c = U − 3J when λ = 0 [64]. Namely, the Hund’s
coupling J reduces the effective electron correlation and the
metallic state is expected to be more favored with increasing J .
These results should be relevant to understand the behavior of
Up-MIT, at least, qualitatively, which increases with increasing
J/U but is not very sensitive to λ/t . We should note that the
effect of Hund’s coupling to the metal-insulator transition has
been discussed previously for multiorbital Hubbard models
without the SOC, where the charge gap in the atomic limit
is indeed U − 3J at integer fillings with n �= m (m being
a number of orbitals) and is enhanced to U + (m − 1)J at
half-filling, i.e., n = m [65–67].

It should also be noted that, as shown in Fig. 6(b), the
phase boundary between the metallic and insulating states
is well scaled by U ′/t and insensitive to J/U in the U ′/t-
J/U phase diagram. This seems to contradict the qualitative
understanding given above as the charge gap in the atomic
limit with λ = 0 is �c = U ′ − J (= U − 3J ) rather than
U ′ (= U − 2J ). To better understand this, we consider the
itinerant band effect. For this purpose, it is important to recall
the electron configurations appearing in the right-hand side of
Eq. (24). Using the notation defined in Table I, the charge gap
�c is given as

�c = E(d4) + E(d6) − 2E(d5)

= EI(|↑↓ ↑ ↑〉) + EI(|↑↓ ↑↓ ↑↓〉) − 2EI(|↑↓ ↑↓ ↑〉)
= U ′ − J.

Notice that because of the Hund’s rule the two-hole state
for d4 above is spin parallel and it has lower energy by
J ′ than a spin antiparallel two-hole state |↑↓ ↑ ↓〉, i.e.,
EI(|↑↓ ↑ ↓〉) − EI(|↑↓ ↑ ↑〉) = J ′ (see Table I). When the
itineracy of electrons is taken into account, the antiferromag-
netic correlation between the nearest-neighbor sites is en-
hanced and the electron hopping between the nearest-neighbor
sites, which mainly contributes to the charge gap, competes
with the Hund’s rule. Therefore, considering the itinerant
band effect, it would be natural to take the spin antiparallel
two-hole state for d4 and a rough estimation for the effective
charge gap �′

c is �′
c ≈ EI(|↑↓ ↑ ↓〉) + EI(|↑↓ ↑↓ ↑↓〉) −

2EI(|↑↓ ↑↓ ↑〉) = U ′. Indeed, as shown later, the HU ′ term
in HI [Eq. (4)] mainly contributes to the total energy and
dominates the energy gain mechanism (see Fig. 12). The
details are discussed in the next section.

Next, we study the U/t dependence of the generalized
double occupancy D defined by

D = 1

N

∑
i

〈�|n2
i |�〉

〈�|�〉 . (27)

This is an extension of the double occupancy D(1) =
(1/N )

∑
i〈ni↑ni↓〉 for a single-orbital system. In a multiorbital

system, we should consider not only diagonal elements but
also off-diagonal elements such as niασ niβσ ′ (α �= β), and
these quantities depend on the choice of bases. Therefore,
we take the sum with respect to spin and orbital indices,
ni = ∑

ασ niασ , i.e., local density, for the generalized double
occupancy D, which is basis invariant. For convenience,
here we calculate the generalized double occupancy of holes,

FIG. 7. (Color online) U/t dependence of the generalized double
occupancy of hole Dhole for different sets of parameters (λ/t,J/U )
indicated in the figures. The results for L = 16 and 20 are denoted
by triangles and circles, respectively, where open (solid) symbols
represent the metallic (insulating) state. The results for L = 10 are
also plotted by crosses, from which the transition point is difficult to
determine. The renormalization factor z, estimated from the jump of
the momentum distribution function n(k) = ∑

α nα(k) for L = 20, is
indicated for the largest U in the metallic phase.

Dhole = 1
N

∑
i〈�|(nhole

i )2|�〉/〈�|�〉 = D − 24, with nhole
i =∑

α(2 − nα
i ) = 6 − ni . One can readily show that Dhole = 1

for U → ∞ where the charge fluctuation is completely frozen.
In the noninteracting limit with U = J = 0, Dhole = 1.549
(1.5) for λ = 1.028t (1.4t), noting that the Jeff = 3/2 band
with m = 2 is partially (completely) occupied (see Figs. 1
and 2).

