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Universal features in the scalings of Shannon-Rényi entropies of many-body ground states are studied for
interacting spin- 1

2 systems across (2+1)-dimensional O(3) critical points, using quantum Monte Carlo simulations
on dimerized and plaquettized Heisenberg models on the square lattice. Considering both full systems and
line-shaped subsystems, SU(2) symmetry breaking on the Néel ordered side of the transition is characterized by
the presence of a logarithmic term in the scaling of Shannon-Rényi entropies, which is absent in the disordered
gapped phase. Such a difference in the scalings allows to capture the quantum critical point using Shannon-Rényi
entropies for line-shaped subsystems of length L embedded in L × L tori, as the smaller subsystem entropies are
numerically accessible to much higher precision than for the full system. Most interestingly, at the quantum phase
transition an additive subleading constant b∗line

∞ = 0.41(1) emerges in the critical scaling of the line Shannon-Rényi
entropy S line

∞ . This number appears to be universal for 3d O(3) criticality, as confirmed for the finite-temperature
transition in the 3d antiferromagnetic spin- 1

2 Heisenberg model. Additionally, the phases and phase transition can
be detected in several features of the participation spectrum, consisting of the diagonal elements of the reduced
density matrix of the line subsystem. In particular, the Néel ordering transition can be simply understood in the
{Sz} basis by a confinement mechanism of ferromagnetic domain walls.
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I. INTRODUCTION

How do coefficients of a wave function change at con-
tinuous quantum phase transitions? In a given basis, this
question can be addressed by monitoring the behavior of
(inverse) participation ratios, which have a long history, e.g.,
in localization physics [1–4]. More recently, the study of
related quantities such as Shannon-Rényi entropies (which
quantify the localization of the wave function in a given basis)
in many-body problems has revealed an intriguing aspect:
subleading terms in the finite-size scaling of these quantities
appear to carry universal information, characteristic of the
physics contained in the ground-state wave function [5–9].
For instance, they can characterize the presence of broken
continuous or discrete symmetry breaking in the ground state,
as well as information on the universality class of continuous
phase transitions. Most previous studies [5–8,10–13] on this
topic focused on one-dimensional quantum systems, where
both analytical and numerical studies are easiest. In particular,
dealing with the exponentially growing size of the Hilbert
space of many-body problems, while maintaining a large
enough total system size to study finite-size dependence, is
a hurdle to surmount.

Recently, we have introduced in Ref. [9] convenient
numerical methods to study the Shannon-Rényi entropies
of many-body systems through a quantum Monte Carlo
(QMC) sampling of the ground-state wave function. This
method allows studies of much larger systems than previously
accessible in numerical calculations, which is necessary for the
analysis of universal behavior at continuous quantum phase
transitions where physical correlation lengths diverge.

Here, we will study this problem for a nontrivial, yet
well-understood quantum phase transition in two-dimensional
quantum magnetism: the transition between a Néel antiferro-
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magnet and a quantum paramagnet in two S = 1/2 quantum
spin Heisenberg models with varying antiferromagnetic cou-
plings, namely two-dimensional coupled dimers and plaque-
ttes (see Fig. 1). The variation of the ratio of two exchange
couplings g = J2/J1 allows to couple isolated paramagnetic
units (at g = 0) to form a two-dimensional antiferromagnet (at
g = 1), which spontaneously breaks SU(2) symmetry at zero
temperature. A quantum critical point at gc in the 3d O(3)
universality class [14–19] separates the quantum disordered
and Néel ordered phases.

The first part of the paper (Sec. III) is devoted to the study
of the behavior of subleading terms in the SR entropies of the
ground-state of Heisenberg magnets. Given a density matrix
ρ̂, the SR entropies are defined as

Sq = 1

1 − q
ln

∑
i

(ρii)
q with ρii = 〈 i |ρ̂| i 〉, (1)

where | i 〉 are states of the computational basis in which SR
entropies are calculated. Note that the choice of the natural
logarithm (base e) fixes the units of SR entropies to “nats”.

We will first consider in Sec. III A the SR entropy of the
full system composed of N = L2 interacting S = 1

2 spins on a
square lattice, that is choosing ρ̂ in Eq. (1) to be the full density
matrix ρ̂ = |�〉〈�| of the ground state |�〉. SR entropies are
generally found to have a leading behavior which is extensive
[9,10] Sq ∼ aqN , where the prefactor 0 � aq � ln(2) (for spin
1
2 systems) depends on details of the model (J2 in that case). In
the {Sz} basis considered throughout this work, we naturally
expect aq to be “small” in the Néel phase, and “large” in
the quantum disordered phase. This is easily understood by
considering the limit q = ∞, where S∞ = − ln[max(ρii)].
Here, max(ρii) = maxi |〈 i | ψ 〉|2 is the (modulus squared of
the) maximal coefficient of the ground-state wave function
expanded in the {Sz} basis. For antiferromagnetic systems,
this is the coefficient of the Néel state |↑↓↑↓ · · · 〉, which is ex-
pected to be much larger in the antiferromagnetically ordered
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FIG. 1. (Color online) Plaquettized (left) and dimerized (right)
lattices. The thick (red) lines correspond to strong bonds with
coupling J1 and we refer to them as plaquettes/dimers. The dotted
bonds are the weak interplaquette/interdimer couplings J2 � J1.
Periodic boundary conditions are implicit.

phase than in the disordered phase. In the antiferromagnetic
phase, the ground state spontaneously breaks the continuous
SU(2) symmetry and our previous work [9] showed that
this is reflected in a subleading logarithmic correction: Sq =
aqN + lq ln N + · · · . In the disordered phase, no symmetry
is broken and the subleading term is, in general, a universal
constant (expected to be zero in the paramagnetic phase
discussed in this paper).

For this first part of the paper (Sec. III), we will consider the
case q = ∞ essentially for practical purposes. Indeed, S∞ is
simpler to obtain numerically (within our QMC simulations)
and more importantly, the leading term prefactor a∞ is smaller
(a∞ < aq for all finite q) which ensures that we can reach
larger system sizes. Despite these facts, simulations of the
SR entropy of full two-dimensional systems are limited to
relatively small sizes (up to N = 144) close to the quantum
phase transition, as the prefactor a∞ is still quite large in this
region (see also the discussion in Appendix A).

To circumvent this, we next consider in Sec. III B the scaling
of the SR entropy of a subsystem, composed of a single line
of size L (the geometry of the subsystem is defined in Fig. 1)
embedded in a periodic L × L torus. Subsystem SR entropies
are defined in analogy to Eq. (1), except that we now consider
the reduced density matrix ρ̂B of a subsystem B which is
obtained by performing a partial trace over the rest of the
system A:

ρ̂B = TrAρ̂ ⇒ ρB,iB iB =
∑
j (iB )

ρj (iB )j (iB ), (2)

with |j (iB)〉 = |jA〉A ⊗ |iB〉B , i.e., where the basis state |j (iB)〉
is a tensor product state of subsystems basis states |jA〉A and
|iB〉B .

