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We present a numerical method for the study of correlated quantum impurity problems out of equilibrium,
which is particularly suited to address steady-state properties within dynamical mean field theory. The approach,
recently introduced by Arrigoni et al. [Phys. Rev. Lett. 110, 086403 (2013)], is based upon a mapping of the
original impurity problem onto an auxiliary open quantum system, consisting of the interacting impurity coupled
to bath sites as well as to a Markovian environment. The dynamics of the auxiliary system is governed by a
Lindblad master equation whose parameters are used to optimize the mapping. The accuracy of the results can be
readily estimated and systematically improved by increasing the number of auxiliary bath sites, or by introducing
a linear correction. Here, we focus on a detailed discussion of the proposed approach including technical remarks.
To solve for the Green'’s functions of the auxiliary impurity problem, a non-Hermitian Lanczos diagonalization
is applied. As a benchmark, results for the steady-state current-voltage characteristics of the single-impurity
Anderson model are presented. Furthermore, the bias dependence of the single-particle spectral function and the
splitting of the Kondo resonance are discussed. In its present form, the method is fast, efficient, and features a

controlled accuracy.

DOI: 10.1103/PhysRevB.89.165105

I. INTRODUCTION

Correlated systems out of equilibrium have recently at-
tracted increasing interest due to the significant progress
in a number of related experimental fields. Advances in
microscopic control and manipulation of quantum mechanical
many-body systems within quantum optics [1] and ultracold
quantum gases, for example in optical lattices [2—6], have long
reached high accuracy and versatility. Ultrafast laser spec-
troscopy [7,8] offers the possibility to explore and understand
electronic dynamics in unprecedented detail. Experiments
in condensed matter nanotechnology [9], spintronics [10],
molecular junctions [11-16], and quantum wires or quantum
dots [17,18] are able to reveal effects of the interference of
few microscopic quantum states. The nonequilibrium nature
of such experiments does not only offer a new route to
explore fundamental aspects of quantum physics, such as
nonequilibrium quantum phase transitions [19], the interplay
between quantum entanglement, dissipation, and decoherence
[20], or the pathway to thermalization [21,22], but also
suggests the possibility of exciting future applications [11,23].

Addressing the dynamics of correlated quantum systems
poses a major challenge to theoretical endeavors. In this
respect, quantum impurity models help improving our un-
derstanding of fermionic many-body systems. In particular,
the single-impurity Anderson model (SIAM) [24], which was
originally devised to study magnetic impurities in metallic
hosts [25,26], has become an important tool in many areas
of condensed matter physics [27,28]. Most prominently, it
features nonperturbative many-body physics which manifest
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in the Kondo effect [29]. It provides the backbone for all
calculations within dynamical mean field theory (DMFT)
[28,30], a technique which allows us to understand the
properties of a broad range of correlated systems and becomes
exact in the limit of infinite dimensions [31]. The basic
physical properties of the SIAM in equilibrium are quite well
understood [29] thanks to the pioneering work from Kondo
[32], renormalization group [33], as well as perturbation theory
(PT) [34-37] and the mapping to its low-energy realization,
the Kondo model [38].

The SIAM out of equilibrium provides a description for
several physical processes such as, for example, nonlinear
transport through quantum dots [17,39], correlated molecules
[13,14,40-42], or the influence of adsorbed atoms on surfaces
or bulk transport [43]. As in the equilibrium case, the solution
of the SIAM constitutes the bottleneck of nonequilibrium
DMEFT [44-51] calculations. Therefore, accurate and efficient
methods to obtain dynamical correlation functions of impurity
models out of equilibrium are required in order to describe
time-resolved experiments on strongly correlated compounds
[7,8] and to understand their steady-state transport character-
istics [23].

However, nonequilibrium correlated impurity models still
pose an exciting challenge to theory. Our work addresses this
issue with special emphasis on the steady state. But, before
introducing this work in Sec. I, we briefly review previous
approaches. In recent times, a number of computational
techniques have been devised to handle the SIAM out of
equilibrium. Among them are scattering-state Bethe ansatz
(BA) [52], scattering-state NRG (SNRG) [53—55], noncrossing
approximation studies [56,57], fourth-order Keldysh PT [58],
other perturbative methods [59,60] in combination with the
renormalization group (RG) [61-65], iterative summation
of real-time path integrals [66], time-dependent NRG [67],
flow equation techniques [68,69], the time-dependent density
matrix RG (DMRG) [70-75] applied to the SIAM [76,77],
nonequilibrium cluster PT (CPT) [78], the nonequilibrium
variational cluster approach (VCA) [79,80], dual fermions
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[81], the functional RG (fRG) [82,83], diagrammatic quantum
Monte Carlo (QMC) [84,85], continuous time QMC (CT-
QMC) calculations on an auxiliary system with an imaginary
bias [86-90], superoperator techniques [91,92], many-body
PT and time-dependent density functional theory [93], gen-
eralized slave-boson methods [94], real-time RG (rtRG) [95],
time-dependent Gutzwiller mean field calculations [96], and
generalized master equation approaches [97]. Comparisons of
the results of some of these methods are available in literature
[77,98,99] and time scales have been discussed in Ref. [100].

Despite this large number of approaches, only a limited
number of them is applicable to nonequilibrium DMFT, and
very few are still accurate for large times in steady state.
Beyond the quadratic action for the Falicof-Kimball model
[46,101,102], iterated PT (IPT) [45], numerical renormal-
ization group (NRG) [48], real-time QMC [48,103], the
noncrossing approximation (NCA) [104,105], and recently
Hamiltonian-based impurity solvers [106] have been applied in
the time-dependent case. Some of the above approaches, such
as QMC [49] and DMRG [73], are very accurate in addressing
the short- and medium-time dynamics, but in some cases the
accuracy decreases at long times and a steady state can not be
reliably identified. Some other methods are perturbative and/or
valid only in certain parameter regions or for restricted models.
RG approaches (e.g., [61]) are certainly more appropriate to
identify the low-energy behavior.

This work

In this paper, we discuss a method, first proposed in
[51], which addresses the correlated impurity problem out of
equilibrium, and is particularly efficient for the steady state.
The accuracy of the results is controlled as it can be directly
estimated by analyzing the bath hybridization function (details
following). Here, we extend, test, and provide details of this
approach and its implementation. The basic idea is to map the
impurity problem onto an auxiliary open system, consisting of
a small number of bath sites coupled to the interacting impurity
and, additionally, to a so-called Markovian environment [107].
The parameters of this auxiliary open quantum system are
obtained by optimization in order to represent the original
impurity problem as accurately as possible. The auxiliary
system dynamics are governed by a Lindblad master equation
which is solved exactly with the non-Hermitian Lanczos
method. The crucial point is that the overall accuracy of the
method is thus solely determined by how well the auxiliary
system reproduces the original one. This can be, in principle,
improved by increasing the number of auxiliary bath sites.