The results are summarized in Fig. 7 for different sets of
(λ/t,J/U ). As shown in Fig. 7(a), Dhole for (λ/t,J/U ) =
(1.028,0.0) with L = 16 and 20 exhibits clear discontinuity
across the metal-insulator transition point, indicating that it
is a first-order phase transition. For L = 10, however, Dhole

changes almost continuously and the transition is smeared
out. The different behavior in Dhole is simply due to a finite
size effect, i.e., the energy discretization near the Fermi
level for L = 10 exceeds the insulating gap and thus the
10 × 10 cluster fails to capture the transition correctly. This
indicates that care should be taken for the size dependence
of this quantity. Indeed, as shown in Fig. 7(c), even L = 16
is not large enough to describe the transition in Dhole for
(λ/t,J/U ) = (1.028,0.1), although the first-order character
of the transition seems to be partly captured for this L.

The U/t dependence of Dhole for λ/t = 1.4 is also shown
in Figs. 7(b) and 7(d). Although the transition point of U/t is
almost the same as that for λ/t = 1.028, the discontinuity at
the transition point is smaller. This suggests that the first-order
character of the transition is weakened for larger λ/t . This
result can be understood by considering the shape of the FS in
|	〉 which is deformed from the original “bare” FS in H0 due
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FIG. 8. (Color online) Evolution of the FS (red solid lines) in
the one-body part |	〉 of the paramagnetic wave functions for
(λ/t,J/U ) = (1.028,0.0) and L = 20. The momentum k = (kx,ky)
inside (outside) the FS is denoted by red solid (black open) points. The
Coulomb interaction U/t is indicated in the figures. “MIT” denotes
the metal-insulator transition. Only the first quadrant of the Brillouin
zone is shown.

to the electron correlations. When the Coulomb interactions
increase, the FS in |	〉 is spontaneously deformed to reduce
the energy cost of Coulomb interactions at the expense of the
kinetic energy. It turns out that in our three-orbital Hubbard
model the FS in |	〉 is deformed from a circularlike FS, as
shown in Figs. 1 and 2, to a tilted square FS as the Coulomb
interactions increase, and in the Mott insulating state the FS
in |	〉 becomes almost perfectly tilted square (see Figs. 8
and 9). This is very similar to the case of the two-dimensional
single-orbital Hubbard model with including up to the second-
nearest-neighbor hoppings at half-filling (n = 1) where the
FS of the corresponding |	〉 is deformed to the tilted square
shape satisfying the perfect nesting condition [68]. When the
noninteracting FS of H0 is far from the square (as in Fig. 1

FIG. 9. (Color online) Same as Fig. 8 but for (λ/t,J/U ) =
(1.4,0.0). Green solid squares (and the symmetrically equivalent
points) represent the k points which are only half occupied due to the
degeneracy (i.e., open shell).

with additional hole pockets), the metal-insulator transition
occurs before the FS deformation is completed with increasing
Coulomb interactions. Indeed, for (λ/t,J/U ) = (1.028,0.0),
the k-point occupation of the one-body part |	〉 changes
discontinuously through the metal-insulator transition (see
Fig. 8), thus causing the clear discontinuity in the one-body
part |	〉. On the other hand, for (λ/t,J/U ) = (1.4,0.0), the
FS in |	〉 is gradually deformed, as shown in Fig. 9, with
increasing Coulomb interactions and the FS deformation
is completed at U/t = 6.8 just before the metal-insulator
transition occurs. In finite size calculations, it is difficult to
determine the order of the transition when the FS deforms
gradually. However, these results demonstrate that, despite
almost the same Up-MIT, the behavior in the vicinity of the
metal-insulator transition greatly depends on λ, which at
the same time determines the shape of the original “bare”
FS in H0.

We also study the J/U dependence of Dhole and find that the
larger Hund’s coupling J/U makes the discontinuity smaller,
although not drastically, as shown in Fig. 7. This behavior
can be understood by recalling that the larger J/U increases
Up-MIT [Fig. 6(a)] and thus a more renormalized metallic
state becomes stable before entering the insulating phase. To
quantify the degree of renormalization, the renormalization
factor z is estimated from the discontinuities in n(k) =∑

α nα(k) at the Fermi momentum and the results are indicated
in Fig. 7 for the largest U in the metallic phase. Indeed, z for the
largest U in the metallic phase becomes somewhat smaller with
increasing J/U . On the other hand, z greatly decreases with
increasing λ, in accordance with the stronger renormalization
of the FS in |	〉 towards the metal-insulator transition for larger
λ as discussed above. The smallest z in Fig. 7 is z ∼ 0.274
for (λ/t,U/t,J/U ) = (1.4,8.4,0.1), which indicates that the
effective electron mass (m∗ ≈ m/z) is about four times larger
than the bare one (m). This strongly renormalized metallic
state has an interesting consequence, which is discussed in the
next section.

