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The problem of continuous quantum phase transitions in metals involves critical bosons coupled to a Fermi
surface. We solve the theory in the limit of a large number, NB , of bosonic flavors, where the bosons transform in the
adjoint representation (a matrix representation), while the fermions are in the fundamental representation (a vector
representation) of a global SU (NB ) flavor symmetry group. The leading large NB solution corresponds to a non-
Fermi liquid coupled to Wilson-Fisher bosons. In a certain energy range, the fermion velocity vanishes—resulting
in the destruction of the Fermi surface. Subleading 1/NB corrections correspond to a qualitatively different form
of Landau damping of the bosonic critical fluctuations. We discuss the model in d = 3 − ε but because of the ad-
ditional control afforded by large NB , our results are valid down to d = 2. In the limit ε � 1, the large NB solution
is consistent with the renormalization group analysis of Fitzpatrick et al. [Phys. Rev. B 88, 125116 (2013)].
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I. INTRODUCTION

The problem of understanding metals in the vicinity of
a quantum phase transition is of significant interest [1–4].
Near the transition, gapless bosons (representing the order
parameter fields associated with the phase transition) interact
with the Fermi surface of the itinerant electrons. Similar
phenomena occur when metals are coupled to gapless gauge
bosons: Example realizations include gapless spin liquids,
and electrons in half-filled Landau levels. While significant
progress has been made in this field [5–21], key aspects of the
field theory of critical bosons interacting with a Fermi surface
remain poorly understood.

Quantum phase transitions in metals fall broadly into two
distinct categories. In the first, the ordered phase preserves
translation symmetry of the underlying lattice; the correspond-
ing boson condenses at zero momentum and couples strongly
to fermions everywhere on the Fermi surface. Examples
include ferromagnetism, and nematic order. The second class
of transitions involve density wave orders in which the
underlying lattice translation symmetry is further broken; the
order parameter in this case condenses at a finite momentum,
and couples strongly to isolated pairs of points on the Fermi
surface (“hot spots”). In this paper, we focus on the first class
of transitions and consider the nematic transition in particular.

By considering a generalization of the theory to a large
number NB or NF of boson or fermion flavors, respectively,
we gain additional theoretical control and new insights into the
problem in a nonperturbative context. In such limits, particles
with the large number of flavors acts as a dissipative bath
for the remaining degrees of freedom. For example, in the
limit of large NF , with NB = 1, fermion fields act as the
dissipative bath for the order parameter fields; at leading order,
the damping of the boson is the most important effect. In this
regime, the IR behavior is closely related to the random phase
approximation theory of Hertz and related subsequent work.
On the other hand, when NB is large and NF = 1, the large
number of boson flavors strongly dress the fermions, resulting
in the destruction of the Landau quasiparticle at leading order.
Thus, the two limits represent extremes where the IR behavior
appears to be qualitatively different. While much work has

been done in the large NF limit, the large NB limit remains
largely unexplored. In this paper, we solve the theory at leading
order in large NB .

In Ref. [22], the authors took a Wilsonian approach to this
theory, studying the renormalization group (RG) flow of the
couplings in a controlled perturbative regime at high energies.
Working in 3 − ε dimensions, the one-loop analysis yields a
theory of a non-Fermi liquid (with anomalous dimensions that
vanish as ε → 0) interacting with a scalar at the Wilson-Fisher
fixed point. The analysis of Ref. [22] was argued to be valid
only at energies intermediate between a low-energy scale
Ebreakdown and the EFermi scale, where Ebreakdown is suppressed
by a power of ε.

The physics setting the scale Ebreakdown in our philosophy
is the Landau damping of the bosons by the fermion, due
to loop diagrams such as Fig. 2. In perturbation theory
about a free UV fixed point, this generates a contribution
to the boson self-energy �(q0,q) ∼ g2kd−1

F ( q0

q
)θ (q − q0); the

coefficient is easily understood as a loop factor multiplying
the density of states at the Fermi surface into which the
boson may decay. This contribution to � cannot appear in
a Wilsonian effective action, as it is nonlocal, and there are
no RG counterterms associated with it. This is confirmed by
an explicit computation, which shows that diagrams such as
Fig. 2 are UV finite. As a result, Landau damping effects are
not well captured by RG. When damping becomes important,
competing with the tree-level terms in the boson propagator,
our perturbation theory is rendered invalid. In the epsilon
expansion, this happens at energy scales suppressed by a power
of ε as compared to EFermi. In order to further suppress this
energy scale, as well as to avoid various subtleties associated
with four-Fermi interactions, a large NB limit (with bosons in
the adjoint of a flavor group and fermions in the fundamental)
also proves useful.

At large NB , one can use 1/NB as the small parameter
instead of ε. It is natural to ask if one can solve these models
at large NB but with ε = 1, i.e., in d = 2. In this paper we will
solve for the physics of the non-Fermi liquid in d = 2 at large
NB . We find that under RG evolution, the fermion velocity v

decreases in the IR, leading to interesting new physics.
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FIG. 1. (Color online) The fixed points we are studying govern
physics over a finite range of energies at finite ε and NB , although
in the strict large NB limit the region of control extends down to
arbitrarily low energy. The scale at which our control breaks down is
the scale associated with significant Landau damping of the bosons.