In this study, we provide convincing benchmarks for
the steady-state properties of the SIAM coupled to two
metallic leads under bias voltage. We include a discussion
of convergence as a function of the number of bath sites and
present a scheme to estimate the error and partially correct for
it. In its presented form, the method is fast, efficient, and is
directly applicable to steady-state dynamical mean field theory
[51] for which previously suggested methods are less reliable.
Extending the method to treat time-dependent properties and
multiorbital systems is possible, in principle, however with a
much heavier computational effort.
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The paper is organized as follows: In Sec. IT A, the SIAM
under bias voltage is introduced. In Sec. II B, we introduce
nonequilibrium Green’s functions and in Secs. II C and II D,
we outline the auxiliary master equation approach where we
also focus on details of our particular implementation. Results
for the steady state, including the equilibrium situation, are
presented in Sec. III. This includes the steady-state current-
voltage characteristics which we compare with exact results
from matrix product state (MPS) time evolution [77] as well
as data for the spectral function under bias which we compare
with nonequilibrium NRG [54]. We conclude and give an
outlook in Sec. IV.

II. AUXILIARY MASTER EQUATION APPROACH

As discussed above, the method is particularly suited to
deal with nonequilibrium steady-state properties caused by
different temperatures and/or chemical potential in the leads
of a correlated quantum impurity system. As such, it can be
readily used as impurity solver for nonequilibrium DMFT
[46,51]. Here, we illustrate its application to the fermionic
SIAM with two leads having different chemical potentials,
and, in principle, different temperatures.

A. Nonequilibrium single-impurity Anderson model

We consider a single Anderson impurity coupled to elec-
tronic leads under bias voltage [see Fig. 1(a)]

7:[ = ﬂimp + ﬂres + ﬂcoup- (1)

The impurity orbital features charge as well as spin degrees of
freedom and is subject to a local Coulomb repulsion U:

Himp =€ Y f1 f, +U AL A].
o
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FIG. 1. (Color online) (a) Sketch of the quantum impurity model
(1) consisting of an impurity with interaction U coupled via
hybridizations #; to noninteracting leads at chemical potential u,
and temperature Ty, A € {L,R}. (b) Illustration of the auxiliary open
quantum system [Eq. (10a)] with single-particle parameters E,, and
Lindblad dissipators I'j, consisting of the impurity atsite f = 0, Np
bath sites (Ng = 4 in the plot), as well as a Markovian environment
(shaded areas). When evaluating linear corrections (see Appendix C),
an additional site Ng + 1 is used.
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Here, fj /f,. denote fermionic creation/annihilation operators
for the impurity orbital with spin o € {4, |}, respectively. The
particle-number operator is defined in the usual way Al =
f1 f, and the impurity onsite potential is € =W — %), with
gate voltage Vi = 0 at particle-hole symmetry. The impurity
is coupled to two noninteracting electronic leads A € {L,R}
with dispersion €;,:

% T
Hies = Z (€x + €) Cro Ckro-
rko

The effect of a bias voltage ¢ is to shift the chemical
potential and the onsite energies of the two leads by €, = :I:%,
respectively. For the energies ¢, of the leads we will consider
two cases.

(i) Two tight-binding semi-infinite chains with nearest-
neighbor hopping ¢, corresponding to a semicircular electronic
density of states (DOS): In this case, the boundary retarded
single-particle Green’s function of the two uncoupled leads is
given by [108-110]

w — €) . 4[2—(0)—6)\)2
8 (©) = g5c, (@) = — 5= —i >3 . @

with a bandwidth of Dy = 41.

(ii)) A constant DOS with a bandwidth Dy, = 7 ¢ results
in boundary Green’s functions [109]

R R 1 w— &~ DgB
g (w) = gWB,x(w) = - In D 3)
WB w— €, +
2

The choice Dy, = 7 t makes sure that the DOS at w = 0 of
both lead types coincide. The leads are coupled to the impurity
orbital by

N 1 -
7—{coup = Z I;L_;— Z(CIIAU fa + f; ckkn)’
ro Nk k

where we take the same hybridization #; = —0.3162 ¢ for both
leads, and N; — oo is the number of k points. Expressions
presented below are valid for arbitrary temperatures, although
we will show results for zero temperature only, which is
numerically the most unfavorable case [111]. The setup
chosen here represents by no means a limitation of the
method and extensions to more complicated situations, such
as nonsymmetric couplings, off particle-hole symmetry, etc.,
are straightforward.

B. Steady-state nonequilibrium Green’s functions

We are interested in the steady-state behavior under bias
voltage of the model described by Eq. (1). We assume that such
a steady state exists and is unique [112]. We denote the single-
particle Green’s function of the impurity in the nonequilibrium
Green’s function (Keldysh) formalism by [113-117]

G*(w)
GHw))

Glw) = (GRO(w)

Fourier transformation to energy w is possible since in the
steady state the system becomes time translationally invariant.

“
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In that case, the memory of the initial condition has been fully
washed away, so there is no contribution from the Matsubara
branch [118]. We will use an underline . . . to denote two-point
functions with the Keldysh matrix structure as in Eq. (4).

The Green’s function of the correlated impurity can be
expressed via Dyson’s equation

Gl (w) = Gy (0) — Z(w), S

where X (w) is the impurity self-energy. The noninteracting
impurity Green’s function G,(w) can be written in the form

Gy'l(@) = g;' () = Aw), (6)

8,(@) being the noninteracting Green’s function of the discon-
nected impurity [108], and

Aw) =) 178 () )
A

is the hybridization function of the leads (a 2 x 2 Keldysh
object, in contrast to the equilibrium case, where it is conve-
nient to work in Matsubara space). We define an equilibrium
Anderson width [29] for each lead Ay = —%Im[ék(a) =

0)] = % ~ 0.1¢. In the following, we will use Ay as a unit
of energy and in addition we choose h = e = 1.
The boundary Green’s functions 8, of each disconnected

lead is determined by (a) its retarded component gf [either
Egs. (2) or (3)], (b) its advanced component gi* = g&*, and
(c) its Keldysh component, which satisfies the fluctuation
dissipation theorem

g5 (@) = 2i [1 = 2pp(w — w)] Im[gf ()] ®)

since the disconnected leads are in equilibrium. Here, pp(w —
W) is the Fermi distribution with chemical potential ;. For
the noninteracting isolated impurity, one can take (g, HR =
w—¢€; and (g;")X =0 since infinitesimals 0* can be ne-
glected after coupling to the leads (unless there are bound
states). As usual, the presence of the interaction U makes the
solution of the problem impurity plus leads a major challenge
both in equilibrium as well as out of equilibrium, which we
plan to address in this paper.

Similarly to the equilibrium case, the action of the leads
on the impurity is completely determined by the hybridization
function A(w), independently of how the leads are represented
in detail. In other words, if one constructs a different
configuration of leads (e.g., with more leads with different
temperatures, DOS, etc.), which has the same A(w), i.e. the
same AR (w) and AX(w) as Eq. (7), then the resulting local
properties of the interacting impurity, e.g., the Green’s function
G(w) are the same. This holds provided the leads contain
noninteracting fermions only.

The approach we suggested in Ref. [51] precisely exploits
this property. The idea is to replace the impurity plus leads
system [Eq. (1)] by an auxiliary one which reproduces A(w)
as accurately as possible, and at the same time can be
solved exactly by numerical methods, such as Lanczos exact
diagonalization. Details on the construction of the auxiliary
impurity system are given in the following.