B. AF state and energy gain mechanisms

In the previous section, we have shown that there is a
metal-insulator transition in the paramagnetic state. Here, we
consider the AF orders in the wave function |�〉 described
in Sec. II B and complete the ground state phase diagram
by comparing the variational energies of paramagnetic and
AF states. The results shown in this section are obtained for
L = 20, which is the maximal cluster size that we can treat with
realistic computational time. Since we have confirmed that the
in-plane AF state always has a lower variational energy than
the out-of-plane AF state for the parameter space considered
here, the in-plane AF state is simply called “AF state” in the
following.

To complete the ground state phase diagram, first we
calculate the energy difference �E between the paramagnetic
state and the AF state,

�E = EAF − Epara, (28)

with varying U/t and J/U . Here, EAF (Epara) is the variational
energy of the optimized AF (paramagnetic) state for a given
model parameter. The critical UAF for the AF order is
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FIG. 10. (Color online) U/t dependence of �E, �Eband, and
�Eint for (a) (λ/t,J/U ) = (1.028,0.0), (b) (λ/t,J/U ) = (1.4,0.0),
and (c) (λ/t,J/U ) = (1.4,0.1). Blue-shaded regions indicate the
intermediate region where �Eband and �Eint are both negative.

determined where �E = 0 at U = UAF. Systematically cal-
culating �E, we find that, with increasing U/t , the AF-
paramagnetic transition occurs way before the metal-insulator
transition occurs in the paramagnetic state discussed in the
previous section, i.e., UAF < Up-MIT for given J/U and λ. For
example, as shown in Fig. 10, UAF/t ∼ 3.0 for (λ/t,J/U ) =
(1.028,0.0), 2.4 for (λ/t,J/U ) = (1.4,0.0), and 3.0 for
(λ/t,J/U ) = (1.4,0.1). These values are indeed much smaller
than Up-MIT/t for the same sets of (λ/t,J/U ) [see Fig. 6(a)].

Furthermore, we find that a metal-insulator transi-
tion occurs simultaneously when the system becomes

antiferromagnetically ordered: An AF metallic state always
has higher variational energy than the AF insulating state.
We also calculate the variational energies of superconducting
states with different pairing symmetries [47] and find that the
one with dx2−y2 symmetry has the lowest variational energy.
However, its variational energy is always higher than the AF
insulating state for U > UAF or the paramagnetic metallic state
for U < UAF. Therefore, the superconducting state is not the
ground state for this electron density at n = 5. The possibility
of superconductivity away from n = 5 has been discussed in
previous reports [43,47,48].

Next, let us examine the stabilization mechanism of the AF
insulating state |�AF〉 over the paramagnetic state |�para〉. For
this purpose, we divide �E into two parts,

�E = �Eband + �Eint, (29)

where �Eband is the contribution from the band energy, i.e.,
the kinetic and SOC terms,

�Eband = 〈�AF|(Hkin + HSO)|�AF〉
〈�AF|�AF〉

− 〈�para|(Hkin + HSO)|�para〉
〈�para|�para〉 , (30)

and �Eint is the contribution from the Coulomb interaction
energy,

�Eint = 〈�AF|HI|�AF〉
〈�AF|�AF〉 − 〈�para|HI|�para〉

〈�para|�para〉 . (31)

The U/t dependence of �E, �Eband, and �Eint are sum-
marized in Fig. 10. For small U/t , the energy gain of the
AF insulating state is due to the interaction energy, i.e.,
�Eint < 0 but �Eband > 0, indicating that this AF insulator
is interaction-energy driven. Instead, for large U/t , the AF
insulating state is stabilized by gaining the band energy, i.e.,
�Eband < 0 but �Eint > 0, indicating that this AF insulator is
band-energy driven.

The change of the energy gain mechanism is also inferred
in the momentum distribution function. Figure 11 shows the
total hole momentum distribution function n(k) = ∑

α nα(k)
for two different values of U/t as typical examples for
the interaction-energy-driven and band-energy-driven cases.
Comparing n(k) for the paramagnetic and the AF states in
Fig. 11, it is suggestive that the band energy is lost when
the paramagnetic state becomes the AF state for small U/t

[Fig. 11(a)], while it is gained once the paramagnetic state is
turned to the AF state for large U/t [Fig. 11(b)].