Our philosophy here and in Ref. [22] differs somewhat
from that employed in a number of other recent works on
this subject. It would be very interesting to determine the
ω → 0 behavior of a potential non-Fermi liquid emerging
from scalar/fermion interactions, with the ω → 0 limit taken
before any control parameters are taken to extreme values.
This is the goal of many recent works, which aim to find a
self-consistent ansatz for such a putative fixed point. However,
this was not our aim in Ref. [22], nor in the present work.
Instead, we are content to use perturbation theory about a
controlled UV fixed point (a decoupled Fermi liquid and a
self-interacting scalar), and to find approximate fixed points
visible in perturbation theory, valid only over a range of scales
not necessarily extending to ω → 0. We feel this is of interest
for two reasons: First, such studies can be performed reliably
using standard techniques in field theory for a range of models
(varying, for instance, the ratio of the number of bosonic to
fermionic degrees of freedom); the differences in the results
for different models could be instructive. Secondly, in many
cases, the ω → 0 limit is anyway inaccessible, as new phases
intervene in the attempt to study the ultra-low-energy behavior.
As a case in point, superconducting instabilities are expected
to intervene in many models of the type we discuss.

An outline of this paper is as follows. First, in Sec. II, we
review the RG structure described in Ref. [22], and discuss a
subtle issue of scheme dependence. We also summarize the

FIG. 2. This figure depicts the 1/NB suppressed one-loop fermion
diagram that renormalizes the boson propagator. It differs greatly
between a weakly coupled Fermi liquid and our approximate fixed-
point theory in d = 2 dimensions at large NB , leading to rather
different conclusions concerning the effect of Landau damping.

physics of the approximate fixed point at small ε. In Sec. III,
we derive a large NB solution using the “gap equation,” a
self-consistent integral equation for the fermion self-energy
� which incorporates the physics of all of the “rainbow
diagrams” (see Fig. 5). Next, in Sec. IV, we again solve the
theory at leading order in large NB by a different technique,
using a trick to recursively evaluate the perturbative corrections
to � to all orders. The agreement between the methods of
Secs. III and IV, and the agreement of both with the ε expansion
results of Sec. II and Ref. [22], give us confidence in the
consistency of the large NB solution. In Sec. V, we turn
to the leading large NB correction of greatest interest—the
boson self-energy diagram in Fig. 2, which contributes to
Landau damping of the bosons. We find that the form of the
Landau damping due to the non-Fermi liquid is qualitatively
different from the damping imparted by a conventional Fermi
liquid. This gives further justification for our procedure of
studying intermediate fixed points starting from the UV action,
because the emergent IR physics of Landau damping depends
crucially on the modifications to the Fermi liquid that occur
at intermediate scales. Finally, in Sec. VI, we provide a more
detailed discussion of the subtleties associated with regulator
choices. This section can be read independently of Secs. III–V.
Section VII contains our conclusions and a discussion of the
larger picture we see emerging from these kinds of studies.

II. RG STRUCTURE IN AN EXPANSION
IN ε = 3 − d AND 1/NB

Our focus is on the field theory with the Lagrangian,

Lψ = ψ̄ i[∂τ + μ − ε(i∇)]ψi + λψ

NB

ψ̄iψiψ̄
jψj ,

Lφ = tr
(
m2

φφ2 + (∂τφ)2 + c2( �∇φ)2
)

(2.1)

+ λ
(1)
φ

8NB

tr(φ4) + λ
(2)
φ

8N2
B

(tr(φ2))2,

Lψ,φ = g√
NB

ψ̄iψjφ
j

i .

The (spinless) fermions are in an NB vector ψi , while the
scalar φ

j

i is an NB × NB complex matrix. We take the global
symmetry group to be SU(NB), and as in Ref. [22], we will
set λ

(1)
φ = 0. This choice is technically natural; if λ

(1)
φ is set

to zero in the UV, then it is never generated by radiative
corrections (this can be understood simply as a consequence
of an enhanced SO(N2

B) symmetry at λ
(1)
φ = 0 broken softly

by the Yukawa coupling). Furthermore, it makes the analysis
far more tractable. In the class of transitions analyzed here,
the Yukawa coupling g is more precisely a coupling function;
it depends not only on the momentum transfer imparted by
the boson, but also on the fermion momentum. In the case of
the nematic transition, the coupling even vanishes at isolated
points of the Fermi surface known as “cold spots.” Our main
interest here is to solve the theory at large NB and we will
neglect the effect of cold spots in this paper. See Ref. [22] for
a more detailed discussion.