The rationale for choosing a line-shaped subsystem is two-
fold: first, we physically expect that the SR entropy of the line
also contains the information about antiferromagnetic ordering
(since for instance the correlation function 〈Sz(0)Sz(r)〉 along
the line is defined in terms of diagonal elements of the reduced
density matrix). Second, the SR entropy of the line has a
leading term S line

q = aline
q L, and therefore takes much smaller

values than for the full-system SR entropy for the same value of
L (L scaling versus L2 scaling). This leads to a better accuracy
and allows to reach much larger linear sizes L in our QMC
simulations.

Our results indicate that the SR entropy of the line also
shows a subleading ln(L) term in the Néel phase, and a
constant term in the disordered phase, which turns out to
vanish (see below). Quite interestingly, the subleading term
right at the quantum phase transition is a constant b∗,line

∞ �=
0, which appears to be identical (within error bars) for
the two models studied. This suggests that this constant is
characteristic of the 3d O(3) universality class to which both
quantum phase transitions belong. Further simulations of the
finite-temperature ordering phase transition of the simple cubic
S = 1/2 Heisenberg model (also in the same O(3) universality
class) support this conjecture for antiferromagnetic interac-
tions. We also expect a universal value b∗

∞ for the full system,
even though the limited accuracy (due to the large value of
a∞) of our simulations does not allow to prove this.

For the verification of the universality of b∗,line
∞ , we have

first performed extensive calculations of the spin stiffness in
order to extract the best estimate for the value of the transition
temperature, Tc = 0.94408(2), in agreement with Ref. [20].

The SR entropies are global averages of all coefficients of
the wave function and their scaling with the (sub-) system
size thus capture correctly phases and phase transitions.
It is interesting to ask whether each individual coefficient
(or reduced density matrix diagonal element in the case of
subsystems) also “sees” the quantum phase transition when
g is varied–this independently of their scaling with system
size, as exemplified with the maximal diagonal entry of the
(reduced) density matrix, governing S∞ (S line

∞ ). Motivated by
this question, we study in the second part of the paper (Sec. IV)
the behavior of each diagonal element of the reduced density
matrix ρ line

ii for a line subsystem across the transition. In
analogy with the entanglement spectrum [21,22], we define
the “participation spectrum” as the set of pseudoenergies
ξ line
i = − ln ρ line

ii . The participation spectrum develops into
well-defined bands, which can be classified according to the
magnetization and the number of ferromagnetic domain walls
separating segments having different Néel line configurations
(|↑↓↑↓ · · · 〉 or |↓↑↓↑ · · · 〉). Identifying the lowest-lying
states in this spectrum allows to understand the quantum phase
transition in terms of an effective repulsion between such
domain walls. Even though the participation spectra appear
to differ at first glance in the quantum disordered phases of the
two studied models, we find that this can be understood easily
by classifying states according to the number of strong or weak
domain walls (this notion is dictated by the local physics of
one of the two models considered). A striking outcome of this
analysis is that all individual levels (even corresponding to
assumedly irrelevant states such as the fully polarized state)
harbor signs of the quantum phase transition, as exemplified
for instance by an inflection point (with respect to g) for almost
all ξ line

i . We analyze this in detail for the most probable state.
Another interesting sign of the quantum phase transition is
revealed by the study of the finite-size behavior of the width
of the lowest-lying bands. We will finally conclude in Sec. V
on the implications of our results while the appendices contain
specific details of the QMC procedure used (Appendix A),
as well as exact results in the limit of g → 0 for reference
(Appendix B). Let us begin our paper (Sec. II) by providing
useful details on the models studied as well as on the finite-size
scaling analysis.
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II. MODELS AND METHODS OF ANALYSIS

The two models (dimerized and plaquettized Heisenberg
models) that we study are defined with the same Hamiltonian
form:

H = J1

∑
plaquettes/

dimers

Si · Sj + J2

∑
links

Si · Sj , (3)

with J1,J2 � 0 and where the two terms correspond to the
summation over stronger bonds for columnar dimers (plaque-
ttes) and to the summation over the weaker links between
these entities (see Fig. 1). We only consider g = J2/J1 �
1 here, with g = 1 yielding the homogeneous Heisenberg
antiferromagnet on the square lattice. The two models have
slightly different critical points at gc = 0.52370(1)[19] for
the columnar dimerized system and gc = 0.54854(6)[18] for
the plaquettized system. For g < gc, both models display
a disordered ground state separated from excited states by
a finite energy gap, whereas for g > gc antiferromagnetic
Néel long-range order occurs, with a spontaneous breaking
of the SU(2) symmetry. We considered these two models as
they are well-established to harbor the same physical content
[in particular, the quantum phase transitions at gc belong
to the same 3d O(3) universality class], yet with different
microscopics: this will allow us to discuss universality of the
scaling of SR entropies.

We study properties of the ground states expanded in the
{Sz} basis and note that all results will be identical in any basis
obtained by a global SU(2) transformation, by symmetry of
the Hamiltonian. We use the index � (respectively |) to denote
quantities for the plaquettized (respectively, dimerized) model.
Considering the results of Ref. [9], we will perform fits of the
SR entropy S∞ of the full system to the following forms:

S∞(N ) = a∞N + l∞ ln N + b∞ (4)

and

S∞(N ) = ã∞N + b̃∞. (5)

Equivalent forms for the line SR entropy S line
∞ (L) are

S line
∞ (L) = aline

∞ L + lline
∞ ln L + bline

∞ (6)

and

S line
∞ (L) = ãline

∞ L + b̃line
∞ . (7)

Note that, in general, one also expects [9] further size
corrections O( 1

N
) and O( 1

L
).

The second functional forms Eqs. (5) and (7) are of course
included into the first forms Eqs. (4) and (6), when the fitting
parameters l∞ or lline

∞ are found to be zero. However, given
the finite values of N and L that we can reach and the
error bars inherent to QMC, the fits to Eqs. (5) and (7) are
better controlled (and errors on estimated parameters smaller)
by forcing l∞ to be zero for systems where no logarithmic
term is present. Indeed, putting a logarithmic term when not
needed can result in an acceptable fit where an artificial l∞ > 0
compensates wrongly underestimated a∞ or b∞. For systems
where no logarithmic term is present, we must have b̃∞ → b∞
and ã∞ → a∞ (respectively, bline → bline

∞ and ãline
∞ → aline

∞ )
for large enough sizes, but this scaling regime might be reached

earlier by using the second forms Eqs. (5) and (7). Let us
finally mention the simple argument that if one is looking for
universal constants, then only l∞ and lline

∞ can be universal (but
not b∞,bline

∞ ) in the first forms Eqs. (4) and (6): this is seen by
a redefinition of sample size N or L. With the same reasoning,
only b̃∞,b̃line

∞ can be universal for the second forms Eqs. (5)
and (7).

For all fits, we used a rigorous bootstrap analysis in order to
provide reliable error bars for fit parameters. Note, however,
that these error bars do not contain systematic effects due to
finite system sizes. These effects can nevertheless be estimated
by comparison of fits over different system size N or L ranges
(“fit windows,” see Ref. [9] for details). We also monitored the
fit quality Q (see Ref. [23]) to ascertain the precision of our
fits.

III. SHANNON-RÉNYI ENTROPIES

Throughout this section, we restrict our discussion and
analysis to the computationally most accessible SR entropy,
when q → ∞ for both the full system (S∞) in Sec. III A and
the line subsystem (S line

∞ ) in Sec. III B.

