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The quantum phase diagram of disordered electron systems as a function of the concentration of magnetic
impurities nm and the local exchange coupling J is studied in the dilute limit. We take into account the Anderson
localization of the electrons by a nonperturbative numerical treatment of the disorder potential. The competition
between Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction JRKKY and the Kondo effect, as governed by the
temperature scale TK , is known to give rise to a rich magnetic quantum phase diagram, the Doniach diagram. Our
numerical calculations show that in a disordered system both the Kondo temperature TK and JRKKY as well as
their ratio JRKKY/TK is widely distributed. However, we find a sharp cutoff of that distribution, which allows us
to define a critical density of magnetic impurities nc below which Kondo screening wins at all sites of the system
above a critical coupling Jc, forming the Kondo phase [see Fig. 3(b)]. As disorder is increased, Jc increases and
a spin coupled phase is found to grow at the expense of the Kondo phase. From these distribution functions we
derive the magnetic susceptibility which show anomalous power-law behavior. In the Kondo phase that power is
determined by the wide distribution of the Kondo temperature, while in the spin coupled phase it is governed by
the distribution of JRKKY. At low densities and small J < Jc we identify a local-moment phase (LM). We also
report results on a honeycomb lattice, graphene, where we find that the spin coupled phase is more stable against
Kondo screening, but is more easily destroyed by disorder into a LM phase.

DOI: 10.1103/PhysRevB.89.165109 PACS number(s): 71.27.+a

I. INTRODUCTION

Phenomena which emerge from the interplay of strong
correlations and disorder remain a challenge for condensed-
matter theory. Spin correlations and disorder effects are
however relevant for a wide range of materials, including
doped semiconductors like Si:P close to metal-insulator transi-
tions [1], and heavy Fermion systems, materials with 4f or 5f

atoms, notably Ce, Yb, or U [2]. Many of these materials show
a remarkable magnetic quantum phase transition which can
be understood by the competition between indirect exchange
interaction, the Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teraction between localized magnetic moments [3–5] and
their Kondo screening. Thereby, one finds a suppression of
long-range magnetic order when exchange coupling J is
increased and Kondo screening succeeds. This results in a
typical quantum phase diagram with a quantum critical point
where the Tc of the magnetic phase is vanishing, the Doniach
diagram [6].

Recently, controlled studies of magnetic adatoms on the
surface of metals [7], on graphene [8], and on the conducting
surface of topological insulators [9–12] with surface sensitive
experimental methods like (spin resolved) scanning tun-
nelling microscope (STM) and angle-resolved photoemission
spectroscopy (ARPES) became possible. This demands a
theoretical study of the Doniach diagram for magnetically
doped disordered electron systems (DES), in particular 2D
systems.

In any material there is some degree of disorder. In doped
semiconductors it arises from the random positioning of the
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dopants themselves, in heavy Fermion metals and in two-
dimensional (2D) metals it may arise from structural defects or
impurities. Disorder is known to cause Anderson localization,
which therefore has to be taken into account when deriving the
Doniach diagram of disordered electrons systems. Moreover,
as noted already earlier [13], the physics of random systems is
fully described by probability distributions, not just averages.
This must be particularly true for systems with random local
magnetic impurities (MIs) [14], since the magnetic impurities
are exposed to the local density of states of the conduction
electrons, which is widely distributed itself. In fact, it has been
noticed that a wide distribution of the Kondo temperature TK

of MIs in disordered host metals gives rise to non-Fermi-liquid
behavior, such as the low-temperature power-law divergence
of the magnetic susceptibility [14–22]. Nonmagnetic disorder
quenches the Kondo screening of MIs due to Anderson-
localization and the formation of local pseudogaps at the Fermi
energy [21,23–25], resulting in bimodal distributions of TK and
a finite concentration of free local moments (LMs). However,
in these studies the RKKY interaction JRKKY between different
MIs has not yet been taken into account. JRKKY is mediated
by the conduction electrons, and aligns the spins of the MIs
ferromagnetically or antiferromagnetically, depending on their
distance R. This is a long-ranged interaction, with a power-law
decay JRKKY ∼ 1/Rd , where d is the dimension, and its typical
value is not changed by weak disorder [26–29]. However, its
amplitude has a wide log-normal distribution in disordered
metals [26,30]. In this paper we therefore intend to study the
competition between RKKY interaction and the Kondo effect
in disordered electron systems.