In this section, we describe the perturbative RG approach
to studying this system, following Ref. [22]. We start with the
same RG scaling as in that paper, scaling boson and fermion
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FIG. 3. (Color online) Summary of tree-level scaling. High-
energy modes (blue) are integrated out at tree level and remaining
low-energy modes (red) are rescaled so as to preserve the boson and
fermion kinetic terms. The boson modes (a) have the low-energy
locus at a point whereas the fermion modes (b) have their low-energy
locus on the Fermi surface. The most relevant Yukawa coupling (c)
connects particle-hole states separated by small momenta near the
Fermi surface; all other couplings are irrelevant under the scaling.

momenta differently as in Fig. 3 (in a way that is completely
determined by the scaling appropriate to the relevant decoupled
fixed points at g = 0). However, we depart in one important
way from the philosophy of Ref. [22]—instead of decimating
in ω between � and � − d� at each RG step, but integrating
out all momenta [as in Fig. 4(a)], we instead do a more “radial”
decimation, integrating out shells in both ω and k [as in
Fig. 4(b)]. This introduces two UV cutoffs in the problem,

FIG. 4. (Color online) Examples of possible schemes for dec-
imating high-energy modes. Scheme (a), which we adopted in
Ref. [22], integrates out shells in ω but integrates out all momenta
in a given frequency shell. Scheme (b), which integrates out both
frequencies and momenta, is better for our purposes (as explained
below and in Sec. VI), and we adopt it in this paper. Scheme (c) is
recommended as an assignment for graduate students one wishes to
avoid.

� and �k . We find this procedure superior because it avoids
the danger of retaining very high-momentum modes at late
steps of the RG. While of course observables will agree in the
different schemes, aspects of the physics which are obscure
in the scheme of Fig. 4(a) become manifest in the scheme we
have chosen here. This elementary (but sometimes confusing)
point is discussed in more detail in Sec. VI, which can be read
more or less independently of the rest of the paper.

The large NB RG equations are quite simple. The Yukawa
vertex renormalization is a O(1/NB) effect, and the boson
wave-function renormalization due to fermion loops is UV
finite and thus does not contribute to the RG equations.
Therefore, at leading order, the boson is governed by an
O(N2

B) Wilson-Fisher fixed point, while the fermion wave-
function renormalization governs the nontrivial beta functions.
Here and throughout the paper we will use the notation
“” to represent the component of the fermion momentum
perpendicular to the Fermi surface and “ω” to represent
fermion energies. Writing

Lφ = φ2(ω2 + c2k2),

Lψ = (1 + δZ)ψ†iωψ − (v + δv)ψ†ψ,
(2.2)

Lψφ = (g + δg)φψ†ψ,

δZ ≡ Z − 1, δv ≡ v0Z − v, δg ≡ g0Z − g,

we simply need to compute the logarithmic divergences in δZ

and δv to find the one-loop running. δZ and δv are chosen
to cancel the log divergences in the one-loop self-energy �.
Performing the explicit computation, we find

� = ak log(�k) + a� log(�) + aE log(E),

a� = − bg2

c|v|(c + |v|) (iω − v),

(2.3)

aE = − bg2

c2(c + |v|) (iω + sgn(v)c),

ak = bg2

c2|v| iω,

where b is an O(1) (positive) number, computed in Ap-
pendix A 3. One can verify that at v=0, sgn(v) = 0 in the
above formula by taking v = 0 inside the loop integral. Next,
one chooses counterterms to cancel the dependence on the
cutoff �; this is equivalent to setting a UV boundary condition
for the parameters of the theory. The dependence on � is
eliminated if we take the following counterterms:

δZ = bg2

c|v|
(

1

c + |v| log � − 1

c
log �k

)

δv = bg2

c(c + |v|) sgn(v) log �

(2.4)
δg = 0,

g0 ≈ g + δg − δZg, v0 ≈ v + δv − δZv.

As in Ref. [22], the four-Fermi terms have a stable fixed point
at λψ = 0 and we do not discuss them further here.

We will define beta functions by setting �k ∼ � and
computing running with respect to �. The results for the beta
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functions and the anomalous dimension of the fermion are

βg ≡ ∂g

∂log�
= g

(
−ε

2
+ bg2

c2(c + |v|)
)

, (2.5)

βv ≡ ∂v

∂log�
= bg2

c2
sgn(v), (2.6)

2γ ≡ − ∂δZ
∂log�

= bg2

c2(c + |v|) . (2.7)

As a check that b > 0, note that the anomalous dimension
is positive, as is guaranteed by unitarity at the fixed point.

Several pieces of important physics are evident in (2.5)–
(2.7):

(1.) There is a controlled fixed point at g of order
√

ε, where
the fermions are dressed into a non-Fermi liquid.

(2.) The anomalous dimension of the fermion is ε
4 , in

agreement with the result in Ref. [22].1 The Green’s function
for the fermion satisfies a Callan-Symanzik equation,(

�
∂

∂�
+ βg

∂

∂g
+ βv

∂

∂v
+ 2γ

)
GF

( ω

�
,
ω


; g,v

)
= 0.