A. SR entropy S∞ of the full system

Figure 2 shows our QMC results for S�
∞ of the plaquettized

model in the range of accessible entropies (our simulations are
limited roughly to S∞ � 20 as discussed in Appendix A), for
different values of the parameter J2 in the range [0,1].

In the limit J2 = 0 of isolated plaquettes, S�
∞(N ) can be

exactly (cf. Appendix B) shown to be S�
∞(N ) = ln 3

4 N , i.e.,
a pure linear scaling with no logarithmic or constant terms.
In the uniform Heisenberg limit J2 = J1 on the other hand,
previous results [9] have shown the existence of a logarithmic
scaling correction with the form Eq. (4) with l∞ �= 0.

By inspection of the bare SR entropy scaling in Fig. 2, a
nonzero logarithmic scaling term l∞ > 0 can be presumed for
the whole ordered phase J2 > Jc (with curves clearly bending
downwards for smaller system sizes), while for the disordered
phase, the scaling appears linear. In order to quantify this, we
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FIG. 2. (Color online) S�
∞ for different values of the plaquette

coupling strength J2. The result for the limit J2 = 0 is given by
S�

∞ = ln 3
4 N (see Appendix B). An emerging logarithmic scaling term

for J2 > Jc can be guessed. Lines are guides to the eye.
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FIG. 3. (Color online) Prefactor l�∞ of the logarithmic scaling
term of S�

∞ extracted from fits over different size windows for
the plaquettized square lattice. The fits include system sizes N ∈
[Nmin,Nmax] corresponding to the data points in Fig. 2 (e.g., N =
16,36,64,100,144 for Nmin = 16 and Nmax = 144). Nmax is the
maximal accessible size for which the entropy is smaller than ≈ 20
(see Fig. 2). We used Nmax = 144 for J2 > 0.3 and were able to push
calculations up to Nmax = 196 around the critical point and even to
Nmax = 256 for J2 = 1. For J2 < Jc, the fits are difficult because
of greater error bars for large entropies and large finite size effects.
The behavior is nevertheless consistent with a vanishing l�∞ in the
disordered phase. For J2 > Jc, a plateau emerges and l�∞ is found to
assume approximately the same nonzero value in the whole ordered
phase. The inset shows the subleading constant term b̃�

∞ obtained
from fits excluding a logarithmic scaling term, in the relevant low-J2

phase.

have performed fits of the Monte Carlo data corresponding to
the form Eq. (4). We emphasize that the quality of the fits (in
particular the extraction of the logarithmic term) is reduced
when only few system sizes are available, which is specially
the case in the disordered regime of the phase diagram (due to
faster growing S∞ with system size). As the situation is worse
for the dimerized model (we have for instance a

|
∞(J2 = 0) =

ln 2
2 > a�

∞(J2 = 0) = ln 3
4 , cf. Appendix B), we concentrated

our analysis for this section on the plaquettized model.
Figure 3 displays the result of our fits for the prefactor

l�∞ of the logarithmic scaling correction of S�
∞. The trend

with increasing system sizes included in the fit is evident
in the ordered phase, as l�∞ is found to be almost constant
with J2 there. In the disordered phase, large finite size effects
are observed which are very similar to the oscillations found
for the constant term close to the quantum phase transitions
of transverse field Ising models [5,9]. We expect l�∞ to
vanish in the complete quantum disordered phase (as it is
shown analytically for J2 = 0 in Appendix B) and our data
are consistent with this expectation, although the numerical
precision is not sufficient for a definite answer. The lack of
availability of larger N also prevents us to conclude if there
is a universal number l∞ (and what is its numerical value) in
the Néel phase, even though the plateau shape of the curves
tend to indicate that this is possible. The actual universal value
l∞ (if any) may be quite larger than the maximum value here
(found to be l∞ � 0.45 for the fit window with the largest N ),

as can be seen by the shift of the curves when smaller sizes are
removed from the fit.

The inset of Fig. 3 shows our fit results for the same fit
windows as in the main panel for b̃�

∞ as obtained from fits
to Eq. (5) close to Jc. In this region, large finite size effects
are hampering a reliable extraction of the constant but a lower
bound for the value b∗,�

∞ � 1.1 at the critical point can be
perceived. Results from fit windows excluding smaller system
sizes seem to indicate that b�

∞ vanishes in the disordered phase.
It would be of clear interest to increase the maximum size

in the simulation to have a larger fitting range, but this is
not possible with the extensive growth of the entropy S∞. To
circumvent this problem, we consider in the next section the
scaling behavior of a the SR entropy of a subsystem, which
grows much more slowly.

B. SR entropy Sline
∞ of a line subsystem

We present in this section our QMC results for the line
subsystem SR entropy S line

∞ . Its scaling with the length of
the line L will be shown to also capture the nature of the
ordered and paramagnetic phases. S line

∞ is equal to (minus)
the natural logarithm of the maximum diagonal entry of the
line reduced density matrix, which turns out to correspond
to the two local Néel states |↑↓↑↓ · · · 〉 and |↓↑↓↑ · · · 〉
on the line. This is slightly less obvious than the fact that
the full Néel states are the most probable states on the full
lattice, but we checked explicitly that this is the case in all
our simulations. By definition of the reduced density matrix,
S line

∞ = − ln(maxi ρii,B) contains now information about all
basis states of the full system which fulfill the geometrical
condition of forming one of the two Néel states on the
subsystem.

We display our results for the line subsystem SR entropies
as a function of the length L of the subsystem for both
dimerized and plaquettized models in Fig. 4. Much larger
system sizes N = L2 are accessible now (when compared
to Fig. 2 for the full system): this greatly reduces the effect
of further finite size corrections beyond Eqs. (6) and (7)
and makes a reasonable analysis of the scaling of subsystem
entropies viable. We now discuss systematically the scaling
behavior of the SR entropy S line

∞ across the transitions in the
dimerized and plaquettized models, by fitting to the functional
forms Eqs. (6) and (7), and displaying the estimates of fits
parameters.

1. Leading term

We begin with the linear prefactors aline
∞ , as displayed in

Fig. 5 as a function of J2 for fits over different system size
windows. The results for the two functional forms are shown
in the same figure, but with a different color coding depending
on the regimes: aline

∞ obtained from linear fits [Eq. (7)] is
represented with bold lines for J2 < Jc (in the disordered
regime where we find that they represent the correct form) and
pale lines for J2 > Jc (when they are not expected to be valid)
and vice-versa for fits including the logarithmic correction
[Eq. (6)]. For J2 < Jc, both results agree very well within
error bars, while the linear fit result is slightly more stable and
converges faster with system size. This is already a hint that
the logarithmic correction lline,�

∞ presumably vanishes in the
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FIG. 4. (Color online) SR entropies for the line-shaped subsys-
tem across the transitions in plaquettized (S line,�

∞ , top) and dimerized
(S line,|

∞ , bottom) transitions.

disordered phase, which will be verified in the next paragraph.
Both dimerized and plaquettized models display the same
behavior, with a

line,|
∞ taking larger values due to suppressed

Néel order.
One can notice a qualitative change in the extensive

contribution to the Shannon entropy across the quantum phase
transition where a∞ changes abruptly. More precisely, its
derivative with respect to J2 displays a singularity at the critical
point. We discuss in more detail such features in Sec. IV D.