In the next section we introduce the model, and provide the
equations for the Kondo temperature and the RKKY coupling.
In Sec. III, we derive numerically the distribution function
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of JRKKY, and compare it with an analytical result, based
on a perturbative expansion of the nonlinear σ model. We
derive next numerically the distribution function of TK finding
excellent agreement with approximate analytical results which
were obtained, taking into account the multifractality and
power-law correlations of wave functions. In Sec. IV we
present the main results, the distribution function of the ratio
of Kondo temperature and RKKY interaction, for various
distances between magnetic impurities R. From that we show
how to derive the zero-temperature magnetic quantum phase
diagram as a function of magnetic impurity density and
exchange coupling, for 2D disordered electronic systems. At
low densities and small J < Jc we identify a paramagnetic
phase. For graphene we find that the spin coupled phase is more
stable against Kondo screening, but is more easily destroyed
by disorder into a LM phase. In Sec. V we derive from the
distribution functions the magnetic susceptibility as a function
of temperature, which show anomalous power-law behavior.
In the Kondo phase that power is found to be determined by
the wide distribution of the Kondo temperature, while at small
exchange coupling there we identify spin coupled phase where
the magnetic susceptibility is governed by the distribution
of JRKKY. In the final section we conclude and discuss the
relevance and limitations of our results.

II. MODEL

In order to obtain the Doniach diagram of random electron
systems we extend the approach of Doniach [6] by calculating
the distribution functions of TK and JRKKY and their ratio.
Thus, in our approach we try to draw conclusions on the
quantum phase diagram of an electron system with a finite
density of magnetic impurities, by considering the Kondo
temperature of single impurities and the RKKY coupling of
pairs of magnetic moments.

We start from a microscopic description of the MIs,
the Anderson impurity model coupled to a noninteracting
disordered electronic Hamiltonian with on-site disorder. Then,
we map it with the Schrieffer-Wolff transformation on a
model of Kondo impurity spins coupled to the disordered
host electron spins by the local coupling J [25]. We consider
the single-impurity TK and the coupling JRKKY between a
pair of spins. For the numerical calculations we employ the
single-band Anderson tight-binding model on a square lattice
of size L and lattice spacing a,

H = −t
∑
〈i,j〉

c
†
i cj +

∑
i

(wi − ẼF )c†i ci , (1)

where t is the hopping energy between nearest neighbors
〈i,j 〉, wi is the on-site disorder potential distributed in the
interval [−W/2,W/2]. ẼF = EF + εedge, where EF is the
Fermi energy measured from the band edge, in 2D εedge = −4t .
We use periodic boundary conditions.

In the dilute limit, one can calculate the TK of a single
magnetic impurity at position Ri from the Nagaoka-Suhl one-
loop equation [31,32].

1 = J

2

∫ D

0
dε

tanh[(ε − EF )/2TK ]

ε − EF

ρii(ε), (2)

with bandwidth D. ρii(ε) = 〈i|δ(ε − H )|i〉 is the local density
of states (LDOS). The RKKY coupling JRKKYij

between two
MIs located at positions Ri , Rj is in the zero-temperature limit
(T = 0) given by [29,33]

JRKKYij
= −J 2 S(S + 1)

2S2

∫
ε<EF

dε

∫
ε′>EF

dε′ F (ε,ε′)ij
ε − ε′ , (3)

where F (ε,ε′)ij = Re[ρij (ε)ρji(ε′)], and S is the magnitude
of the MI spin.

III. DISTRIBUTION FUNCTIONS

Using the Kernel polynomial method (KPM) [33,34], one
can evaluate the matrix elements of the density matrix ρij (ε) =
〈i|δ(ε − Ĥ )|j〉 [29,34,35] with a polynomial expansion of
order M . Here, we increase the cutoff degree M linearly
with the linear system size L based on our analysis for the
convergence of RKKY interaction with respect M in Ref. [30].
It has been also carefully discussed in Ref. [36] that the choice
of M ∝ L, not M ∝ L2, gives proper DOS and LDOS results
avoiding finite-size effect.