(2.8)

Therefore, at the fixed point where the beta functions vanish,
it will take the form,

GF = 1

ω1− ε
2
f

(
ω



)
. (2.9)

We will see in the next sections that the scaling function f in
the large NB theory is trivial–f ∼ const. This is completely
consistent with the result in Ref. [22], but indicates that in the
RG scheme used there, the scaling function (which was not
determined in that paper) is nontrivial.

(3.) We save the most interesting point for last. The beta
function for the Fermi velocity is such that the velocity flows
to zero in the IR. A calculation of (2.6) in the v = 0 theory
confirms that the beta function for v vanishes there. The
physics of vanishing v should be interpreted cautiously. In
the full high-energy theory, there are further corrections to the
action involving higher spatial derivatives. For instance, one
would have terms of the form,

δL ∼ 2

2m∗ ψ†ψ, (2.10)

with m∗ a UV mass scale related to the curvature terms at
the Fermi surface. While these are irrelevant operators in the
theory with finite Fermi velocity, as v flows to be very small,
the role of such terms in the fermion propagator becomes more
important.

To gain further insight into this issue, we note first that
the quantity βv is more generally a function of v and 1/m∗;
the expression quoted above corresponds to the limit in which
1/m∗ → 0 whereas the full βv , must of course be an analytic
function of its arguments. In this limit, where the initial values

1Note that the anomalous dimension is larger by a factor of 2 at
large NB than at NB = 1. This is because the vertex correction is
nonplanar and does not contribute at large NB .

satisfy 2/2m∗ � v, the velocity flows to zero at a finite RG
time (or equivalently at a finite energy scale). By contrast, the
irrelevant coupling 1/m∗ vanishes as a power law—and will
strictly be zero only exactly at the fixed point. It therefore
follows that there is an emergent, small energy scale where
both terms are roughly of the same magnitude and the quadratic
term cannot be neglected. The ultimate fate of the system below
this scale requires an analysis of both v and 1/m∗ on equal
footing and remains to be explored. To estimate this scale, we
use the β functions above and obtain running couplings and
find that the velocity vanishes at an exponentially small scale
μ∗ ∼ � exp (−αv0/g

2
0), where α is a number of order unity.

For energy scales smaller than μ∗, the higher order irrelevant
coupling cannot be ignored for finite 1/m∗.

The transition to z = 2 scaling occurs only when v is less
than 2

2m∗
, so it is important whether v runs exactly to zero or

only to a value proportional to 1
m∗

, which has so far been set
to zero in our analysis. In Appendix, we analyze the running
at v � �

m∗
, and argue that at finite m∗, v does not run to be

smaller than O( �
m∗

), where � is the cutoff. In Appendix A 2,
we compute Landau damping as an example of a fermion loop
that is suppressed at small v, and show that at small v the
small dimensionless parameter suppressing the fermion loop
is vm∗

q
, where q is the external boson momentum. Since v

runs to be O(�/m∗) at large but finite m∗, it does not become
small enough to suppress fermion loops in practice down to
arbitrarily low energy in a Wilsonian treatment.

In the rest of the paper, we will formally solve the v → 0
fixed point. This is the formally correct thing to do in the limit
that the high mass scale m∗ → ∞. The interesting physics of
the crossover to the theory with z = 2 scaling when m∗ is large
but finite is left for further exploration.

III. LARGE NB SOLUTION FROM GAP EQUATION

At large NB , the fermions have small backreaction on the
boson, so the leading large NB behavior of the boson Green’s
function is governed by the O(N2

B) Wilson-Fisher fixed point:

〈φ(p)φ(−p)〉 = 1

p2(1−γφ )
+ O(1/NB), (3.1)

with

γφ = ε2

4N2
B

. (3.2)

= +

+ + ......
FIG. 5. The rainbow diagrams which determine the fermion self-

energy at large NB .
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This is a result of the simplification in our action afforded by
setting λ

(1)
φ = 0; otherwise the leading large NB bosonic theory

would also be highly nontrivial.

However, for the fermion, the full set of rainbow diagrams
(III), depicted in Fig. 5, contribute to the self-energy. As is
standard in large NB theories (see, e.g., Ref. [23]), this results
in a gap equation for the fermion self-energy,

�(ωe,e) = g2
∫

dωddd−1k‖
(2π )d+1

1

(ω2 + c22 + c2k2
‖)(i(ω − ωe) − vF ( − e) + �(ω − ωe, − e))

. (3.3)

The solution of the gap equation at the large NB fixed point
discussed in Sec. II is very simple. In the idealized limit where
vF → 0, and neglecting the 2/2m∗ corrections, the fermion
Green’s function can only be a function of ω. Allowing for a
general fermion anomalous dimension γ , we take the Green’s
function to be

GF = μ−2γ

ω1−2γ
, (3.4)

where μ is an RG scale introduced to satisfy dimensional
analysis. Therefore, the self-energy is expected to be of the
form,

�(ω,k) = −ω + G−1
F . (3.5)

We can see that at very low external frequencies, the left-hand
side of the gap equation (3.3) is dominated by G−1

F (ωe). The
resulting equation:

ω
1−2γ
e

μ−2γ
= g2

∫
dωdd2−εk

(2π )4−ε

1

ω2 + c2(2 + k2)

μ−2γ

(ω + ωe)1−2γ
.