The self-energy X, . (w) of the auxiliary system, obtained
by exact diagonalization, is used in analogy to DMFT [28,119]
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as an approximation to the physical self-energy of the original
impurity system. Inserting X(w) ~ X, (w) into Egs. (5) and
(6), together with the exact hybridization function A(w) yields
an approximation for the physical Green’s function. From
this, observables such as the current or the spectral function
are then calculated. We emphasize that the accuracy of this
approximation can be controlled by the difference between
the A, (w) of the auxiliary system and the physical one A(w),
and that this can be, in principle, systematically improved, as
discussed below.

C. Auxiliary open quantum system

The idea presented here is strongly related to the exact diag-
onalization (ED) approach for the DMFT impurity problem in
equilibrium [28,119]. Here, the infinite leads are replaced by
a small number of bath sites, whose parameters are optimized
by fitting the hybridization function in Matsubara space. The
reduced system of bath sites plus impurity is then solved by
Lanczos ED [120]. This approach can not be straightforwardly
extended to the nonequilibrium steady-state case for several
reasons: (i) since the small bath is finite, its time dependence is
(quasi)periodic, i.e., no steady state is reached, (ii) there is no
Matsubara representation out of equilibrium [121], thus, one
is forced to use real energies but (iii) in this case Im[Aﬁlx(a))]
of the small bath consists of § peaks and can hardly be fitted
to a smooth AR(w). The solution we suggested in Ref. [51]
consists in additionally coupling the small bath to a Markovian
environment, which makes it effectively “infinitely large,” and
solves problems (i) and (iii) above. Specifically, we replace
the impurity plus leads model [Eq. (1)] by an auxiliary open
quantum system consisting of the impurity plus a small number
of bath sites, which in turn are coupled to a Markovian
environment.

The dynamics of the system (consisting of bath sites and
impurity), including the effect of the Markovian environment is
expressed in terms of the Lindblad quantum master equation
which controls the time dependence of its reduced density
operator p [107,122]:

b= Lp. )
The Lindblad superoperator [123]
L=Ly+Lp (10a)

consists of a unitary contribution

£Hp - - [ aux’p]

as well as a nonunitary, dissipative term originating from the
coupling to the Markovian environment

Bop =2 zz[rm( o dly

pnv=0 o
. 1
F(2) <dT 0 dp,a — E{p’dﬂﬁdia}> ],

where [A, B] and {A, B} denote the commutator and anticom-
mutator, respectively. The unitary time evolution is generated

{p dlgd,w}>

(10b)
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by the Hamiltonian

_ i i
Haux = Z Y Ewdldy, +Udpdpydyidy . (1)

nv=0 o

describing a fermionic “chain” (E,,, is nonzero only for onsite
and nearest-neighbor terms). It is convenient to choose the
interacting impurity at site f =0 and Np auxiliary bath
sites at y,v = 1,...,Np (see Fig. 1(b)). As usual, d},/d,,
create/annihilate the corresponding auxiliary particles. The
quadratic form of the dissipator [Eq. (10b)] corresponds to
a noninteracting Markovian environment. The dissipation ma-
trices Fffv), k € {1,2}, are Hermitian and positive semidefinite
[122]. The advantage of replacing the impurity problem by
the auxiliary one described by Eqs. (9)—(11), is that for a
small number of bath sites the dynamics of the interacting
auxiliary system can 136 solved exactly by diagonalization

of the superoperator £ in the space of many-body density
operators (see Sec. II D 2).

Intuitively, one can consider the effective system as a
truncation of the original chain described by Eq. (1), whereby
the Markovian environment compensates for the missing
“pieces.” However, this would still be a crude approximation
and, in addition, it would not be clear how to introduce the
chemical potential in the Markovian environment (except for
weak coupling). Our strategy, similarly to the equilibrium
case, consists in simply using the parameters of the auxiliary
system in order to provide an optimal fit to the bath spectral
function A(w). The parameters for the fit are, in principle,
E,, and T'%). However, one should consider that there is a
certain redundancy In other words, several combinations of
parameters lead to the same A(w). For example, it is well
known in equilibrium that in the case of the E,, one can
restrict to diagonal and nearest-neighbor terms only [124].

The accuracy of the results will be directly related to the
accuracy of the fit to A(w), and this is expected to increase
rapidly with the number of fit parameters, which obviously
increases with Ng. On the other hand, also the computational
complexity necessary to exactly diagonalize the interacting
auxiliary system increases exponentially with N. The fit does
not present a major numerical difficulty, as the determination of
the hybridization functions of both the original model [Eq. (7)],
as well as the one of the auxiliary system A, (w) described
by the Lindblad equation (10) require the evaluation of G,
[cf. (6)], i.e., the solution of a noninteracting problem.

The fit is obtained by minimizing the cost function

Z/ do W*(w)

ae{R,K}

X ’A“(a)) —

( ﬂV’F(K)

aux(a) EMV’F;(:(V))’ (12)

with respect to the parameters of the auxiliary system. The
advanced component does not need to be considered as
A? = AR* Of course, as in ED-based DMFT, there exists
an ambiguity which is related to the choice of the weight
function W*(w), which also sets the integral boundaries. This
uncertainty is clearly reduced upon increasing Np.
Depending on the expected physics, it might be useful to
adopt an energy-dependent weight function. This could be
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used, for example, to describe the physics around the chemical
potentials more accurately.

Once the auxiliary system is defined in terms of
E,, and T'%), the corresponding interacting nonequilibrium
problem (10) can be solved byAan exact diagonalization of the
non-Hermitian superoperator £ within the space of many-body
density operators. The dimension of this space is equal to the
square of the dimension of the many-body Hilbert space, and
thus it grows exponentially as a function of Ng. Therefore,
for N > 4, a non-Hermitian Lanczos treatment must be
used. The solution of the noninteracting Lindblad problem is
nonstandard (see, e.g., Ref. [125]), and a method particularly
suited for the present approach is discussed in Sec. IID 1.

D. Green’s functions of the auxiliary Lindblad problem

In this section, we present expressions for the Green’s
functions of the auxiliary system. Specifically, we will derive
an analytic expression for the noninteracting Green’s functions
in Sec. IID1, and illustrate the numerical procedure to
determine the interacting ones in Sec. II D 2. The derivations
make largely use of the formalism of [126] (see also [127]). For
an alternative appealing approach to the noninteracting case,
see also Ref. [125]. All Green’s functions discussed in Sec. II D
are the ones of the auxiliary system, which are different from
the physical ones for Ng < oco.

The dynamics of the auxi}iary open quantum system

described by the superoperator L [Eg. (10)] can be recast in an
elegant way as a standard operator problem in an augmented
fermion Fock space with twice as many sites [125-128].
Specifically, one introduces “tilde” operators d, /d/, together
with the original ones d, / dft [129]. Introducing the so-called
left vacuum

) =Y (=) 1) ®13), (13)
S

where |S) are many-body states of the original Fock space, |S)
the corresponding ones of the tilde space [126], and Ny the
number of particles in S. The nonequilibrium density operator
can be written as a state vector in this augmented space

lo(@) = p() 1) . (14)

The Lindblad equation is rewritten in a Schrodinger-type
fashion [123,126]

d A
7 1P0) = Llp@), as)

where now £ is an ordinary operator in the augmented space.
L = Ly+ L; is conveniently represented in terms of the
operators of the augmented space in a vector notation [129]:

d' = (dj,....d},.do. ...dy,).