Equation (3) yields in a clean 2D system

J 0
2D = −m∗

8π
sin(2kF R)/(kF R)2

in the asymptotic limit kF R � 1 with effective electron
mass m∗ = 1/(2a2t), and Fermi wave vector kF [3]. Its
geometrical average is close to the clean limit for distances
R smaller than localization length ξ , and decays exponentially
at larger distances [29,37], e〈(1/2) ln JRKKY

2〉 ∼ e−R/ξ . As shown
in Figs. 1(a) and 1(b), the distribution of the absolute value of
JRKKY is well fitted by a log-normal,

N (x) = N√
2πσ

exp

[
− (x − x0)2

2σ 2

]
,
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FIG. 1. (Color online) N (|JRKKY|) at (a) fixed disorder strength
W = 2t , (b) fixed R = 5a (N = 30 000, L = 100a, M = 1000).
Black dashed lines: fit to log-normal distribution. (c) P (TK ) at fixed
j = J/D = 0.25, (d) P (TK ) at fixed W = 5t (N = 30 000, L = 40a,
M = 200). EF = 2t in (a)–(d).

165109-2



MAGNETIC QUANTUM PHASE DIAGRAM OF MAGNETIC . . . PHYSICAL REVIEW B 89, 165109 (2014)

(b)(a)

6 4 2 0 2 4 6
0.0

0.5

1.0

1.5

E t

W 3t

6 4 2 0 2 4 6
0.0

0.5

1.0

1.5

E t

Kondo

LM

DOS

JC D

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

W t

J c
D

Kondo

LM

FIG. 2. (Color online) Quantum phase diagram with local moment phase (LM) and Kondo screened phase: Critical exchange coupling
Jc/D (L = 100) (a) as function of W (M = 300, EF = 2t). Red dashed line: Eq. (6); (b) as function of Fermi energy EF (M = 200); black
dotted line: (DOS).

where x = ln |JRKKY| and the fitting gives for R = 5a and
W = 2t,4t , x0 = 5,6 and width σ = 5.3 + 0.85W/t increas-
ing with the disorder strength W . This is qualitatively con-
sistent with analytical results obtained at weak disorder [26],
while analytical calculations at strong disorder have not been
performed yet. This distribution width hardly depends on the
distance R. We used N = 30 000 disorder configurations.

The distribution of TK is shown in Fig. 1(c), as obtained
from the numerical solution of Eq. (2) for L = 40a, j =
J/D = 0.25. Since for every sample only one single site is
taken to avoid a distortion of the distribution due to intersite
correlations, we had to use a huge number of N = 30 000
different random disorder configurations to get sufficient
statistics. It has a strongly bimodal shape where the low TK

peak becomes more distinctive with larger disorder amplitude
W [20,21,38]. In Fig. 1(d) we show these results for fixed
disorder strength W = 5t for various exchange couplings j .
Recently, an analytical derivation of the low TK tail of P (TK )
was done, using the multifractal distribution and correlations
of intensities [25]. These correlations are 2D logarithmic with
an amplitude of order 1/g, where g = EF τ . For weak disorder,
g� 1, it corresponds to a power-law correlation with power
η2D = 2/πg. The correlation energy is of the order of the
elastic scattering rate Ec ∼ 1/τ . Thus, for TK 
 Max{
ξ =
D/ξ 2,
 = D/L2} [25],

P (TK ) = (1 − pFM )

(
Ec

TK

)1−j

(Min{ξ,L})−d2j 2/2η2D , (4)

where pFM = nFM (0)/n = (Min{ξ,L})−d2j 2/2η2D , the ratio of
free LMs. Equation (4) has a power-law tail with power
βj = 1 − j in good agreement with the numerical results,
Fig. 1(d), for TK/T 0

K < 0.03. For T 0
K > TK > Max{
ξ =

D/ξ 2,
 = D/L2} one finds [25]

P (TK )

1 − pFM

=
(

Ec

TK

)1−η2D/2d

exp

⎡
⎣−

(
TK

Ec

)η2D/d

2c1
ln2

(
TK

T 0
K

)⎤
⎦ ,

(5)

where c1 = 7.51. This expression is in agreement with the
numerical results, see Fig. 1(d), using ξ = g exp(πg), and
1/τ = πW 2/6D, fitting only Ec ≈ 0.73t and the prefactor.

Thus, we confirm that the power-law tail is governed by the
multifractal correlation with power η2D .