(3.6)

The scaling of the left- and right-hand sides with respect to ωe

can be seen by inspection to be consistent if and only if 2γ = ε
2 ,

in agreement with the RG equations (2.5)–(2.7). Setting this
value for the anomalous dimension, the above turns into a
nontrivial equation for the fixed-point coupling g ≡ gμ−ε/2:

1

ḡ2
= 1

c3−ε

∫
dωdd2−εk

(2π )4−ε

1

ω2 + 2 + k2

1

(ω + 1)1− ε
2
,

(3.7)

so that one can view ḡ as a function of c and ε = 3 − d.

IV. LARGE NB SOLUTION FROM
PERTURBATION THEORY

One can also directly solve for the Green’s function of the
vF = 0 fixed point theory by resuming an iterative perturbation
theory. Using dimensional analysis, and the fact that order by
order one finds that the self-energy is independent of , one
can expand

�(ω) = iω

∞∑
n=1

bn(ε)g2n(ω2)−
ε
2 n (4.1)

= iω

∞∑
n=1

bn(ε)Zn, with Z ≡ g2

(ω2)
ε
2
. (4.2)

The Green’s function has a similar expansion,

GF = − 1

iω

∞∑
m=0

am(ε)Zm. (4.3)

Plugging into the gap equation (3.3), we find

�(ωe) = −g2 vol(Sd−2)

(2π )d+1

π

2 sin(π ε
2 )

∫
dωd

(ω2 + 2)
ε
2
G(ω + ωe)

= iωe

∞∑
m=0

Zmam(ε)Bm(ε), (4.4)

where Bm(ε) can be written in closed form in terms of Gamma
functions. At small ε, it is approximated by

Bm(ε) = − 1

(2π )2(m + 1)ε
+ O(ε0). (4.5)

By matching powers of Zm in (4.4), one obtains a recursion
relation for am. This equation for am can then be solved,
yielding

am(ε) =
(

− 1

2π2ε

)m �
(

1
2 + m

)
�

(
1
2

)
m!

. (4.6)

Now we can sum the series for the Green’s function to find

G(p) = − 1

iω

√
1 + g2

2π2ε
|ω|−ε,

ω�g2/ε

≈ ω
ε
2 −1

√
2π2ε

g2
, (4.7)

in perfect agreement with the anomalous dimension computed
in Sec. II and the self-consistent solution of the gap equation
guessed in Sec. III.

V. 1/NB CORRECTIONS AND LANDAU DAMPING

Now we would like to study how the fermionic degrees
of freedom affect the bosons. In the perturbative regime with
NB = 1, it is well known that fermion loops (as in Fig. 2) lead
to Landau damping of the bosonic degrees of freedom. In our
theory with NB � 1 these effects are suppressed by 1/NB ,
but more importantly, the form of Landau damping changes
qualitatively due to the RG evolution to small fermion velocity
v � c and the finite anomalous dimension of the fermions.

In the limit v � c the straightforward perturbative result
for Landau damping acquires a new interpretation, which will
be discussed further in Ref. [24]. This standard result for
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damping is

� = g2kF

2πv

[
ω√

ω2 − v2q2
− 1

]

≈ g2kF

2π

v q2

ω2
, (5.1)

where the −1 corresponds to a contribution to the boson
mass, and it has been included by adding a local counterterm
to the boson action. When the boson is nearly on-shell, we
must have ω ≈ cq � vq, so we expect that Landau damping
simply corresponds to a small local effect in the regime where
the theory is under control. This perspective will be further
explored in Ref. [24].

The presence of an anomalous dimension in the Green’s
function for the fermions alters the form of Landau damping.
As v approaches 0, the standard kinetic term v eventually
becomes sufficiently small that the higher order term 2

2m∗
can

be comparable, and the exact Green’s function for large but
finite m∗ depends on a treatment of both terms, which is outside
the scope of this paper. For illustrative purposes, we will
consider two examples for the fermion Green’s function moti-
vated by our analysis. The first is G−1 = (−iω + 2/2m∗)1− ε

2 .
Computing the diagram of Fig. 2 at large NB using this fermion
two-point function, one has

� = g2

NB

∫
dωdkd−1

F dd−1�̂

(2π )d+1

× 1( − iω + 2

2m∗

)1− ε
2
( − i(ω + q0) + (+q cos θ)2

2m∗

)1− ε
2

= 0.

(5.2)

The integral has been performed by first closing the dω

integration contour in the upper half-plane (this does not
change the integral when d > 2). The branch cuts of the
fermion Green’s function are at negative real values of the
argument, which one can easily see occur only in the lower
half-plane for ω. The physical interpretation is that for this
“v = 0” choice of the Green’s function, the fermion has
become very heavy and particle-hole pairs cannot be produced
kinematically. Thus we immediately find that Landau damping
vanishes exactly.