It should be emphasized that the change of the energy
gain mechanism is due to the change of the nature of
the paramagnetic state: The paramagnetic state is metallic
in the interaction-energy-driven region [Fig. 11(a)] and it
is insulating in the band-energy-driven region [Fig. 11(b)].
Since the ground state AF insulating state is described by
the same wave function, the evolution from the interaction-
energy-driven to the band-energy-driven AF insulators with
increasing U/t should be considered as a crossover, not a
phase transition, separating a weakly correlated and a strongly
correlated region. The similar crossover has been discussed in
a single-orbital Hubbard model both for an AF state [69] and a

165115-9



WATANABE, SHIRAKAWA, AND YUNOKI PHYSICAL REVIEW B 89, 165115 (2014)

FIG. 11. (Color online) Total hole momentum distribution func-
tion n(k) for the paramagnetic and the AF states with (λ/t,J/U ) =
(1.4,0.1). As typical examples of the interaction-energy-driven and
the band-energy-driven AF insulators, we choose (a) U/t = 4 and (b)
U/t = 8. PM, PI, and AFI denote paramagnetic metal, paramagnetic
insulator, and AF insulator, respectively. Momentum pass in the
horizontal axis is the same as in Fig. 3. Notice that, unlike nα(k)
shown in Fig. 3, the total hole momentum distribution is fourfold
rotational symmetric.

superconducting state [70–73]. Our results for the three-orbital
Hubbard model are consistent with these previous reports.

Furthermore, we find, between these two regions, an
intermediate region where �Eband and �Eint are both negative
for (λ/t,J/U ) = (1.4,0.0) and (1.4, 0.1), as indicated by
blue shade in Figs. 10(b) and 10(c), although such a region
is absent for (λ/t,J/U ) = (1.028,0.0) [Fig. 10(a)]. In this
intermediate region, the paramagnetic state is metallic and
strongly renormalized with the almost perfectly tilted squared
FS in |	〉, as shown in Fig. 9. Note also that the strongly
renormalized paramagnetic metallic state does not appear for
(λ/t,J/U ) = (1.028,0.0), where the first-order character of
the metal-insulator transition is strong and the FS in the
paramagnetic wave function is deformed abruptly through the
transition (see Fig. 8). We find semiquantitatively the same
results even for the smaller system size using L = 16, which
suggests that the intermediate region as well as the resulting
phase diagrams shown below in Figs. 13 and 14 are rather
robust.

Finally, we examine the energy gain �E of the AF insu-
lating state in more detail. Figure 12 shows U/t dependence
of each contribution in �E for (λ/t,J/U ) = (1.4,0.1). Here,
�EU and other quantities are defined similarly as in Eqs. (30)

FIG. 12. (Color online) U/t dependence of the energy difference
between the paramagnetic state and the AF state for different terms
in H . �Ekin, �ESO, �EU , �EU ′ , �EJ , and �EJ ′ are indicated
in Eqs. (1) and (4). The parameter used here is (λ/t,J/U ) =
(1.4,0.1).

and (31) for each term in H [Eqs. (1) and (4)]. We find that
the interorbital Coulomb interaction �EU ′ and the kinetic
energy �Ekin are the main contributions to �Eint and �Eband,
respectively, and thus determine the overall feature of the
energy gain. The same tendency is also found for different
values of λ/t and J/U . This can explain the fact that the
phase boundary of the paramagnetic metal-insulator transition
is well scaled by U ′/t as shown in Fig. 6(b).

To summarize this section, the ground state phase diagrams
for λ/t = 1.028 and 1.4 are shown in Figs. 13 and 14,
respectively. With increasing U/t , the ground state changes
from the paramagnetic metal to the weakly correlated AF
insulator (w-AFI) followed by the crossover to the strongly
correlated AF insulator (s-AFI). The w-AFI and s-AFI are
distinguished by the energy gain mechanism and there exists
the intermediate region where �Eband and �Eint are both
negative and the paramagnetic metallic state is strongly
renormalized.