The quantum phase transition between the free local
moment phase (LM) and a Kondo screened phase can be
studied by calculating the critical exchange coupling Jc above
which there is no more than one free magnetic moment
in the sample volume Ld [23]. From the multifractality of
the eigenfunction intensities it is found to be related to the
power η2D of the power-law correlations in the 2D DES as
Jc = √

η2DD and thus to increase in two dimensions linearly
with disorder strength W as [25]

Jc =
√

D/(3EF )W. (6)

In Fig. 2(a), Eq. (6) is plotted together with numerical results
as function of disorder strength W . We find good agreement.
There are only deviations at large disorder, g < 1, where the
1/g expansion breaks down. We plot Jc as function of EF

in Fig. 2(b), together with the density of states (DOS). We
find that Jc is increasing towards the band edge as 1/

√
EF in

agreement with Eq. (6). Far outside of εedge of the clean system
it increases as Jc/D = 1/ ln |εedge − EF | due to the gap in the
DOS. For J > Jc there are Kondo singlets which consist of
the local spin and a Kondo cloud of conduction electrons.
Indeed, if the Fermi energy is outside of the band the local
spin can be only screened if J > Jc > D, which implies that
it forms a singlet with a single electron. Conceptually this can
be considered as the N → 1 limit of a Kondo cloud consisting
of N electrons [39–41].

IV. MAGNETIC PHASE DIAGRAM AT T = 0

In clean systems the critical density nc = 1/Rd
c above

which the MIs are coupled with each other can be
obtained from the condition that |J 0

RKKY(Rc)| = TK [6].
Thus, in two dimensions with |J 0

RKKY|kF R�1 = J 2 m

8π2k2
F R2

and TK = cEF exp(−D/J ), c ≈ 1.14, one finds nc =
16π2c

E2
F

J 2 exp(−D
J

).
In disordered systems, TK of an MI at a given site competes

with the RKKY coupling to another MI at distance R. Thus,
the distribution function N (xJK ) of the ratio of these two
energy scales xJK = |JRKKY(R)|/TK for a given disordered
sample with density of MIs n = 1/R2, where R is the average
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FIG. 3. (Color online) (a) Distribution of the ratio between
|JRKKY(R)| and TK for various distances R between two arbitrary
magnetic impurities. Black dashed arrow: sharp cutoff of each
distribution. (b) Magnetic quantum phase diagram: critical MI density
nc as function of J/D for various disorder strengths W as determined
by the distance R below which |JRKKY(R)|/TK does not exceed 1 at
any site. Horizontal dashed line: density nξ below which there is a
local moment phase (LM). Here, nξ is computed only for W = 3t

since it becomes too small to plot for smaller W . CM: phase with
coupled magnetic moments. A linear system size L = 100a, the
cutoff degree M = 300, and the number of disorder configurations
N = 30 000 are used in this calculation.

distance between the MIs, is crucial to determine its magnetic
state. The distribution of xJK for W = 3t and J/D = 0.2
is shown for several distances R in Fig. 3(a) (N = 10 000,
L = 100a, EF = t , and M = 300). Likewise for N (TK ) and
N (JRKKY), the distribution of xJK has an exponentially wide
width characterized by a small-xJK tail and a sharp upper
cutoff in xJK as shown in Fig. 3(a). As increasing the distance
R between the magnetic impurities the distribution N (xJK ) is
shifted to the left (smaller xJK ), since the RKKY interaction
decreases with R. The sharp upper cutoff in xJK allows us to
define a critical density nc(J ) = 1/R2

c below which the Kondo
effect dominates in the competition with RKKY interaction
at all sites. nc(J ) is plotted in Fig. 3(b) for various values
of disorder strength W . When the MI density n exceeds nc,
magnetic clusters start to form at some sites and the MIs
may be coupled by JRKKY. We see that this coupled moment
phase (CM) expands at the expense of the Kondo phase with
increasing W . When R is larger than localization length ξ

the coupling JRKKY is exponentially small and there is a local
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FIG. 4. (Color online) Critical MI density nc as function of J/D

for graphene (εF = 3t , Dirac point). A linear system size L = 100a,
the cutoff degree M = 300, and the number of disorder configurations
N = 30 000 are used in this calculation.

moment phase (LM) below nξ = 1/ξ (g)2, where MIs remain
free up to exponentially small temperatures.