Its noninteracting part £y reads in the augmented space
[123,126] as

ily = Z(d*hd — Tr(E +iA)), (16)
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where Tr denotes the matrix trace and the matrix A is given by

_(E+i® 2r®
h‘( E-iQ) 17

_or®
with
Q= (' -1,

A=T®4+1D),
Its interacting part has the form [126]
h ot t o3 gt 3
iLy=Udypdpydy dy —Udppdpydy dy.

In this auxiliary open system, dynamic two-time correlation
functions for two operators A and B of the system can be
expressed as

iGpa(t2,11) = (By(t2) Au(t1))
= try(Bu(t) Au(t)pu) =t (BA, 1,—r,), (18)
where py, is the density operator of the “universe” ¢/ composed
of the system and Markovian environment, tr is the trace
over the system degrees of freedom, trp the one over
the environment, tr;; = tr ® tr g the one over the universe,

Oy(. ..) denotes the unitary time evolution of an operator 0
according to the Hamiltonian of the universe Hy,. Here [107],

Ay = trp(e™ Tt A pyy(1y)e e, (19)

Notice that the time evolution of gy(¢), as well as the one
in Eq. (19), are opposite with respect to the Heisenberg time
evolution of operators. This is the convention for density oper-
ators. For t = t, — t; > 0 one can use the quantum regression
theorem [107] which holds under the same assumptions as for
Eq. (9). It states that

d

d_tA"” =LA, ;. (20)

In the augmented space, in the same way as for (14) and
(15), one can associate the operator (19) with the state vector
|As, 1) = Ay ¢ |1). For this vector, (20) translates into

d n
i |Ani) =L |A,.) - (1)
Considering its initial value (time ¢t = 0)
|Ai0) = Alp@)
the solution of (21) reads as
A1) = €D Ap(1)) . (22)

Therefore, we have for the correlation function (18) for
ty > t;, which we denote as G}, ,(t2,11):

iGha(ta,t) = (I|1Be“ ™ A|p(t))) = (1| B(t, — 1) Al p(11)),
where
B(t) := e L1 Belt (23)

is the non-Hermitian time evolution of the operator l§, and we
have exploited the relation [126] (I| L = 0. For the steady-
state correlation function, which depends on t =1, — t|, we
have

iGE,() = (I| BOA |px) (24)
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where p, is the steady-state density operator. Since the
quantum regression theorem only propagates forward in time,
for + < 0 one has to take the complex conjugate of Eq. (18),
which gives for the ¢+ < O steady-state correlation function
denoted as G,
iGyu(t) = —iG],

(D = UA(=DB |ps)*. (25)

Using (24), the steady-state greater Green’s function for times
t > Oreads as [130]

G, (0

—i0(t) (d,,(t + 1)} (1)) 11500
—i6(1) (11d, ()] |po) (26)

We can use (24) also for the lesser Green’s function, however,
for [130] ¢t < O,

Gf (1) = i0(—=1) (dl(t)d, (t + 1100
= i0(=1) (I|d(~1)d, |pso) -

For the opposite sign of #, we can use (25), so that for both
Green’s functions one has [123,130]

G (1) = —G~(—n). 27

For the Fourier-transformed Green’s function, defined, with
abuse of notation as

G“E(w) = [dt &' G=(1), 28)
relation (27) translates into

G~ (0) = —GHw)'. (29)

We need the retarded and the Keldysh Green’s functions

GR=G""-G =G""+G ",

GX=G6G"+G"+G +G"=G""+G~" —Hc,
(30)
whereby both relations hold for the time-dependent as well as

for the Fourier-transformed ones.

1. Noninteracting case

To solve the noninteracting Lindblad problem described by
(16), one first diagonalizes the non-Hermitian matrix [126] A
in Eq. (17):

e=V'hv, 31)

where ¢ is a diagonal matrix of eigenvalues ¢,,. The noninter-
acting Lindbladian (16) can then be written as

iLo=§ek+n
in terms of the normal modes
E=v'd E=dv, (32)

and a constant 1. The normal modes still obey canonical
anticommutation rules

{guvév} = 8uv’ (33)

but are not mutually Hermitian conjugate.
The steady state | po) Obeys the equation

L|pso) = 0.
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Let us now consider the time evolution (22) of a state initially
consisting of the normal mode operators applied to the steady-
state density matrix

eEOtEM |poo> = eﬁots,ue_ﬁol |1000> = ei%ls;i |poo> .

If Im(e,) < 0, this term diverges exponentially in the long-
time limit, which would be in contradiction to the fact that
|pso) is a steady state, unless the state created by &, is zero.
Therefore, we must have

& lpoo) =0  forIm(e,) <O. (34a)
Similarly, we must have
€. |poo) =0  forIm(e,) > 0. (34b)

These equations, thus, define the steady state as a kind of
“Fermi sea.” In addition, by requiring that expectation values
of the form

(I1&u(E 1p)

do not diverge for large ¢, we obtain that

(11§, =0 forIm(g,) > O, (34¢)

(11§, =0

From (34d) it follows that an expectation value of the form
(I €,€, | poo) vanishes for the case Im(e,) < 0. For Im(e,,) >
0 we make use of the anticommutation rules (33) together with
(34b) and the fact that [126] (I]|pe0) = tr poo = 1 and arrive at

(I é//.gv |poo) = D/w,

for Im(g,) < 0. (34d)

where the matrix
D,, = 3§,, 0[Im(e,)].
Similarly,
(1188, |poo) = Dyuv = 81 — Dyuo.

The expression for the steady-state correlation functions of
the eigenmodes & of Lo can be now evaluated by considering
that, due to the anticommutation rules, the Heisenberg time
evolution (23) gives

sp.(t) = e éul é/u E,u,(t) = e'n! é/}.
Thus,
(18, (0E, |poo) = €750 (I £,E, |pns) = €74 D,y
In this way, the greater Green’s function for ¢ > 0 becomes

iGgh () = (Id,(1)d] | pso)

Opv
= Z Vige "' Do (VT
3

= (Ve DV, (35)
where we have used (32). The Green’s functions are defined
with operators d, /dl in the original Fock space, so that it is
sufficient to know the first Ng + 1 rows (columns) of V (V ~1).
For this purpose we introduce

U=71v, U“D=v"'Tl,
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whereby T is a (Ng 4+ 1) x (2Np + 2) matrix, which in block
form reads as T = (I 0). Notice that U~ £ UV, With
this, the Fourier transform (28) of (35) is given by [131]

LU(")) , (36)

Gt (w) = (Uw —

and G&;V (w) is obtained with the help of (29). Similarly, the
lesser Green’s function for t < 0

iG5h () = —(I|d}d,.(t) | psc)

= - Z Vige "' D (Vg
S
= —(Ue*" DU,
with the Fourier transform

Git(w) = (U

LUH)) , 37)

and G~ (w) is obtained from (29). Using (30) together with
(36) and (37), we get

D D f
Glw)y=U—U"" + (U—U<—”> , (38)
w—¢€ w—¢
and for the Keldysh Green’s function using also (29)
D D
+ —) U“Y —He.
w—e w—E¢

G§(w)=U(

1 (=D
U U-Y —He. (39)
w—¢&

In principle, one could just carry out the diagonalization
(31) and then evaluate (38) and (39) numerically, which is
a rather lightweight task. However, it is possible to obtain
a (partially) analytical expression for the Green’s functions.
Indeed, a lengthy but straightforward calculation yields for the
retarded one

Gl (w)=(w—E+iA)", (40)

Similarly, for the Keldysh component of the inverse Green’s
function, we obtain

(GY) = -G 'GEG) " = —2iQ. 1)

To sum up, (40) and (41) are the main results of this section.