2. Subleading logarithmic term in the ordered phase

The first subleading scaling term is the logarithmic correc-
tion lline

∞ as defined in Eq. (6). Figure 6 represents results of fits
obtained from three sets of system size ranges. We find that
fits excluding the smallest system sizes generally correspond
to higher fit qualities (quality factor Q closer to 1), while on
the other hand, error bars on lline

∞ become larger as the number
of data points included in the fit decreases.

Nevertheless, results are stable with respect to different
fit windows: we observe a clear change in the estimated
lline
∞ exactly at the transition point for both dimerized and

plaquettized models at the respective Jc. Deep in the quantum
disordered phase, the logarithmic term lline

∞ converges very well
towards zero. Close to the critical point for J2 < Jc, nontrivial
finite size effects show up in pronounced oscillations preceding
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FIG. 5. (Color online) Linear scaling prefactors aline
∞ of the sub-

system entropy S line
∞ across the transitions in the plaquettized (top)

and dimerized (bottom) models. We show both fits to the forms
ãline

∞ L + b̃line
∞ [Eq. (7), valid for J2 < Jc, bold in valid regime, pale

for J2 > Jc] and aline
∞ L + lline

∞ ln L + bline
∞ [Eq. (6), valid for J2 > Jc,

bold in valid regime, pale for J2 < Jc]. As bline
∞ = 0 and lline

∞ = 0 in
the quantum disordered phase when J2 < Jc, the fits forcing lline

∞ = 0
are slightly better. In the ordered phase, the fit to Eq. (7) does not
work because of the existence of the logarithmic scaling term and fit
quality factors of Q ≈ 0 (see e.g., Ref. [23]) were obtained here.

the jump to nonzero lline
∞ in the ordered phase. We note that

we observe the onset of the oscillations for values of J2 where
the bulk correlation length (as computed e.g., in Ref. [15]
for the dimerized model) is not negligible with respect to the
minimum size L used in the fit. These finite-size oscillations
are similar to what is observed in the constant term of the
SR entropies of the one-dimensional [5] and two-dimensional
[9] quantum Ising model close to its transition point, with
oscillations becoming narrower and moving closer to the
critical point with growing system sizes used for the fit. We
conclude that lline

∞ = 0 in the full disordered phase.
In the ordered phase, the behavior is very different and

a logarithmic scaling correction emerges with lline
∞ > 0. Our

results for the fitting window with the larger sizes is lline
∞ �

0.7 and lline
∞ appear identical for both models within the Néel

phase. However, even though we performed calculations in
large systems of up to N = 4096 spins, the asymptotic value
of lline

∞ cannot be extrapolated from our data. Right at the critical
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FIG. 6. (Color online) Logarithmic scaling term lline
∞ of the line

SR entropy S line
∞ across the transitions in the plaquettized (top) and

dimerized (bottom) models, as obtained from fits to Eq. (6). We
show fits over different system size windows. The logarithmic term
vanishes in the quantum disordered phase, while in the ordered phase
it assumes a nonzero, almost constant value, which is similar for both
models for a given fitting size window.

point, curves for the estimated lline
∞ for different fit windows

cross at a value which is 0 within error bars.

3. Vanishing constant term in the paramagnetic phase

In the quantum disordered phase and presumably also at
the critical point, the logarithmic term vanishes and therefore
the first subleading scaling term is bline

∞ . To best estimate its
value, we force lline

∞ = 0 by using the functional form Eq. (7)
in our fit. Figure 7 shows the result of this analysis, the pale
lines correspond to the regime J2 > Jc where the fit function
does not represent the data correctly (this is reflected also by
strong finite size effects). We find exactly the same behavior
for both models in the disordered phase with bline

∞ = 0 for all
J2 < Jc.

4. Universal constant term at the quantum phase transition

We furthermore find (see Fig. 7) that curves of b̃line
∞ for

different fit windows cross at the critical point, taking a
nontrivial value b∗,line

∞ . The absence of finite size effects at the
crossing point provides evidence that the logarithmic correc-
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FIG. 7. (Color online) Constant scaling term b̃line
∞ of the subsys-

tem entropy S line
∞ across the transitions in the plaquettized (top) and

dimerized (bottom) models, as obtained by a fit to Eq. (7). This
form is clearly not valid in the ordered phase (J2 > Jc), where a
logarithmic scaling term of lline

∞ > 0 is found. Fit qualities drop to
zero for J2 > Jc and b̃line

∞ is therefore shown in pale colors. In the
disordered phase J2 < Jc, b̃line

∞ = bline
∞ is found to be 0 (bold). The

lines cross at the critical point at b∗,line,�
∞ = 0.412(6) (plaquettized

model) and b∗,line,|
∞ = 0.41(1) (dimerized model).

tion actually vanishes at the critical point. For the plaquettized
model, we find b∗,line,�

∞ = 0.412(6); in the dimerized case we
obtain a similar value b

∗,line,|
∞ = 0.41(1). This strongly suggests

that b∗,line
∞ is universal at the quantum critical point, and should

be identical for all models with a phase transition in the 3d O(3)
universality class.

To test this, we perform large-scale simulations of the finite-
temperature transition in the isotropic 3d S = 1/2 Heisenberg
model on a cubic lattice with antiferromagnetic interactions.
This transition belongs to the 3d O(3) universality class. We
then computed the line SR entropy S line

∞ using the same QMC
technique [9], but this time at finite temperature, close to the
critical point.

As a preliminary, we want first to extract the best estimate
for the critical temperature Tc. We have performed additional
simulations, up to N = 512 000 sites, studying the crossings
of the spin stiffness (times linear system size), a standard
method to locate critical points [19]. These results are reported
in Fig. 8 where we show very precise QMC data for cubic
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FIG. 8. (Color online) Spin stiffness multiplied by system size
ρsL as a function of temperature T for different linear system sizes L

in the 3d S = 1/2 antiferromagnetic Heisenberg model on the simple
cubic lattice. The inset shows our best estimate for the crossing point
T ∗ of the spin stiffness for sizes L and 2L as obtained from a cubic
fit to our data including a bootstrap analysis for the error bars (black
points). The red line corresponds to T ∗ calculated from our best fit
of our data to a universal function f (L,T ) = (1 + c/Lω)k(L1/ν(T −
Tc) + d/Lφ) (cf. Ref. [16]), including empirical scaling corrections.
We approximated k by a third order polynomial. For the critical
temperature, we obtain Tc = 0.94408 ± 0.00002 using 104 bootstrap
samples (1σ errorbar indicated by the narrow rectangle).

systems, thus allowing to estimate the critical point with
a high accuracy to Tc/J = 0.94408(2), which agrees with
previous estimate Tc/J = 0.944175(75) from Ref. [20]. While
measuring the spin stiffness within the SSE computation is
very standard [19] and relatively fast, accessing S∞ for a
single line in the cubic antiferromagnet requires much longer
simulation time. We have been able to reach system sizes
up to N = 483 for S line,3d

∞ for which the subleading constant
bline,3d

∞ is shown in Fig. 9 in the vicinity of Tc. Despite the
sizable error bars, we can nevertheless observe a clear crossing
for various fit windows, drifting towards the actual critical
point at Tc/J = 0.94408(2) where the subleading constant
takes a numerical value bline,3d,∗

∞ = 0.41(1). This value is in
perfect agreement with estimates for the two-dimensional
quantum critical points, thus reinforcing the evidence for the
universality of b∗,line

∞ = 0.41(1) for 3d O(3) critical points.
Away from criticality, we have also checked the scalings of

S line,3d
∞ in the low temperature ordered phase at T = J/2 < Tc

(left inset of Fig. 9) and in the high temperature disordered
regime at T = 2J > Tc (right inset of Fig. 9). As expected,
below Tc, a subleading logarithmic term emerges with lline,3d

∞ =
0.8(3), and a purely linear scaling is found above Tc, with a
vanishing constant bline,3d

∞ = 0.003(9).