In graphene the pseudogap at the Dirac point quenches
the Kondo effect below Jc = D/2, independently on disorder
amplitude W . Thus, in graphene there is a larger parameter
space where the MIs are coupled (CM) than in a normal
2DES; see Fig. 4. However, short-range disorder localizes the
electrons, cutting off the RKKY interaction and for n < nξ

there is a LM phase. Thus, the magnetic phase in graphene
is more stable against Kondo screening but is more easily
destroyed by disorder.

V. DONIACH PHASE DIAGRAM OF DISORDERED
2DES AND GRAPHENE

We find that the Kondo phase splits at finite temperature
into a Kondo Fermi-liquid (FL) phase, where all MIs are
screened, and a Kondo non-Fermi-liquid (NFL) phase, at T >

T ∗(n), where some MIs remain unscreened and contribute to
the magnetic susceptibility with an anomalous temperature
dependence, given by [25]

χ (T ) ∼ n

Ec

2d

η2D

(
T

Ec

)η2d/2d−1

for T > T ∗(n) >
D

ξ 2
. (7)

The temperature T ∗(n), plotted schematically in Fig. 5 (blue
line), is given by the position of the low TK peak in the
distribution P (TK ); see Fig. 1(c). We note that J may
be distributed itself and may add a nonuniversal, material
dependent contribution to the distribution of TK [18] and
JRKKY.

For n > nc there is a succession of phases, starting with
the RKKY phase where clusters are formed locally due to
the widely distributed RKKY coupling. Anomalous power
laws are observed when clusters are broken up successively
as temperature is raised. From the log-normal distribution
N (|JRKKY|) one obtains for the magnetic susceptibility,

χ (T )T = nFM (T ) =
∫ T

0
d|JRKKY|N (|JRKKY|)

∼ n exp
[ − ln2 (

T/|J 0
RKKY|)/[2σ (W )]2], (8)
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FIG. 5. (Color online) Schematic Doniach diagram: temperature
T divided by J 2 versus J/D. Vertical dotted line: critical point
Jc(n) separating RKKY phase from Kondo phase. Blue line: T ∗(n)
separating Kondo FL phase from Kondo NFL phase. For n < nξ and
J < Jc a local moment phase (LM) appears.

where width σ (W ) increases with disorder strength W .
Accordingly, the excess specific heat is

C(T ) = T
dnFM

dT
∼ exp

[− ln2
(
T/

∣∣J 0
RKKY

∣∣)/[2σ (W )]2
]
.

(9)

The detailed analysis of the quantum phase diagram at higher
concentrations n requires us to go beyond our present analysis.
One expects that at n > nSG a spin-glass phase appears,
where the magnetic susceptibility shows a peak at spin-glass
temperature TSG as studied in Refs. [42,43]. Above a critical
density nF a phase with long-range order may form below a
critical temperature Tc(n,J ) [43–46].

VI. CONCLUSIONS AND DISCUSSION

We conclude that it is the full distribution function N (xJK )
of the ratio of the RKKY coupling and the Kondo temperature
which determines the magnetic phase diagram of magnetic
moments in disordered electron systems, especially at low
concentrations. We identified a critical density of magnetic
impurities nc below which Kondo wins at all positions in a
disordered sample above a critical coupling Jc, which increases
with the disorder amplitude. As a result, the Kondo phase is
diminished as the disorder is increased, favoring a phase where
the MI spins are coupled. The magnetic susceptibility obeys
an anomalous power-law behavior, which crosses over as a
function of J from the Kondo regime where that power is
determined by the wide distribution of the Kondo temperature
TK , to a spin coupled phase where it is governed by the

log-normal distribution of JRKKY. At low densities and small
J < Jc, we identify a paramagnetic phase. The distribution
function of |JRKKY|/TK is expected to determine also the mag-
netic phase diagram of magnetically doped graphene and the
surface of topological insulators with magnetic adatoms; see
Fig. 4. This distribution function may also be crucial to explain
the anomalous magnetic properties of doped semiconductors
in the vicinity of metal-insulator transition [1], where we
expect that η is replaced by the universal value η = 2(α0 − d),
d = 3 with the universal multifractality parameter α0.