Our second illustrative example is to take the fermion
Green’s function to be G−1 = (−iω + v)1− ε

2 , and to take
v � c at the end of the computation. We now find for the
diagram of Fig. 2,

� = g2

NB

∫
dωdkd−1

F dd−1�̂

(2π )d+1

1

(−iω + v)
d−1

2

× 1

(−i(ω + q0) + v + v · q)
d−1

2

= g2kF

2π2vNB

q0 log
q0

�
, (5.3)

where we have taken d = 2 and v � c in order to compute
the last line. This finite damping will become large compared
to the boson kinetic term when the boson energy q0 � kF

NB
. As

claimed, the damping takes a parametrically different form

than would be obtained in the absence of the anomalous
dimension.

VI. RG SCHEME DEPENDENCE AND kF

Here we will make some general comments about scheme
dependence in the nonrelativistic RG. This section can be read
independently of the rest of the paper, and the reader eager for
denouement may unreservedly proceed directly to Sec. VII.
The major point is that to perform the RG usefully, we must
find a scheme where large logarithms of the form log(Ei/kF )
do not enter, where Ei is some low-energy momentum scale,
e.g., the external frequency ω or perpendicular momentum 

in the fermion two-point function.
Correlators typically take the form,

A = Ea
i F

(
Ei

kF

,
Ei

�

)
, (6.1)

where a is a calculable exponent given by tree-level scaling of
the correlator. Due to logarithmic divergences, the function F

will usually have some dependence on the cutoff � of the form
log(Ei/�), and thus even at weak coupling, one has large loop
corrections in the IR when Ei/� becomes very small. Thus,
as is well known, in order to probe the IR, one must also use
the RG to lower the sliding scale � and keep Ei/� ∼ O(1).
The additional complication here is that one may also have
log(Ei/kF ) dependence,2 which cannot be made small in the
IR by lowering kF since kF is a physical momentum scale.
Thus, to have perturbative control over the theory over a wide
range of scales, one must find a scheme where log(Ei/kF )
terms do not appear. We may pejoratively refer to schemes
that do produce log(Ei/kF ) terms as “bad” schemes, whereas
schemes without such terms will be called “good” schemes.

One example of a “good” scheme is to introduce a cutoff
�k on the momentum of the boson in addition to the cutoff �

on energies. Then, for �k � kF , the boson can connect only
nearby fermions on the Fermi surface, so as a result the kF in
the fermion two-point function gets “integrated out,” with a
one-loop result of the form,

A = ak log(�k) + a� log(�) + aE log(E), (6.2)

where the ai’s are functions of ω,, and couplings. Dimen-
sional analysis implies the constraint,

ak + a� + aE = 0. (6.3)

A crucial point is that different choices of regularization
schemes can change ak and a�, so that they are not unambigu-
ous. For instance, a different “good” scheme is dimensional
regularization. In Appendix A 3, we briefly summarize the
calculation of the one-loop fermion Green’s function in this
scheme. The result is of the form,

A = aμ log(μ) + aE log(E), (6.4)

2The function F can and often does also have dependence on
positive powers of kF

Ei
, which also causes breakdown of perturbation

theory for sufficiently small Ei/kF . However, such terms have a
characteristic scale Ē below which they are large but far above which
they are small and can be neglected. This is in contrast to log(Ei/kF )
terms, which vary equally over every change in scale.
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where log(μ) is the renormalization scale. The coefficient
aμ is not equal to either ak or a� in the previous scheme.
However, what is unambiguous is the coefficient aE of the
physical logarithm log(E). The reason for this is that log(E)
is a term in a physical amplitude that cannot be removed
by local counterterms and thus is unambiguously present in
any regularization scheme. In the absence of ak , (6.3) would
therefore imply that a� = −aE , and so would therefore also
be physical and unambiguous. However, with ak , it is possible
to distribute aE among ak and a� in more than one possible
way, with only their sum a� + ak being unambiguous.

VII. CONCLUSIONS

In this paper, we solved for the physics obtained by
perturbing decoupled theories of a large NB Wilson-Fisher
boson and a Fermi liquid by a Yukawa interaction. Using
large NB techniques, we were able to provide three concordant
solutions valid at strict large NB . The RG treatment of Sec. II,
the scaling analysis of the gap equation in Sec. III, and
the perturbative analysis of the gap equation in Sec. IV all
converge to the same answer. The fermions are dressed into
a non-Fermi liquid where vF runs to zero, and the subleading
term 2/2m∗ in the fermion dispersion becomes important.
In many ways, the physics is reminiscent of models of local
quantum criticality (in the regime where vF is small and the
2/2m∗ is a tiny correction, as m∗ is very large). However, there
is a crucial difference between our large NB solution and local
quantum criticality: The bosons remain at their Wilson-Fisher
fixed point and therefore, boson two-point functions are not
local in the sense that they retain momentum dependence.

At finite NB , the physics we found here will break down
at a low-energy scale Ebreakdown, as discussed at length in
the introduction. However, both because in some controlled
models other instabilities may occur before Ebreakdown, and
because the resulting physics below the scale Ebreakdown will
certainly depend on the RG structure above this energy, we
feel these results continue to be instructive at large but finite
NB .