IV. PARTICIPATION SPECTRA

Up to now, we have focused on the finite-size behavior
of a single quantity, namely S∞ (S line

∞ ), which is related to a
single diagonal element—the largest—of the (reduced) density
matrix. Let us now inspect the behavior of all the diagonal
elements of the reduced density matrix ρ̂B for a subsystem B

being, as above, a line of L spins embedded in a L × L torus.
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FIG. 9. (Color online) Fit result for the subleading constant
bline,3d

∞ in the scaling of the SR entropy S line,3d
∞ with system size close

to the critical temperature in the 3d Heisenberg model. We only
performed fits to the form in Eq. (7), which is strictly only valid in the
absence of logarithmic scaling terms (i.e., in the disordered phase at
T � Tc). At the critical point, bline,3d

∞ converges well with system size
and the estimate for the fit window with the largest sizes is given by
b∗,line,3d

∞ = 0.41(1). The insets show the scaling of S line,3d
∞ as a function

of L in the ordered phase T < Tc with a clear sign of the logarithmic
scaling correction [lline,3d

∞ = 0.8(3)] and in the paramagnetic phase
T > Tc, where the scaling is purely linear with a vanishing constant
bline,3d

∞ = 0.003(9).

For practical reasons, we again restrict ourselves to the set
of bases that are connected to the {Sz} basis by global SU(2)
transformations, leaving the Hamiltonian invariant.

A. Definitions

Inspired by recent insights obtained on the entanglement
spectrum [21,22,24], we introduce the participation spectrum
obtained from the diagonal of the reduced density matrix ρ̂ line

in the computational basis {| i 〉}
ξ line
i = − ln ρ line

ii = − ln(〈 i |ρ̂ line| i 〉), (8)

using the line-shaped subsystem defined in Fig. 1. From now
on, we drop the index “line” on the set of pseudoenergies ξi .

In order to clarify the tremendous amount of information
contained in the participation spectrum, we anticipate (as de-
tailed below) that the line participation spectrum will develop
well-defined bands that can be classified through specific
characteristics of their containing basis states: (absolute value
of) magnetization |Sz| and number of (ferromagnetic) domain
walls ndw, the later turning out to be the crucial element to
classify the spectrum.

The Sz operator being diagonal in the computational
basis {| i 〉}, the magnetization of a basis state | i 〉 is simply
defined as Sz(| i 〉) = 〈 i |Sz| i 〉. We define the total number
of ferromagnetic domain walls in the line as ndw(| i 〉) =
L/2 + 2

∑L
x=1〈 i |Sz

xS
z
x+1| i 〉. We assume periodic boundary

conditions (Sz
L+1 = Sz

1) along the chain with L even (ensuring
ndw to be an even number). In other words, ndw is simply the
number of bonds along the chain hosting nearest-neighbors
spins with the same orientation in basis state | i 〉. We use the
term domain walls since the most likely states are the two
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FIG. 10. (Color online) Schematic picture for a basis state having
two domain walls ↓↓ and ↑↑ separating the two Néel configurations
NA and NB.

Néel states on the chain, as mentioned earlier, which have
|Sz| = 0 and ndw = 0 (ferromagnetic orientation of spins on
a given bond correspond to disrupting local Néel ordering).
Magnetization |Sz| and number of domain walls ndw run from
0 to respectively L/2 and L (for the polarized ferromagnetic
state) for possible basis states on the chain. We expect states
with low ndw and low |Sz| to be more likely, and therefore to
have a lower pseudoenergy ξi .

A typical basis state is illustrated in Fig. 10 for a
line of 30 spins with Sz = 0 and ndw = 2. From such a
picture one sees that increasing the separation between two
domain walls tends to reduce the total staggered magnetiza-
tion mstag = ∑

x(−1)x〈Sz
x〉. It is therefore expected that the

effective interaction between domain walls will be strongly
(weakly) attractive for states having long-range (short-range)
antiferromagnetic correlations. This will be discussed on more
quantitative grounds below in Sec. IV D.

We finally note that this description is not sufficient for
characterizing states of the chain subsystem in the plaquettized
lattice, as readily seen in Fig. 1. While all bonds along
the chain are equivalent for the dimerized lattice, this is
not the case for the plaquettized lattice with “strong” bonds
carrying the coupling constant J1 and “weak” bonds carrying
J2 � J1. We therefore find it useful to define the number
of strong nstrong(| i 〉) = L/4 + 2

∑L/2
s=1〈 i |Sz

2sS
z
2s−1| i 〉 domain

walls (0 � nstrong � ndw). We assume that the chain subsystem
starts from a strong bond and that L is a multiple of four, as is
the case in Fig. 1. We expect that ferromagnetic domain walls
on strong bonds will be less likely than on weak bonds and
anticipate this notion of strong and weak domain walls to be
particularly relevant in the quantum disordered phase.

B. Participation density of states

To get a first idea on how the weight of each basis state
gets redistributed while passing through the quantum phase
transition, it is instructive to consider the density of states

DOS(ω) = 1

2L

∑
i

δ(ω − ξi) (9)

corresponding to the participation spectrum of the line subsys-
tem.

Figure 11 displays the density of states as a function of
J2 across the transition in dimerized (right) and plaquettized
(left) square lattices. While the two density of states naturally
develop into the same homogeneous limit of J2 = 1, they
appear to differ strongly for dimerized and plaquettized
models, specially in the quantum disordered phase (which is
nevertheless physically similar for both models).