In this work we considered the distribution function of
the Kondo temperature of single impurities and the RKKY
coupling of pairs of magnetic moments and extracted in-
formation on the quantum phase diagram of systems with
finite concentrations of MIs. This approach has its limitations,
for example at finite concentration the RKKY coupling can
reduce TK as has been already found by Tsay and Klein in the
1970s [47,48]. However, they concluded that this reduction is
minor. More importantly, later work revealed that the Kondo
lattice of a finite density of magnetic moments, which is
coupled to the conduction electrons, has a coherent low-
temperature heavy fermion phase, and a Kondo insulator phase
at half filling of the magnetic moment levels. More recently, the
Kondo lattice in one dimension was studied more rigorously
(see the review by Tsunetsugu et al. [49]), and it was shown
that, at least in one dimension, the ground state of this system
can not be understood by the mere extension of the single-
and two-magnetic impurity problem, where the physics is
governed by the competition between these two energy scales,
the Kondo temperature and the RKKY coupling. However, the
higher temperature behavior was found to be still governed by
the competition between these two energy scales. Therefore,
we expect that the consideration of the reduced problem of
two impurity spins will give important information on the
physics of disordered electron systems at finite concentration
of magnetic moments, which becomes more meaningful the
lower the density and the higher the temperature is. Going
beyond the limitations of this approach, one will have to study
the disordered Kondo lattice where a finite density of magnetic
moments is coupled to the conduction electrons. For a clean
Kondo lattice it is known that a coherent low-temperature
heavy fermion phase, and a Kondo insulator phase at half filling
of the magnetic moment levels appears [50,51]. It remains to
see how these low-temperature phases are modified by the
presence of nonmagnetic disorder.
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[39] P. Noziéres, J. Low Temp. Phys. 17, 31 (1974).
[40] R. K. Kaul and M. Vojta, Phys. Rev. B 75, 132407 (2007).
[41] P. Fulde, Correlated Electrons in Quantum Matter (World

Scientific, Singapore, 2012).
[42] K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801

(1986).
[43] B. Coqblin, C. Lacroix, M. S. Gusmão, and J. R. Iglesias, Phys.

Rev. B 67, 064417 (2003).
[44] C. M. Varma, Rev. Mod. Phys. 48, 219 (1976).
[45] S. G. Magalhaes, F. M. Zimmer, P. R. Krebs, and B. Coqblin,

Phys. Rev. B 74, 014427 (2006).
[46] G. Bouzerar, T. Ziman, and J. Kudrnovsky, Europhys. Lett. 69,

812 (2005).
[47] Y. C. Tsay and M. W. Klein, Phys. Rev. B 7, 352 (1973).
[48] Y. C. Tsay and M. W. Klein, Phys. Rev. B 11, 318 (1975).
[49] H. Tsunetsugu, M. Sigrist, and K. Ueda, Rev. Mod. Phys. 69,

809 (1997).
[50] P. Coleman, Phys. Rev. B 29, 3035 (1984).
[51] D. Newns and N. Read, Adv. Phys. 36, 799 (1987).