Let us now discuss where Sr2IrO4 is located in the
phase diagram. The value of U for Sr2IrO4 is approximately
estimated within a range of U = 2–3 eV [44,50,74,75], thus
corresponding to U/t = 5.6–8.3 with t ≈ 0.36 eV. This region
is indicated in Figs. 13 and 14 by blue shading. For both
values of λ, it is located around the intermediate region.
Note also that the value of Hund’s coupling is estimated as
large as J/U = 0.06–0.07 by the constrained random-phase
approximation method. [50] Therefore, we consider Sr2IrO4

to be a moderately correlated AF insulator where the band
effect and the correlation effect are both important. A similar
conclusion has also been reached in the recent mean-field
analysis of multiorbital Hubbard models for Srn+1IrnO3n+1

with n = 1, 2, and ∞ [76]. This dual nature is also indicated
in the dynamical mean-field theory calculation [50], where the
continuous phase transition from the paramagnetic metal to the
AF insulator is found with decreasing temperature, suggesting
the Slater-type insulating mechanism. It is also pointed out that
the substantial cooperation of Mott-type correlation effects
induce strongly renormalized “bad metallic” behavior in the
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FIG. 13. (Color online) The ground state phase diagram includ-
ing the AF state. PM, w-AFI, and s-AFI stand for paramagnetic
metal, weakly correlated AF insulator, and strongly correlated AF
insulator, respectively. The intermediate region corresponds to a
region where �Eband and �Eint are both negative. The blue shaded
region indicates the values of U/t relevant for Sr2IrO4. The SOC is
set to be λ/t = 1.028.

paramagnetic metallic region above the Néel temperature [50].
Although the finite temperature calculation cannot be directly
compared with our ground state calculation, the bad param-
agnetic metallic region found above the Néel temperature can
be regarded as the strongly renormalized metallic state which
appears in the intermediate region of the ground state phase
diagrams shown in Figs. 13 and 14.

IV. DISCUSSION AND SUMMARY

We shall now address the question whether Sr2IrO4 is
a Slater-type or a Mott-type insulator. Although there have
been several experimental reports concerning this issue, these
results are still controversial. The temperature dependence
of the resistivity shows no significant changes at the Néel
temperature TN [54], strongly indicating that Sr2IrO4 is a
Mott-type insulator. The insulating gap of ∼0.62 eV esti-
mated from the scanning tunneling microscopy/spectroscopy
is unusually large for a Slater-type insulator and claimed to
be a Mott gap [77,78]. On the other hand, the temperature
dependence of the gap below TN seems to be consistent with the
Slater-type behavior [49–52], although the pseudogap-like
behavior above TN should be discussed in more detail.
Moreover, the time-resolved photocarrier dynamics experi-
ment suggests that Slater and Mott characteristics coexist
in Sr2IrO4 [53]. These incompatible results among different
experimental observations rather represent the unique charac-
ter of Sr2IrO4. As discussed in Sec. III B, our VMC results
indicate that Sr2IrO4 is a moderately correlated AF insulator
located between a Slater-type and a Mott-type insulator. It
is thus expected that both characteristic behaviors can be
observed in different experiments. Further theoretical as well
as experimental studies are highly desirable to understand the
seemingly incompatible experimental observations.

In summary, we have studied the three-orbital Hubbard
model with a large SOC by using the VMC method to discuss

FIG. 14. (Color online) Same as Fig. 13 but λ/t = 1.4.

the insulating mechanism of Sr2IrO4. First, we have shown that
there is the metal-insulator transition within the paramagnetic
state, which can be described by the long-range charge Jastrow
factor. We have found that the underlying FS in the wave
function is spontaneously deformed to the perfectly tilted
squared shape in the paramagnetic insulating state. We have
also shown the presence of a strongly renormalized metallic
state in the vicinity of the metal-insulator transition, where
the FS of the wave function is also tilted square. Next,
we have incorporated the AF orders in the wave function
and found that UAF is much smaller than Up-MIT for a
given set of (λ/t,J/U ) and that the AF insulating state is
always favored over the AF metallic state. We have then
examined the stabilization mechanism of the AF insulating
state over the paramagnetic state. Systematic calculations of
the energy gain for the AF insulating state have revealed that
the ground state changes from the interaction-energy-driven,
i.e, weakly correlated Slater-type, AF insulator to the band-
energy-driven, i.e., strongly correlated Mott-type, AF insulator
with increasing the Coulomb interactions. We have also shown
that, between these two regions, there exists the intermediate
region where the energy gain mechanism is both interaction-
and band-energy driven and where the paramagnetic state is
strongly renormalized metal with the almost perfectly tilted
squared FS in the wave function. Based on our results, we
assign Sr2IrO4 to be located in the intermediate region between
the weakly correlated and the strongly correlated AF insulators
and thus we expect that Slater-like and Mott-like behaviors can
be both observed in Sr2IrO4.
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