To evaluate A, ,(w), one then uses (6), whereby one should

consider that the matrix G, in Keldysh space is just the local
one, i.e., in terms of the components local at the impurity G(Iff -

and Ggff:
R K
G — (Corr Coy
=0 — A .
0 G§ if

In turn, G(’fff, the ff component of GX, has to be ob-
tained from (41) by the well-known expression [116] G{f =
~G{(G; G,

2. Interacting case

The next step consists in solving the interacting auxiliary
Lindblad problem described by (10a) in order to determine the
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Green'’s function and the self-energy at the impurity site. This is
done by Lanczos exact diagonalization within the many-body
augmented Fock space.

First, the steady state | p,) has to be determined as the right-
sided eigenstate of the Lindblad operator £ with eigenvalue
lp = 0. For convenience, we introduce

L=iL, (42)

which is a kind of non-Hermitian Hamiltonian with complex
eigenvalues ¢. The dimension of the Hilbert space can be
reduced by exploiting symmetries similar to the equilibrium
case. The conservation of the particle numper per spin N, is

replaced here by the conservation of ]\7(, — N, [51]. The steady
state lies in the sector N, — N, = 0.

Starting from Eq. (26), the steady-state greater Green’s
function of the impurity reads as in a non-Hermitian Lehmann
representation, for ¢t > 0,

G>T(t) = —i Zeﬂ'zwt (1] du |R§+1))(Lff1)‘ dI | 0so) s

nv
n

where the identity Y, [RS™D) (LD in the sector N, — N, =
+1 has been inserted, in terms of right (|R(*D)) and left
((LD|) eigenstates of L with eigenvalues €0, and |I) is
the left vacuum (13). Its Fourier transform reads as

1
G (@)=Y o Ul [REVNLED [ d] 1o0o)

n

1

= 3 e (14, [RE) (L d o))
n W~ %n

(43)

The analogous expression for the lesser Green’s function
G, (@) is obtained by inserting a complete set of eigenstates

in the N, — N, = —1 sector and exchanging the elementary
operators accordingly. fov (w)and G ﬁv (w) are obtained using
Eqg. (30) [see also (29)].

For a small number of bath sites Np < 3, the dimension of
the augmented Fock space is still moderate, and eigenvalues
and eigenvectors can be determined by full diagonalization.
For Ny > 4, a non-Hermitian Lanczos procedure has to be
carried out. Especially extracting the steady state is not an
easy task since it lies in the center of the spectrum. Details of
our numerical procedure are given in Appendix A.

Once the interacting and noninteracting Green’s functions
of the auxiliary system at the impurity site G(w) and G(®),
respectively, are determined, the corresponding self-energy is
obtained via Dyson’s equation in Keldysh space [Eq. (5)]. The
individual components are explicitly [51]

() = 1/Gj () - 1/ G (w),
=) = =G§ @)/ |GE @[ + GX @)/I1G* @),
As discussed in Sec. II B, this is used in the Dyson equation

(5) for the physical Green’s function.

III. RESULTS

In this section, results for the steady-state properties of
a symmetric, correlated Anderson impurity coupled to two

165105-7
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FIG. 2. (Color online) Comparison of Im[A*(w)] from (7) (black) with Im[A% (w)] at the absolute minimum of the cost function (12) for

aux

auxiliary system sizes Ny = 2,4, and 6 bath sites (green, blue, and orange, respectively), and « = R (top) and K (bottom). Results are shown
for tight-binding leads (2) and (8) with = 10 Ay, and three different bias voltages ¢ € {10,27,28} A, from left to right.

metallic leads under bias voltage are provided. We assess
the validity of the proposed method by discussing the fit
of the hybridization function and outline how uncertainties
are estimated. Results for the current voltage characteristics
and the nonequilibrium spectral function are presented and
compared with data from time-evolving block decimation
(TEBD) [77] and SNRG [54] calculations, respectively. The
effect of a linear correction of the calculated Green’s functions
is illustrated.

A. Hybridization functions

The optimal representation of the exact bath A(w) by
the auxiliary one A, . (w) is obtained by minimizing the
cost function (12). In practice, this is done by employing a
quasi-Newton line search [132,133]. In particular, we chose an
equal weighting of the retarded and the Keldysh component
WR(w) = WK (w) = O(w, — |o|). After finding our results
to be robust upon different values for the cutoff w,, as
well as upon using different norms (n = 1,2) in Eq. (12),
we finally choose w, = 50 Ay and consider imaginary parts
{Im[A%(w) — A% (0)]}* in the cost function only. This is
justified since AX (@) is purely imaginary and the real part of

aux
AR (w) is connected to its imaginary part via the Kramers-
Kronig relations [134]. The asymptotic behavior of AR (w)
is determined by A ;s whereas the one of AKX (w) by Qf.

Therefore, the correct asymptotic limit limg,—, 400 A, (@) =
0 is guaranteed by taking F(fl} = F;zf) =0, which results
in F,(ff) = F% = 0 due to the requirement of semipositive
definiteness of Fl(fv) Particle-hole symmetry allows for a
further reduction of the auxiliary system parameters [135].

In this work, we use an even number of auxiliary bath
sites Np = 2,4, and 6 in a linear setup [see Fig. 1(b)] with
an equal number to the left and to the right of the impurity
(only Fig. 6 displays one calculation for an odd number of
bath sites). In Fig. 2, the obtained auxiliary hybridization
functions are compared with the exact ones for various bias

voltages. We find a quick convergence as a function of Np,
which degrades for large bias voltage ¢. The Fermi steps at
the chemical potentials in AX (@) can not be properly resolved
in the case of Np = 2. Especially in the case of ¢ = 10 A the
auxiliary hybridization functions for Ny = 6 as well as for
Np = 4 agree fairly well with the exact one and capture all
essential features, in particular the Fermi steps. The auxiliary
bath develops spurious oscillations in AR (w) at the energies
of the Fermi levels of the contacts. Here, the discrepancy with
AR (w) is considerable in magnitude, but extends over small @
intervals, thus inducing only small errors in the self-energies.

When following the absolute minimum of the cost function
(12) as a function of some external parameter, such as, e.g.,
the bias voltage ¢, spurious discontinuities appear due to the
fact that local minima cross each other. This occurs for large
bias voltages and large U, and/or small Np, for which the
approach is more challenging. An example for such a situation
is shown in Fig. 2 for the case Np = 4, when comparing the
hybridization functions just before and after such a crossing,
i.e., for ¢ =27 Ay and 28 A(. Even though the changes in the
exact hybridization function are only minor, A, (®) displays
a considerable difference. The influence of this spurious effect
on observable quantities is shown in Fig. 3 (right panel, orange
circles) for a different parameter set of Np = 6 at around
¢. = 33 Ay. The artificial discontinuity in the current is caused
by the shift of spectral weight in A, , ().