165109-6

http://dx.doi.org/10.1126/science.1167733
http://dx.doi.org/10.1126/science.1167733
http://dx.doi.org/10.1126/science.1167733
http://dx.doi.org/10.1126/science.1167733
http://dx.doi.org/10.1126/science.1189924
http://dx.doi.org/10.1126/science.1189924
http://dx.doi.org/10.1126/science.1189924
http://dx.doi.org/10.1126/science.1189924
http://dx.doi.org/10.1103/PhysRevLett.108.256810
http://dx.doi.org/10.1103/PhysRevLett.108.256810
http://dx.doi.org/10.1103/PhysRevLett.108.256810
http://dx.doi.org/10.1103/PhysRevLett.108.256810
http://dx.doi.org/10.1103/PhysRevB.86.161105
http://dx.doi.org/10.1103/PhysRevB.86.161105
http://dx.doi.org/10.1103/PhysRevB.86.161105
http://dx.doi.org/10.1103/PhysRevB.86.161105
http://dx.doi.org/10.1088/0034-4885/68/10/R02
http://dx.doi.org/10.1088/0034-4885/68/10/R02
http://dx.doi.org/10.1088/0034-4885/68/10/R02
http://dx.doi.org/10.1088/0034-4885/68/10/R02
http://dx.doi.org/10.1088/0953-8984/8/48/014
http://dx.doi.org/10.1088/0953-8984/8/48/014
http://dx.doi.org/10.1088/0953-8984/8/48/014
http://dx.doi.org/10.1088/0953-8984/8/48/014
http://dx.doi.org/10.1103/PhysRevLett.68.3072
http://dx.doi.org/10.1103/PhysRevLett.68.3072
http://dx.doi.org/10.1103/PhysRevLett.68.3072
http://dx.doi.org/10.1103/PhysRevLett.68.3072
http://dx.doi.org/10.1002/andp.19955070106
http://dx.doi.org/10.1002/andp.19955070106
http://dx.doi.org/10.1002/andp.19955070106
http://dx.doi.org/10.1002/andp.19955070106
http://dx.doi.org/10.1103/PhysRevB.62.14975
http://dx.doi.org/10.1103/PhysRevB.62.14975
http://dx.doi.org/10.1103/PhysRevB.62.14975
http://dx.doi.org/10.1103/PhysRevB.62.14975
http://dx.doi.org/10.1103/PhysRevLett.96.117209
http://dx.doi.org/10.1103/PhysRevLett.96.117209
http://dx.doi.org/10.1103/PhysRevLett.96.117209
http://dx.doi.org/10.1103/PhysRevLett.96.117209
http://dx.doi.org/10.1103/PhysRevB.75.184407
http://dx.doi.org/10.1103/PhysRevB.75.184407
http://dx.doi.org/10.1103/PhysRevB.75.184407
http://dx.doi.org/10.1103/PhysRevB.75.184407
http://dx.doi.org/10.1103/PhysRevLett.105.116403
http://dx.doi.org/10.1103/PhysRevLett.105.116403
http://dx.doi.org/10.1103/PhysRevLett.105.116403
http://dx.doi.org/10.1103/PhysRevLett.105.116403
http://dx.doi.org/10.1103/PhysRevLett.99.247202
http://dx.doi.org/10.1103/PhysRevLett.99.247202
http://dx.doi.org/10.1103/PhysRevLett.99.247202
http://dx.doi.org/10.1103/PhysRevLett.99.247202
http://dx.doi.org/10.1103/PhysRevLett.90.146601
http://dx.doi.org/10.1103/PhysRevLett.90.146601
http://dx.doi.org/10.1103/PhysRevLett.90.146601
http://dx.doi.org/10.1103/PhysRevLett.90.146601
http://dx.doi.org/10.1103/PhysRevB.85.115112
http://dx.doi.org/10.1103/PhysRevB.85.115112
http://dx.doi.org/10.1103/PhysRevB.85.115112
http://dx.doi.org/10.1103/PhysRevB.85.115112
http://dx.doi.org/10.1103/PhysRevB.48.9462
http://dx.doi.org/10.1103/PhysRevB.48.9462
http://dx.doi.org/10.1103/PhysRevB.48.9462
http://dx.doi.org/10.1103/PhysRevB.48.9462
http://dx.doi.org/10.1103/PhysRevB.36.2469
http://dx.doi.org/10.1103/PhysRevB.36.2469
http://dx.doi.org/10.1103/PhysRevB.36.2469
http://dx.doi.org/10.1103/PhysRevB.36.2469
http://dx.doi.org/10.1103/PhysRevB.85.075420
http://dx.doi.org/10.1103/PhysRevB.85.075420
http://dx.doi.org/10.1103/PhysRevB.85.075420
http://dx.doi.org/10.1103/PhysRevB.85.075420