This difference is readily understood by considering the
limit of J2 = 0 (see Appendix B) where the reduced density

ω
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FIG. 11. (Color online) Development of the density of states
in the participation spectrum of ρB across the transition on the
plaquettized (left) and dimerized (right) square lattice. Here, L = 20.

matrix for isolated plaquettes and dimers is quite different.
Indeed, all diagonal elements of the reduced density matrix are
equal to 1/2L for the dimer case, whereas this large degeneracy
is lifted by the existence of two different diagonal entries in the
reduced density matrix at J2 = 0 for a single plaquette. For the
plaquettized model, the number nstrong of strong domain walls
determines the value of the diagonal reduced density matrix
element of the line by

ρ
line,�
ii =

(
1

12

)nstrong
(

5

12

) L
2 −nstrong

, (10)

and therefore labels the different packets of states at J2 = 0.
This degeneracy is lifted at J2 > 0 and different packets of
states tend apart from their initial pseudoenergy ξi . Due to the
high complexity of the spectrum in the plaquettized model,
these packets are mixed in energy at the critical point but
become “fat” as they cross the critical point. This phenomenon,
which will be discussed in detail in Sec. IV C, is even more
visible in the participation spectrum of the dimerized model.
There, there is no distinction between strong and weak domain
walls, and the well-separated bands evolve smoothly with J2

across the phase transition.
On the other side of the transition, the density of states in

the homogeneous limit J2 = J1 shows bands of high density
in pseudoenergy, separated by local minima. Inspection of the
corresponding states confirms our intuition by revealing that
the bands can be characterized by the number of domain walls
ndw in the basis states. Figure 12 illustrates this by displaying
the density of states for a fixed number of domain walls ndw:

DOS(ndw,ω) = 1

Nndw

∑
i,#dw=ndw

δ(ξi − ω), (11)

where the sum runs only over states with ndw domain walls.
We compare the domain wall resolved density of states for two
lattice sizes L = 20 and 24 in Fig. 12 and it is apparent that the
bands seen in Fig. 11 in the ordered phase correspond to states
with a fixed number of domain walls. This is in contrast with
the gapped phase of the plaquettized model, where the number
of strong domain walls is the dominant characteristic for the
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FIG. 12. (Color online) Density of states for different classes of
basis states, distinguished by the number of domain walls ndw in
the Heisenberg limit J2 = 1. Basis states with different numbers of
domain walls are clearly separated in pseudoenergy ω, while the
bands come closer with system size and have a small overlap. Note
that the density of states is normalized for each state band. The
fine line displays the overall density of states scaled by a factor for
visibility.

bands (see Fig. 13). With growing system size, the number
of possible bands grows linearly, as the maximal number of
domain walls grows linearly in L. Also, on the ordered side of
the transition the width of the bands grows linearly in L (as will
be shown in Sec. IV D) and the bands come closer together,
eventually forming a continuum of states. A similar picture
of bands labeled by the number of spin flips has also been
proposed for the entanglement spectrum of quantum dimer
models on a cylinder [24].
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FIG. 13. (Color online) Domain wall resolved density of states
for the plaquettized model in the gapped phase (J2 = 0.1 and L =
24). The number of domain walls is not a good identifier of the state
packets in this case. In the gapped phase, even in the thermodynamic
limit there are pronounced gaps between the bands of states which
in this case are characterized by the number of strong domain walls
nstrong [indicated by bold face (red) numbers].
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FIG. 14. (Color online) Development of participation spectrum
as a function of |Sz| (indicated by the numbers on top of each state
column) across the transition in the plaquettized model for L = 16.

C. Fully resolved participation spectrum resolution

We now turn our attention to the fully resolved partici-
pation spectrum for the transition in the plaquettized model,
where states are distinguished by (nstrong,ndw,Sz). The use of
magnetization |Sz| is mainly for clarity reasons: knowing Sz

does not help in resolving bands, which are characterized by
the number of domain walls (even though some values of
magnetization do not accommodate all possible number of
domain walls). The splitting of the participation spectrum in
different sectors of Sz is displayed in Fig. 14 for different
values of J2 for the plaquettized model, illustrating more
clearly how the pseudoenergies ξi vary from being grouped
by their number of strong domain walls nstrong (at J2 = 0) to
their total number of domain walls ndw (at J2 = 1). A more
detailed look at the development of state packets with fixed
(nstrong,ndw,Sz) is provided in Fig. 15 where we concentrate
on all basis states with exactly ndw = 4 domain walls.
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FIG. 15. (Color online) The band of states with four domain
walls in the homogeneous Heisenberg limit is formed from isolated
plaquette states with 0, 1, 2, 3, and 4 strong domain walls (L = 16).
Bold face (red) numbers indicate the number of strong bonds for the
state packet.
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D. Detecting the quantum phase transition in the
participation spectrum

While the previous sections aimed at illustrating how
participation spectra evolve though the continuous quantum
phase transition, we present now two distinct quantitative
features for localizing the quantum phase transition in the
(fully resolved) participation spectrum.

1. Inflection point

As visible in Figs. 14 and 15, the behavior of the pseudoen-
ergy ξi of each basis state is peculiar close to the quantum
critical point, showing a maximal or minimal steepness of
ξi(J2) and a zero transition of the second derivative d2ξi/dJ 2

2 ,
i.e., every ξi(J2) shows an inflection point at the critical point.
While the change of curvature of ξi(J2) close to Jc is clearly
visible for most basis states in Figs. 14 and 15, a quantitative
demonstration that the inflection point lies right at the critical
point requires high accuracy of ξi and a fine grid in J2.
We therefore performed this analysis for S line

∞ = ξmin for best
control.

We compute numerically the second derivative of S line
∞ with

respect to J2 close to the quantum phase transition and display
it in Fig. 16 for both the dimerized and plaquettized models,
confirming that the quantum phase transition corresponds to
a zero in the second derivative. In the limit L → ∞, the first
derivative of S line

∞ diverges right at the critical point and thus
precisely marks the quantum phase transition.

2. Finite-size dependence of resolved bands and domain
walls confinement

Another way to quantitatively detect the quantum phase
transition is obtained following the previous observation that
bands of identical number of domain walls in the participation
spectra appear to become “fatter” as the system crosses the
quantum critical point.

We investigate the size of state packets labeled by P =
(nstrong,ndw,|Sz|) in the plaquettized case by looking at the
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FIG. 17. (Color online) Dependence of the width δ/L of state
packets as a function of system size L for fixed (nstrong,ndw,|Sz|)
(top panel) and ndw (bottom panel, including states from all Sz

sectors) across the transition in the plaquettized (top) or dimerized
(bottom) model. Lower numbers of domain walls ndw correspond to
low pseudoenergy part of the participation spectrum. The crossing of
δ/L for different sizes close to the critical point indicated by a vertical
line is most prominent for the subsystem basis state packets with low
pseudoenergy (e.g., for the packet with two domain walls for both
panels) but clearly exists with considerable larger size effects (such
as drift crossing) in higher parts of the spectrum.

difference in pseudoenergy δ = ξmax
i (P ) − ξmin

i (P ) between
the basis states with the largest and lowest pseudoenergy within
the packet P . Results for the normalized packet width δ/L for
different P (see top panel of Fig. 17) display a clear crossing
point at the quantum critical point, separating two different
regimes. In the quantum disordered phase, the normalized
packet width δ/L tends to vanish presumably as 1/L in the
thermodynamic limit, as revealed by the finite-size scaling
analysis in the inset of Fig. 18. On the other hand, the packet
width δ grows as L (with 1/L correction) in the ordered phase
as also seen in Fig. 18. The same behavior is revealed when
integrating over all Sz sectors as shown for the case of the
dimerized model in the bottom panel of Fig. 17, where state
packets are defined by a fixed number of domain walls ndw.