To deal with these discontinuities, we adopt a scheme
which is suitable for obtaining a continuous dependence of
observables on external parameters and, in addition, allows us
to estimate their uncertainties (see Fig. 3). We first identify a
set of local minima of the cost function (12), obtained by
a series of minimum searches starting with random initial
values. These local minima are then used to calculate an
average and variance of physical quantities, such as the
current. We consider the distribution of local minima with a
Boltzmann weight associated with an artificial “temperature,”
whereby the value of the cost function (12) is the associated
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FIG. 3. (Color online) Current j vs voltage ¢ for the model (1) with tight-binding leads and onsite interaction U = 12 Ay (left) and
U = 20 A (right). Results for three different auxiliary systems with N € {2,4,6} are displayed and compared with reference data from TEBD
(magenta dotted and x) [77]. We plot the averaged mean values connected by lines together with error bars determined according to Sec. III A
and Appendix B. The additional data marks for U = 20 A are as follows: The circles for Ny = 6 display j(¢) when considering the absolute
minimum in the fit (12). Np = 2,Ic and N = 4,Ic present the results of a linear correction of the current values of the absolute minima as
described in Appendix C. The inset displays the difference Aj of the calculated currents to the TEBD results.

“energy.” This artificial temperature for the Boltzmann weight
is chosen in such a way that the averaged spectral weight of
the hybridization function as a function of ¢ is as smooth
as possible. Details are outlined in Appendix B. A possible
pitfall, however, is that physical discontinuities, i.e., real phase
transitions could be overlooked. It is thus compulsory to
additionally investigate the results for the absolute minima
and for different bath setups carefully. This approach has a
certain degree of arbitrariness. However, we point out that it
only affects regions with large error bars in Fig. 3, i.e., large ¢
and large U for which also other techniques are less accurate.

B. Current-voltage characteristics

After evaluating the interacting impurity Green’s function
of the physical system according to (5) with the self-energy
evaluated in Sec. IID, we are able to determine the steady-
state current. This is done with the help of the Meir-Wingreen
expression [116,136,137] in its symmetrized form, where we
have already summed over spin

> d
j=i / 99 1) = YR@)]G (@)

0o 2T

+ [pr (@)Y (@) — prr(@)YR(@)]IGR (@) — GH(@)]),
(45)

(o) = =2t |21m[gf (w)] are the “lead self-energies” and
pr.,. (@) = pr(w — w;) denotes the Fermi distribution of lead
A with chemical potential ;.

To quantify the accuracy of the method, we compare the
results for the current-voltage characteristics with quasiexact
reference data from TEBD [77]. We find very good agreement
forinteraction strength U < 12 A. Since in this paper we want
to benchmark the approach in “difficult” parameter regimes,
in the following, we will discuss U 2 12A only. In Fig. 3 we
display data for U = 12 Ay and 20 Ay. The data points and
error bars shown are obtained by using the averaging scheme
as described in Appendix B. For the universal physics at small
and medium bias voltages ¢ < 20 Ay, the current as a function

of the auxiliary system size (Np € {2,4,6}) converges rapidly
to the expected result. The convergence is even monotonic in
a broad region of the parameter space. The zero-bias response
is linear for all Np and approaches the results expected
from the Friedel sum rule [29] j(¢ = 0") = 2eh_2¢ quickly
for increasing Ng. For U = 12 A already the Ng = 4 results
yield a good reproduction of the current in this bias regime.
For U =20 Ag and ¢ 2 20 Ay, a larger difference between
the Np = 4 and 6 results is observed. Notice that also other
available methods do not yield a satisfactory result in this
parameter regime. In the lead-dependent high-bias regime,
the fit becomes more challenging and large variances appear
in the calculated quantities. This indicates the presence of
many competing local minima with similar values for the
cost function whose value tends to increase with increasing
¢. For ¢ > 40 Ay, the densities of states of the left and the
right contacts do not overlap anymore and the current has
to vanish. This limit can not be exactly reproduced by the
proposed approach due to spurious long-range Lorentzian tails
present in the auxiliary Markovian environment. Nevertheless,
Jj(¢ = 40 Ay) approaches zero as one increases the number of
bath sites. This holds true for quantities obtained at the absolute
minimum of the cost function as well as for averaged ones.

To extrapolate our results to larger N, a scheme for linear
corrections is discussed in Appendix C. Data for Ny = 2,1c
and 4,1c, whereby “Ic” denotes “linear correction,” is shown
in Fig. 3. For large U =20 Ay and small- to medium-bias
voltages ¢ < 20 Ay, a solid improvement towards the TEBD
reference values is observed (see inset Fig. 3). Correction
ratios r (see Appendix C) close to one indicate a good
applicability of the linear correction scheme. We find on
average r ~ 0.75 for ¢ <20Ay (N =2,Ic and 4,1¢). In
the high-bias regime, however, the linear correction can not
be applied with large magnitude and r drops below 0.5
for Np = 2,lc. Nevertheless, the calculation of the effective,
auxiliary hybridization function A, (@) as described in
Appendix C successfully avoids an “overcorrection” of the
current values and automatically allows one to estimate the
reliability of the results.
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FIG. 4. (Color online) Single-particle spectral function at the impurity evaluated for Np = 6, different bias voltages ¢, and U = 12 Ag
(left) and U = 20 A (right). Data are obtained according to Sec. III A and Appendix B. Other parameters are as in Fig. 3.

Judging from the larger uncertainty from the averaging
procedure and the strong effects of the linear corrections,
we conclude that the high-bias regime is more sensitive to
the details of the fitted, auxiliary hybridization function. The
universal low- and medium-bias regimes are, however, very
well reproduced even with a small number of auxiliary bath
sites.

C. Nonequilibrium spectral function

The bias-dependent single-particle spectral function is
evaluated from the physical steady-state Green’s function of
the impurity A(w) = —2Im[G®(®)]. Results obtained using
Np = 6for U = 12 Ay and 20 A are presented for the whole
bias range of interest in Fig. 4. Data for Ny = 4 are similar, but
here the Kondo physics can not be reproduced as accurately as
in the case of Np = 6. Our approach does preserve the local
charge density (ns) =Y, 3 + 1 [ %Im[G¥ ()] = 1 and
magnetization (m y) = 0 as well as the spectral sum rule [138].

The presented method reproduces qualitatively correctly
also the equilibrium physics at ¢ = 0 since A(w) displays
a Kondo resonance at w =0 and two Hubbard satellites
at the approximate positions w ~ £U /2. This renders the
application to equilibrium DMFT problems an interesting
perspective. The width and magnitude of the Kondo resonance
are discussed in comparison with (S)NRG data in Sec. IIC 1.

Upon increasing the bias voltage, the Kondo resonance
splits up and two excitations are observed at the energies of
the Fermi levels of the leads [78,139,140]. For U = 12 Ay,
the splitted resonances merge into the Hubbard bands at
approximately ¢ ~ 15 Ay and can not be clearly identified
thereafter. In contrast, in the case of U = 20 A, the resonances
overlap with the Hubbard satellites and can still be observed
in the spectrum A(w) at higher voltages. Calculations with
increasing U in the high-bias regime ¢ ~ 40 Ay have shown
the consistency of this effect and that a minimum value of
U =~ 15 Ay is needed in order for the resonances at the Fermi
energies to be perceptible after having crossed the Hubbard
bands.