More generally, as a function of three independent
parameters—NB , NF , and ε—we expect that this system
admits a rich phase diagram. In the strict NF → ∞ limit
with fixed NB , the results agree with those coming from
various self-consistent ansatzes for the ω → 0 physics of
this problem. There, Landau damping of the bosons is the
dominant physics. In the limit we took here, which is in many
ways the extreme opposite limit, the fermion self-energy is
instead the most important factor. It dresses the fermions into
a non-Fermi liquid, and to the extent that Landau damping
ever becomes important, it is very different in form than it is in
the large NF theories. Finding controlled regions in this theory
space which can be solved (other than the strict NB → ∞ or
NF → ∞ limits) is a challenging problem of great interest; the
interpolation between the two extremes is likely more physical
than either one.
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APPENDIX: LOOP EFFECTS AT LARGE NB

1. Including �2

2m∗ corrections and the fermion propagator

The fermion velocity v will become very small at low
energies due to the RG evolution. In the limit that v → 0 the
irrelevant operator 1

2m∗
ψ†∇2ψ would dominate the fermion

dispersion relation, so in the small v limit we must incorporate
its effects. For fermion momentum  with

v � 2

2m∗
, (A1)

the new operator will become important. Let us consider the
one-loop correction to the fermion propagator in the presence
of this term. It is

I ≡ g2
∫

dωdd2k

(2π )4(ω2 + c2(2 + k2))

× 1

i(ω + ωe) − v( + e) − (+e)2

2m∗

. (A2)

Now let us work in the regime of very small velocities, where
v < e

m
, so that the quantity,

v( + e) + ( + e)2

2m∗
> 0, (A3)

whenever  > −e or  < −e − 1
2vm∗. We can do the ω

integral by closing the contour in the upper half-ω-plane.
There are two contributions, one from the boson propagator,
which exists for all values of , and one from the fermion
propagator. The contribution to I from the boson propagator
will be analytic in the complex quantity,

X = iωe − ve. (A4)

These contributions to the loop integral I may lead to wave-
function renormalization of the fermion. However, they cannot
produce RG evolution of the velocity v, because the ωe and e

terms are renormalized together.
The other contribution to I comes from the fermion

propagator pole. This contributes when −e − 1
2vm∗ <  <

−e. This pole gives

g2
∫

d2k

(2π )3

∫ −e

−e− 1
2 vm∗

× d

c2(2 + k2) −
(
iωe + v( + e) + (+e)2

2m∗

)2 . (A5)

The terms proportional to ωe, v, and 1/m∗ are much smaller
than the terms proportional to c, and in particular they only
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contribute at order ω2
e or v2 in the small v limit, so we can

neglect them. Note that this is not the same as neglecting these
quantities from the beginning, since they have determined the
range of integration. The remaining integral can be easily
evaluated, but it does not contribute any logarithmic UV
divergences proportional to e or ωe, so it does not produce
any RG evolution. We conclude that if we ever enter a regime
where v < �

m
, the βv function of v vanishes and the fermion

velocity remains fixed.

2. Landau damping including �2

2m∗
In order to understand Landau damping as v → 0, it is

crucial to include corrections from the operator 1
2m∗

ψ†∇2ψ .
The reason for this is that in the fermion propagator at v = 0,
it is ambiguous which side of the real axis the poles in ω fall
on; in other words, it is ambiguous whether on-shell modes
with a given momentum have energy above or below the Fermi
energy. When we include the 2

2m∗
correction in the propagator,

however, the dispersion relation is

ω = ε() = v + 2

2m∗
. (A6)

“Holes” in the theory occur for ε() < 0, i.e., for −2m∗v <

 < 0. In the UV, before there is any running, we expect
m∗ ∼ O(m) ≡ O( kF

v
), and thus the lower bound on this region

at −2m∗v ∼ −O(kF ) is above the cutoff of the theory and
can be neglected. However, once v runs to significantly
smaller values, one then has m∗v � kF and indeed for some
sufficiently small value of v will definitely be below the
cutoff of the theory. At this point, the states that were holes,
inside the Fermi surface, have their energy increased above
the Fermi energy and can no longer be pair produced with
particles. In technical terms, poles that were below the real
axis for ω get pushed to be above the real axis. As we take v

smoothly to zero, therefore, Landau damping smoothly shuts
off. A crucial question is what values of v are sufficiently
small to suppress Landau damping. A reasonable physical
expectation is that Landau damping gets suppressed when the
lower bound on momenta −2m∗v becomes comparable to the
relevant energy scale in the correlator, namely the momentum
q of the external boson, whereas for v � q

m∗
, Landau damping

should be relatively unaffected. Let us see how this works in
detail. Keeping the 2

2m∗
term in the fermion propagator, the

one-loop Landau damping becomes

�(q0,q) = g2
∫

dωdkd−1
F dd−1�̂

(2π )d+1

1(
iω − vF  − 2

2m∗

)(
i(ω + q0) − vF ( + q cos θ ) − (+q cos θ)2

2m∗

) . (A7)