This behavior can be understood following the sketch
presented in Fig. 10, where one sees that the dynamics of
two domain walls is constrained by the relative sizes of two
Néel patterns, NA and NB. Since the staggered magnetization
of a single basis state depends on the size difference |�A − �B|
between Néel domains of different type, one can predict a
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FIG. 18. (Color online) Width δ/L of state packet (1, 2, 1) as a
function of inverse system size 1/L for different values of J2 in the
case of the transition in the plaquettized model. In the limit of large
system sizes, δ/L vanishes in the quantum disordered phase, while it
goes to a constant in the ordered phase. (Inset) Zoom for small values
of J2 in the gapped phase. The linear behavior in 1/L suggests that
δ/L vanishes like 1/L.

qualitative difference for the packet width δ between ordered
and disordered ground states. In the disordered phase J2 < Jc

where antiferromagnetic correlations are short-ranged, we
naturally expect that the pseudoenergies will not be affected
(remaining essentially constant) when the separation between
two domain walls becomes larger than the finite correlation
length. On the other hand, for long-range order, a confinement
mechanism between two domain walls will be necessary to
maintain a finite staggered magnetization. There we expect the
pseudoenergy spectrum to be controlled by an attractive long-
range interaction between domain walls. This picture holds
best for a small number of domain walls in the high probability
(low pseudoenergy) part of the participation spectrum.

We illustrate this interpretation by considering the pseu-
doenergy dependence on the distance between domain walls.
Figure 19 displays this pseudoenergy difference for the diluted
case of ndw = 2 domain walls with Sz = 0 (in which case the
distance has to be even), as a function of the chord distance
between domain walls for different J2 for both dimerized and
plaquettized models. In the disordered phase, the domain walls
appear rapidly deconfined with a finite small pseudoenergy
difference between states with different domain wall distances
and hence a small packet width δ. In contrast, large domain
wall distances are penalized in the magnetically ordered
phase by a high pseudoenergy cost, which appears to grow
approximatively linearly with distance (for a large enough
distance).

For states with more than two domain walls, the situation
becomes somewhat more complicated. The crossing in δ/L

still exists but it acquires a drift with system size (see Fig. 17).
A closer inspection of the involved states in the corresponding
packet and their pseudoenergies suggests that multidomain
wall attraction terms play a role in addition to the long-range
two-domain-wall attraction. This is probably the source of the
a drift of the crossing as these multidomain wall terms become
eventually less important when the average distance between
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FIG. 19. (Color online) Pseudoenergies of the line subsystem as
a function of domain wall distance d (expressed in terms of the
chord distance on the ring) for all states with two domain walls in
the Sz = 0 sector for the plaquettized (top) and dimerized (bottom)
model, for different values of J2 (equidistant in steps of 0.05). In
order to compare the curves, we subtracted the pseudoenergy of the
state with the minimal distance d = 2 between domain walls (which
is always the lowest).

domain walls becomes large L � ndw for the high end (low
probability) of a packet with a fixed number of domain walls.

V. CONCLUSION

We have analyzed the Néel antiferromagnet-paramagnet
quantum phase transition in two-dimensional quantum spin
systems using the Shannon-Rényi entropies for the full system
and for subsystems, together with the associated participation
spectra, using extensively QMC methods presented in Ref. [9].
Our study shows that a line-shaped one-dimensional sub-
system is actually sufficient to capture the quantum phase
transition. We confirm that the subleading scaling behavior
of Shannon-Rényi entropies changes radically at the quantum
phase transition, giving rise to a logarithmic scaling term in
the Néel phase, independent on microscopic details (such as
the choice of dimerization or plaquettization of the lattice in
our study).

Similar logarithmic corrections to an area law have been
numerically observed [25–27] in studies of the Rényi entan-
glement entropy of the ground-state of the 2d Heisenberg
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model for two-dimensional subsystems (such as half-torus),
in agreement with theoretical predictions [28]. For the case
of a line-shaped subsystem, we have checked that the Rényi
entanglement entropy also exhibits a logarithmic correction
to the area law (indistinguishable from a volume law in this
particular case). On the disordered side of the phase diagram,
only a subleading constant term can be present, which is
actually 0 in this phase with no broken symmetry.

At the quantum critical point, we find a universal subleading
constant (for the line SR entropy S line

∞ ) with an estimated
value of b∗,line

∞ = 0.41(1) being identical for dimerized and
plaquettized models. We have confirmed that a similar constant
can be found at the Néel-paramagnetic finite-temperature
phase transition of the 3d Heisenberg S = 1/2 antiferromagnet
at Tc/J = 0.94408(2), strongly suggesting that this is a
characteristic of the 3d O(3) universality class to which all
mentioned transitions belong. We suspect that such a universal
subleading constant also exists for the SR entropy of the full
system, but the precision of our numerical computations do not
allow to prove this. Universality could be further checked by
considering O(3) critical points in other models, either with
two-dimensional quantum models such as S = 1/2 bilayers
[29], coupled Haldane chains [15,30], staggered-dimer models
where anomalously large corrections to scaling are known
[31], or in 3d classical systems such as the classical Heisenberg
model on the cubic lattice. It would also be very interesting
to extend this study to other universality classes, either of
conventional or unconventional type [32].

Motivated by the finding that the one-dimensional sub-
system captures the physics of the phase transition, we
also performed a phenomenological study of the information
contained in the participation spectra of the subsystem. In
the participation spectra, states group together in packets
of pseudoenergy which can be classified by the number
of ferromagnetic domain walls (number of strong domain
walls for the plaquettized lattice) in the basis states. The
development of these packets across the transition is peculiar
as packets become “fat” in the ordered phase, meaning that
their width δ (in pseudoenergy) grows linearly with subsystem
size L. In the disordered phase, however, δ/L tends to zero.
This can be phenomenologically explained by an attractive
potential between domain walls in the ordered phase, while
in the disordered phase, domain walls remain deconfined.
In addition, we observe at the critical point an interesting
behavior for the pseudoenergies in the participation spectrum:
their slope as a function of the control parameter J2 has a
pronounced extremum and we show that S line

∞ has an inflection
point at Jc.

The analysis presented in Sec. IV is fairly simple, but
contains the basic ingredients to build a wave-function
that describes the studied (2+1)-dimensional quantum phase
transition. Let us indeed put in perspective our work with
the widely-used variational approach. In the context of two-
dimensional Heisenberg models, Huse and Elser [33] (see
also Refs. [34,35]) formulated a variational ansatz for the
ground-state wave function:

|ψ〉(α) =
∑

i

e− ξi (α)
2 |i〉, (12)

where a classical pseudoenergy ξi is associated to the basis
state | i 〉 (also taken as a {Sz} basis state in Ref. [33]). Here
α is (a set of) variational parameter(s) used to minimize the
total energy of the Heisenberg Hamiltonian. This ansatz looks
similar to our definition of the participation spectrum. The
crucial difference is of course that the variational approach
assumes a form for the pseudoenergy (for instance a power-law
Ising interaction in Ref. [33]), while our QMC methods can
calculate the exact (within statistical accuracy) value of each ξi .
Note as well that we did not compute, for essentially practical
reasons, the participation spectrum for the full system (as in
the variational ansatz) but rather on a subsystem. Nevertheless,
our results give the correct qualitative ingredients to construct
variational wave-functions of the form of Eq. (12) to describe
the Néel and paramagnetic phases, as well as the transition in
between. This could be useful in particular for frustrated spin
systems, where QMC is not available.
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APPENDIX A: DETAILS ON MONTE CARLO PROCEDURE

Here we provide further details (in supplement to Ref. [9])
on the QMC procedure to access subsystem entropies and
participation probabilities, as well as on dealing with statistical
uncertainty.