1. Comparison with scattering states numerical
renormalization group

We compare the computed spectral functions with results
obtained by means of SNRG [53]. For this purpose, we use a
flat DOS [Eq. (3)] for the leads, as in Ref. [53]. Focusing on the
low-bias regime and Np = 6, the obtained spectral functions
are depicted in Fig. 5. Compared with SNRG, our results do
not achieve the same accuracy in the low-energy domain, i.e.,
in the vicinity of w ~ 0. However, our data provide a better
resolution at higher energies. When inspecting the Kondo peak
in the equilibrium case ¢ = 0, our results do not fully fulfill
the Friedel sum rule [29,141,142]. Depending on parameters,
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FIG. 5. (Color online) Single-particle spectral function for a con-
stant DOS of the leads (3), with Dywg =20 Ay and U = 16 A( and
different bias voltages ¢ (in units of Ag). Results are obtained for
Np = 6 and at the absolute minimum of Eq. (12). For a comparison
with SNRG [53] [Fig. 2(a) therein], note that their I' = 2 A,.

the height of the Kondo resonance is underestimated. This is
due to the fact that the imaginary part of the self-energy at
o = 0 has a small finite value which is due to the Lorentzian
tails of the Markovian environment.

The resolution does not suffice to tell whether a two- or a
three-peak structure is present for very low-bias voltages ¢ <
2 Ay. Nevertheless, one can say that the higher-bias regime
¢ > 4 A isresolved more accurately and one is able to clearly
distinguish the excitations at the Fermi energies of the contacts
from the Hubbard satellites. The observed linear splitting is
consistent with experiments on nanodevices [139,140]. Within
second-order Keldysh PT [58] and QMC results [143], the
resonance does not split but is suppressed only. In fourth order
and in NCA it splits into two, which are located near the
chemical potentials of the two leads [58]. Other methods yield
a splitting with features slightly different in details: real-time
diagrammatics [144], VCA [78], imaginary potential QMC
[90], or scaling methods [145]. Overall, a good qualitative
agreement with the SNRG results is achieved which underlines
the reliability of the calculated spectral functions.

2. Linear correction of Green’s functions

Here, we consider the effect of a linear correction of the
Green’s functions, as outlined in Appendix C. In the left
panels (right panels) of Fig. 6, we show data for Ng =2
(Np = 4) including linear corrections (r = 1) for a high
interaction strength in the low-bias regime. We benchmark
to data obtained using Ny = 6 without corrections.

For Np = 2 without linear corrections, the spectral function
of the auxiliary system does not feature excitations at the Fermi
energies of the contacts (w = 2 Ay), which are present in
the Ng = 6 data. Also, the spectra appear washed out. The
linearly corrected result, however, features not only the two
resonances at the appropriate energies, but also the shoulders
present in the reference data. Again, in the Keldysh Green’s
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FIG. 6. (Color online) Effects of the linear corrections of the
Green’s functions according to Apendix C (solid blue lines). The
dashed lines indicate the uncorrected G(w) with the same N, while
solid orange and light blue lines display results for larger Ny for
comparison. Results are shown for a constant lead DOS [Eq. (3)]
with DWB =20 A(), U=16 A(), and ¢ =4 A().

function a large correction towards the more accurate N = 6
results is observed. To highlight the fact that the improvement
of the linear correction is not only due to the inclusion of one
additional bath site, also a calculation for an auxiliary system
with Np = 3is shown. Evidently, the N = 3 spectral function
exhibits a large weight at low frequencies, but the resolution
is rather low and only a single, smeared out peak at w = 0 A
is observed. It clearly does not account for the splitting of the
Kondo resonance.

For Np = 4, a similar enhancement is found. Clearly, the
size of the corrections is much smaller. Especially in the
Keldysh component, the Green’s function for Ny = 6 and for
the corrected Ng = 4 system nearly coincide. In general, the
difference between the Np = 6 and the Nz = 4 calculations
(raw and corrected) is quite small, so that the presented spectral
functions in Fig. 5 for larger values of ¢ < 12 A can be
assumed to be quite accurate.

Overall, the linear correction enables a vast improvement
in the universal low- and medium-bias regimes for all U,
which becomes especially important for large U . For large-bias
voltages, when lead band effects become prominent, the linear
correction is more challenging (see also Sec. III B).

IV. CONCLUSIONS

We have presented a numerical approach to study correlated
quantum impurity problems out of equilibrium [51]. The
auxiliary master equation approach presented here is based
on a mapping of the original Hamiltonian to an auxiliary
open quantum system consisting of the interacting impurity
coupled to bath sites as well as to a Markovian environment.
The dynamics of the auxiliary open system is controlled by
a Lindblad master equation. Its parameters are determined
by a fit to the impurity-environment hybridization function.
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This has many similarities to the procedure used for the
exact-diagonalization dynamical mean field theory impurity
solver, but has the advantage that one can work directly
with real frequencies, which is mandatory for nonequilibrium
systems.

We have illustrated how the accuracy of the results can
be estimated, and systematically improved by increasing the
number of auxiliary bath sites. A scheme to introduce linear
corrections has been devised. We presented in detail how
the nonequilibrium Green’s functions of the correlated open
quantum system are obtained by making use of non-Hermitian
Lanczos diagonalization in a superoperator space. These
techniques make the whole method fast and efficient as well
as particularly suited as an impurity solver for steady-state
dynamical mean field theory [51].

In this work, we have applied the approach to the single-
impurity Anderson model, which is one of the paradigmatic
quantum impurity models. We have analyzed in detail the
systematic improvement of the current-voltage characteristics
as a function of the number of auxiliary bath sites. Already for
four auxiliary bath sites, results show a rather good agreement
with quasiexact data from time-evolving block decimation [77]
in the low- and medium-bias regimes. In the high-bias regime,
the current deviates from the expected result with increasing
interaction strength. However, we have shown how to estimate
the reliability of the data from the deviation of the hybridization
functions and how results can be corrected to linear order in
this deviation. The impurity spectral function obtained in our
calculation features a linear splitting of the Kondo resonance
as a function of bias voltage. Good agreement with data
from scattering-state numerical renormalization group [53]
was found.

Applications of the presented method to multiorbital
correlated impurities or correlated clusters is in principle
straightforward, although numerically more demanding. Such
systems are themselves of interest as models for transport
through molecular or nanoscopic objects and as solvers
for nonequilibrium cluster dynamical mean field theory.
In this case, a larger number of auxiliary sites might be
necessary to obtain a good representation of the various
hybridization functions. For this situation, one should use
numerically more efficient methods to solve for larger cor-
related open quantum systems, such as matrix product states
and density matrix renormalization group, possibly combined
with stochastic wave-function approaches [146—148], sparse
polynomial space [149,150], or configuration interaction
approaches [151]. A more accurate determination of low
energy, and possibly critical properties, might be achieved by
a combination with renormalization group iteration schemes,
similar to the numerical renormalization group. Work along
these lines is in progress.