The integrand has two poles in ω, at

ω1 = −i

(
vF  + 2

2m∗

)
and

ω2 = −q0 − i

(
vF ( + q cos θ ) + ( + q cos θ )2

2m∗

)
. (A8)

Let us choose to close the dω contour in the upper half-plane.
Clearly, if v = 0, then both poles are in the lower half-plane
and the integral vanishes. However, for v > 0, the first pole is
in the upper half-plane when

 > 0 or  < −2m∗v, (A9)

and the second pole is in the upper half-plane when

 + q cos θ > 0 or  + q cos θ < −2m∗v. (A10)

The dω integral is nonzero when exactly one of these poles
lies in the upper half-plane. If we label the contribution where
the first pole is in the lower half-plane and the second pole is
in the upper-half plane by I1 and vice versa by I2, then we
have

�(q0,q) = I1 + I2,

I1 = g2

(2π )d

∫ 0

−2m∗v

dkd−1
F dd−1�̂

−iq0 + vF q cos θ + 2q cos θ+q2 cos2 θ

2m∗

×�( + q cos θ < −2m∗v or  + q cos θ > 0),

I2 = g2

(2π )d

∫ 0

−2m∗v

d′kd−1
F dd−1�̂′

iq0 + vF q cos θ ′ + 2′q cos θ ′+q2 cos2 θ ′
2m∗

×�(′ + q cos θ ′ < −2m∗v or ′ + q cos θ ′ > 0).

(A11)

In I2, we have changed integration variables from  to ′ =
 + q cos θ and from θ to θ ′ = π − θ . Next, let us break up
the integration over angles into cos θ > 0 and cos θ < 0. For
cos θ > 0, clearly we cannot have both  > −2m∗v and  +
q cos θ < −2m∗v, so

I1 = g2

(2π )d

∫ 0

−min(2m∗v,q cos θ)
dkd−1

F dd−1�̂

× 1

−iq0 + vF q cos θ + 2q cos θ+q2 cos2 θ

2m∗

. (A12)

A similar expression hold for I2. Now it is clear that in order
for Landau damping to be suppressed by small v, one needs v

small compared to q/m∗. In fact, if v >
q

2m∗
, then the answer is

completely unaffected by the limit of integration at −2m∗v. On
the other hand, when v � q

m∗
, we can approximate this integral

by neglecting v and 1
m∗

in the denominator and integrating over
d from 0 to −2m∗v. Since it is clear that there are no additional
1/v singularities arising from the integral in this limit, one sees
that as the dimensionless ration vm∗/q is taken to vanish, the
integral smoothly falls to zero and Landau damping shuts off.

3. One-loop fermion Green’s function from
dimensional regularization

In this appendix, we will briefly sketch the compu-
tation of the one-loop fermion Green’s function using
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dimensional regularization. The integral to compute is

I = − g2

(2π )d+1

∫
dωddd−1k

(ω2 + c2(2 + k2))(i(ω + ωe) − v( + e))
, (A13)

at d = 3 − ε. It is convenient to rationalize the integrand so that both terms in the denominator are positive definite, and thus
Feynman parameters may be introduced:

I =
(

g2vol(Sd−2)

(2π )d+1

)
π

2c2−ε sin
(

πε
2

) ∫
dωd

(ω2 + c22)
ε
2

(i(ω + ωe) + v( + e))

(ω + ω2
e ) + v2( + e)2

=
(

g2vol(Sd−2)

(2π )d+1

)
π

2c2−ε sin
(

πε
2

) ∫ 1

0
dx

ε

2
(1 − x)

ε
2 −1

∫
dωd(i(ω + ωe) + v( + e))

(ω2 + (v2x + c2(1 − x))2 + x(2ωωe + 2v2e + ω2
e + v22

e))1+ ε
2
.

(A14)

One can integrate over ω and  by shifting variables to complete the square in the denominator:

I =
(

g2vol(Sd−2)

(2π )d+1

)
π2

2c2−ε sin
(

πε
2

) ∫ 1

0
dx

1(
xv2 + (1 − x)c2

) 3−ε
2

(iωe(xv2 + (1 − x)c2) + c3ve)(
x

(
ω2

e (xv2 + (1 − x)c2) + c2v22
e

)) ε
2
. (A15)

The expansion in small ε produces the log divergence term and the regularized finite piece:

I = I−1

ε
+ I0 + O(ε). (A16)

At leading order, we have

I−1 = g2

4π2c2(c + |v|) (iωe + sgn(v)ce). (A17)

The finite piece I0 contains the terms that we have referred to as “aE log(E)” in the body of the paper. Neglecting some local
terms proportional to I−1, one obtains for v > 0,

I0 = − g2

8π2c2(c2 − v2)

[
2c(ve − iωe) log

(
2(ve − iωe)

c + v

)

− (c + v)(ce − iωe) log

(
ce − iωe

c

)
− (c − v)(ce + iωe) log

(
ce + iωe

c

)]
. (A18)
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