1. Calculation of diagonal elements of the reduced
density matrix

As already presented in Ref. [9], the diagonal elements ρii

of the full density matrix are readily available in standard QMC
techniques such as the standard stochastic series expansion
method (cf., e.g., Ref. [19]). In the same vein, the diagonal
elements of the reduced density matrix ρB,ii [see Eq. (2)] are
obtained in the following way. It is clear that the probability
of observing the basis state |j (iB)〉 in the SSE operator string
is directly given by

p(| j (iB) 〉) = ρj (iB )j (iB ). (A1)

Hence, the probability of finding the subsystem basis state
|iB〉B in subsystem B in the stochastic series expansion
operator string is

p(| iB 〉B) =
∑
j (iB )

ρj (iB )j (iB ) = ρB,ii . (A2)
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In practice, this means that one has to inspect only the B part
of each basis state in the simulation, and record a histogram
of its frequency.

2. Computationally accessible entropies

The numerical calculation of large SR entropies corre-
sponds to the observation of rare events with low probabilities.
It is easy to obtain an approximation of a reasonable upper limit
for the calculation of the entropy S∞ = − ln pmax given by the
observation of the most probable state appearing in the SSE
Markov chain with a probability pmax. For the estimation of
the maximally accessible entropy, we make the assumption
of statistical independence, as statistical correlations will only
reduce the maximally accessible entropy.

In the Markov chain, we measure the observable δi,imax ,
yielding 1 of state | i 〉 corresponds to the state | i 〉max with
maximal probability and 0 otherwise. The Monte Carlo
average of this observable is given by

〈δi,imax〉 =
∑
s∈MC

δs,imax = n(imax)

NMC
, (A3)

where n(imax) is the number of occurrences of the most
probable state in the Markov chain MC of length1 NMC.

The standard error of 〈δi,imax〉 is given by

σp =
√

pmax(1 − pmax)√
NMC

≈
√

pmax

NMC
(A4)

for sufficiently small pmax and NMC inspected states. Now
we can estimate the standard error of S∞ by the linear
approximation σS = σp/p. To obtain a given relative error
σS/S∞ for a given number NMC of inspected states, the
maximal entropy is then governed by the equation

σS

S∞
S∞ = 1√

NMC

1

e−S∞/2
. (A5)

In a realistic calculation, we inspect typically NMC =
1012 states. Therefore, for a requirement of a relative error
σS/S∞ � 0.001, we obtain a maximally accessible entropy
S∞ � 19.78 � 20.

3. Error bars for the participation spectrum

Measuring accuracy on the participation spectrum requires
special care. It is indeed impractical to construct an observable
for each subsystem basis state |iB〉 and measure δiB ,jB

as
proposed in Ref. [9] for each observed state |jB〉 in the SSE
operator string. For the calculation of the participation spec-
trum, defined as ξiB = − ln ρB,iB iB and inducing a nonlinear
transformation of the Monte Carlo data, we perform several
independent Monte Carlo simulations in parallel, each creating
a simple histogram h(|iB〉) containing the count of all observed
subsystem basis states. After applying all model symmetries
to the histogram to improve the statistics (see Supplementary
Material of Ref. [9]), we perform a bootstrap analysis for each

1Note that in the case of SSE, the effective length of the Markov
chain is rather the number of operator strings Ns times the expansion
order n.

ξiB , creating bootstrap samples from the histogram counts
of the different independent simulations. This provides an
unbiased estimation of the standard errors of the mean of
all ξiB . We did not display error bars in Figs. 14 and 15
as they are smaller than the line width but they where used
for the estimation of the uncertainty in δ/L shown, e.g., in
Fig. 18.

APPENDIX B: EXACT CALCULATIONS FOR J2 = 0

We provide here simple exact results for SR entropies and
reduced density matrices when J2 = 0. These results are useful
in two ways: they provide direct insight for the subleading
terms of the SR entropies (which vanish altogether when J2 =
0) as well as on the starting point of the participation spectrum.

1. Shannon Rényi entropy of the full system

In the limit J2 = 0 of isolated plaquettes or dimers, the
ground state |ϕ〉 is a singlet state, given by

|ϕ〉� = 1√
12

(
−2

∣∣∣∣↓↑
↑↓

〉
− 2

∣∣∣∣↑↓
↓↑

〉

+
∣∣∣∣↓↓
↑↑

〉
+

∣∣∣∣↑↓
↑↓

〉
+

∣∣∣∣↓↑
↓↑

〉
+

∣∣∣∣↑↑
↓↓

〉)
(B1)

for one plaquette (see, e.g., Ref. [37]) and

|ϕ〉| = 1√
2

(|↑↓〉 − |↓↑〉) (B2)

for a single dimer.
Thus we get

S�
∞ = − ln

(
4

12

)N/4

= ln 3

4
N (B3)

and

S�
q = 1

1 − q

N

4
ln

[
4

(
1

12

)q

+ 2

(
4

12

)q]
(B4)

for the limit J2 = 0 of the plaquettized model.
The solution is much simpler for the dimerized model, as

any basis state with Sz = 0 on the dimer contributes with the
same weight pi = 2−N/2 and therefore all SR entropies are
identical:

S|
q = ln 2

2
N. (B5)

2. Shannon Rényi entropy of the line subsystem

For a dimer shaped subsystem B of one plaquette, the
reduced density matrix is given (in the {|↑↑〉,|↑↓〉,|↓↑〉,|↓↓〉}
basis) by

ρ�
B = TrA|ϕ〉〈ϕ| = 1

12

⎛
⎜⎜⎜⎝

1 0 0 0

0 5 −4 0

0 −4 5 0

0 0 0 1

⎞
⎟⎟⎟⎠. (B6)
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In the single dimer case, subsystem B is just one site and the
reduced density matrix (in the {|↑〉,|↓〉} basis) is

ρ
|
B = 1

2

(
1 0

0 1

)
. (B7)

The total reduced density matrix of the line-shaped sub-
system composed of L/2 dimers B of single plaquettes (or L

sites B of single dimers in the dimerized case) is then obtained
from the Kronecker product of the reduced density matrices:

ρ line,� =
L/2⊗
i=1

ρ�
i,B or ρ line,| =

L⊗
i=1

ρ
|
i,B. (B8)

Consequently, for the line-shaped subsystem, S line
∞ reduces

to

S line,�
∞ = L

ln 12
5

2
or S line,|

∞ = L ln 2. (B9)

While for arbitrary values of q, the Shannon-Rényi en-
tropies are

S line,�
q = L

2

ln
[
2
(

1
12

)q + 2
(

5
12

)q]
1 − q

or S line,|
q = L ln 2.

(B10)
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[5] J.-M. Stéphan, S. Furukawa, G. Misguich, and V. Pasquier, Phys.

Rev. B 80, 184421 (2009).
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