http://dx.doi.org/10.1103/PhysRevB.86.205427
http://dx.doi.org/10.1103/PhysRevB.86.205427
http://dx.doi.org/10.1103/PhysRevB.86.205427
http://dx.doi.org/10.1103/PhysRevB.86.205427
http://dx.doi.org/10.1103/PhysRev.138.A1112
http://dx.doi.org/10.1103/PhysRev.138.A1112
http://dx.doi.org/10.1103/PhysRev.138.A1112
http://dx.doi.org/10.1103/PhysRev.138.A1112
http://dx.doi.org/10.1103/PhysRev.138.A515
http://dx.doi.org/10.1103/PhysRev.138.A515
http://dx.doi.org/10.1103/PhysRev.138.A515
http://dx.doi.org/10.1103/PhysRev.138.A515
http://dx.doi.org/10.1103/PhysRevB.60.322
http://dx.doi.org/10.1103/PhysRevB.60.322
http://dx.doi.org/10.1103/PhysRevB.60.322
http://dx.doi.org/10.1103/PhysRevB.60.322
http://dx.doi.org/10.1103/RevModPhys.78.275
http://dx.doi.org/10.1103/RevModPhys.78.275
http://dx.doi.org/10.1103/RevModPhys.78.275
http://dx.doi.org/10.1103/RevModPhys.78.275
http://dx.doi.org/10.1103/PhysRevB.76.245106
http://dx.doi.org/10.1103/PhysRevB.76.245106
http://dx.doi.org/10.1103/PhysRevB.76.245106
http://dx.doi.org/10.1103/PhysRevB.76.245106
http://dx.doi.org/10.1134/S0021364006060051
http://dx.doi.org/10.1134/S0021364006060051
http://dx.doi.org/10.1134/S0021364006060051
http://dx.doi.org/10.1134/S0021364006060051
http://dx.doi.org/10.1007/BF00654541
http://dx.doi.org/10.1007/BF00654541
http://dx.doi.org/10.1007/BF00654541
http://dx.doi.org/10.1007/BF00654541
http://dx.doi.org/10.1103/PhysRevB.75.132407
http://dx.doi.org/10.1103/PhysRevB.75.132407
http://dx.doi.org/10.1103/PhysRevB.75.132407
http://dx.doi.org/10.1103/PhysRevB.75.132407
http://dx.doi.org/10.1103/RevModPhys.58.801
http://dx.doi.org/10.1103/RevModPhys.58.801
http://dx.doi.org/10.1103/RevModPhys.58.801
http://dx.doi.org/10.1103/RevModPhys.58.801
http://dx.doi.org/10.1103/PhysRevB.67.064417
http://dx.doi.org/10.1103/PhysRevB.67.064417
http://dx.doi.org/10.1103/PhysRevB.67.064417
http://dx.doi.org/10.1103/PhysRevB.67.064417
http://dx.doi.org/10.1103/RevModPhys.48.219
http://dx.doi.org/10.1103/RevModPhys.48.219
http://dx.doi.org/10.1103/RevModPhys.48.219
http://dx.doi.org/10.1103/RevModPhys.48.219
http://dx.doi.org/10.1103/PhysRevB.74.014427
http://dx.doi.org/10.1103/PhysRevB.74.014427
http://dx.doi.org/10.1103/PhysRevB.74.014427
http://dx.doi.org/10.1103/PhysRevB.74.014427
http://dx.doi.org/10.1209/epl/i2004-10473-1
http://dx.doi.org/10.1209/epl/i2004-10473-1
http://dx.doi.org/10.1209/epl/i2004-10473-1
http://dx.doi.org/10.1209/epl/i2004-10473-1
http://dx.doi.org/10.1103/PhysRevB.7.352
http://dx.doi.org/10.1103/PhysRevB.7.352
http://dx.doi.org/10.1103/PhysRevB.7.352
http://dx.doi.org/10.1103/PhysRevB.7.352
http://dx.doi.org/10.1103/PhysRevB.11.318
http://dx.doi.org/10.1103/PhysRevB.11.318
http://dx.doi.org/10.1103/PhysRevB.11.318
http://dx.doi.org/10.1103/PhysRevB.11.318
http://dx.doi.org/10.1103/RevModPhys.69.809
http://dx.doi.org/10.1103/RevModPhys.69.809
http://dx.doi.org/10.1103/RevModPhys.69.809
http://dx.doi.org/10.1103/RevModPhys.69.809
http://dx.doi.org/10.1103/PhysRevB.29.3035
http://dx.doi.org/10.1103/PhysRevB.29.3035
http://dx.doi.org/10.1103/PhysRevB.29.3035
http://dx.doi.org/10.1103/PhysRevB.29.3035
http://dx.doi.org/10.1080/00018738700101082
http://dx.doi.org/10.1080/00018738700101082
http://dx.doi.org/10.1080/00018738700101082
http://dx.doi.org/10.1080/00018738700101082