Although we have presented results for the steady state,
where the method is most efficient, also extensions to time-
dependent phenomena provide an interesting and feasible
perspective. While other approaches, such as time-dependent
density matrix renormalization group [73] or quantum Monte
Carlo [49] are certainly more accurate at short times, the
present approach could be used to estimate directly slowly
decaying modes by inspecting the behavior of the low-lying
spectrum of the Lindblad operator.
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APPENDIX A: NUMERICAL CALCULATION OF THE
AUXILIARY INTERACTING GREEN’S FUNCTION

In this section, we present details of the numerical eval-
uation of the auxiliary Green’s function, as described in
Sec. IID2. We focus on large Hilbert spaces for which
a sparse-matrix approach is mandatory. To determine the
steady state, which is the right-sided eigenstate of L with
eigenvalue zero, one can make use of a shift-and-invert Arnoldi
procedure [152—155]. The spectrum of L [Eq. (42)] has the
property that Im(¢,) < O for all eigenvalues ¢, (except the
steady state ¢y = 0). Therefore, given a small shift s > 0,
the eigenvector of (L —isfl)~" with the largest eigenvalue
is the steady state. Since L is non-Hermitian, the three-term
recurrence of the ordinary Lanczos scheme [120] does not
apply, and one has to resort to an Arnoldi scheme instead.
To construct the corresponding Krylov space, a system of
equations (L —isi) |@ns1) = |¢,) has to be solved in each
step. For the problem at hand, we found that this can be
done most efficiently by combining a stabilized biconjugate
gradient method with an incomplete LU decomposition as
preconditioner [156,157]. Despite using sparse-matrix meth-
ods, the memory requirements of this approach are rather high
compared to the schemes presented below.

A second possible route to determine the steady state | poo)
is to perform an explicit time evolution. For unitary time
evolutions, a well-established method relies on the Lanczos
scheme to construct an approximate time evolution operator
[158]. Such an approach can be adapted to the nonunitary
case by using a two-sided Lanczos scheme (see below), or
also by employing an Arnoldi procedure [155]. Since L is
non-Hermitian, one can equally well use a simpler backward
or forward Euler scheme [133] to discretize the nonunitary
time evolution operator. These approaches may not yield a
highly accurate time evolution of |p(¢)), but can nevertheless
determine the steady state within a moderate number of steps.
As for the shift-and-invert approach above, to solve the implicit
update of |p(#,+1)) at time step £, in the case of the backward
Euler, a biconjugate gradient routine has proven to be effective.
For the forward time integration, a Runge-Kutta method
of second order is sufficient, with the great advantage that
only matrix-vector multiplications are needed, which reduces
memory requirements. In practice, for the considered cases
it was found that for not too large systems (Np < 6), the
shift-and-invert Arnoldi procedure is best suited, whereas a
forward time integration is advantageous for the case Ng = 6.

Once the steady state is determined, Green’s functions can
be effectively calculated by employing a two-sided Lanczos
scheme [152,159-163]. We therefore express the right- and

165105-12



AUXILIARY MASTER EQUATION APPROACH TO ...

left-sided eigenvectors of L in Eq. (43) in a Krylov space basis

R) = Ui l|h). (Lul =Y (U (0]
k k

Here, we have omitted the N, — N, symmetry sector index
for the sake of clarity. The biorthogonal Lanczos vectors

(¢i |¢]§/> = S

are determined by the three-term recurrence

857) = (L J0) = e 3] — ks [057))
n+1
1 ~
A e e G A AR A
n+1
with
= (o7 | L|o%).
ko = (077" L|ok) = (0|1 o))"

and a normalization constant ¢, such that (¢} [¢%) = 1. One
has a certain degree of freedom in the choice of ¢, and k,
due to the relation & = c,, which is fulfilled, for example, by
kn =k =cy.

In the Krylov basis, L takes on a tridiagonal form 7, =
(@71 L |@%) with the matrix elements T, = e,, T,,—1, = ky,
and T,,,—1 = k. When n 4 1 becomes as large as the degree of
the minimal polynomial of L, the eigenvalues and eigenvectors
of T represent those of L [152,160]. If one truncates the
Krylov basis, this statement holds still approximately true,
especially for the largest eigenvalues in magnitude. Analogous
to the Hermitian case [164], an exponential convergence of
the eigenspectrum of T towards the one of L is observed,
which is of particular importance for the calculation of Green’s
functions. A peculiarity of the two-sided Lanczos scheme is
that not every Krylov subspace guarantees that Im(¢,) < 0
for all eigenvalues ¢,, of T'. In order to obtain the appropriate
pole structure for the estimated Green’s functions, one has to
check Im(¢,) < 0 together with convergence criteria. In cases
in which Im(¢,) < 0 can not be fulfilled exactly, it has to
be ensured at least that the corresponding weights of these
eigenvalues are negligible.

For the calculation of the Green’s functions needed here it
is convenient to choose appropriate initial vectors, which are
in the case of the greater Green’s function (43)

6%) = — (@} o, {80] = =(11d).
Co Co :
When denoting by ¢, and Uy, the eigenvalues and right-sided
eigenvectors of T, respectively, Eq. (43) can be cast into the
form

G (») =

Uin Unk/
Z w—4L,

n.k,k’

(I df |¢R>(¢L f [000)

*

Uinl)” ((1d, | ) (@5 | d}1so))”
n,k,k’ ”

Uon U UonU )
= leo )0 = — el Y Wl ) - ;*) :
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APPENDIX B: AVERAGING SCHEME FOR MULTIPLE
LOCAL MINIMA

This section contains details on the approach we used to de-
termine the artificial “temperature” for the Boltzmann weights
as described in Sec. III A. We consider the situation that a
set of local minima for which Eq. (12) becomes stationary
is known. Let us specify by a,(¢) the vector of parameters
{E ,w,l"(” }y corresponding to one certain local minimum for a
set of model parameters, labeled by y. In order to quantify the
spectral weight distribution of the corresponding hybridization

function A, [w; a,(¢)], we define

[a,($)] = / " Im{AR [0:,(6)])

—w,

[a,($)] = / (

which are similar to the second and third moments of
AR and AEK_, respectively. For the Keldysh component,
a definition analogous to the first moment would yield the
desired information as well but the choice above has been
found to be more sensitive to details of AX . The value of the
corresponding cost function x[a,(¢)] of the yth minimum is
used as an artificial “energy” and enables one to define weights

when making use of Boltzmann’s statistic

{ aux[a) a)(¢)]}

P (¢,B) = e Pxlay (¢)]

where we introduced an artificial “temperature” B~!. For each
bias voltage separately, we are then able to calculate averaged
quantities

m¥@.8) = > Py, BymEla, @),

y

as well as m_(¢ B) and 7(¢ B) in an analogous manner.

The quantities m5(¢,B) and mX (¢,B) provide an estimate
of the center of the spectral welght for the averaged set of
hybridization functions for each bias voltage ¢.

Our goal is that these quantities vary in a smooth way
when changing the bias voltage. To achieve this, we employ a
minimum curvature scheme [133], meaning that we optimize
the function

Prmax
we(B) = / {w
0

2

0
87)27@’/6)

2 2

Bd)z

92

37" mX(@.6)
2

+ wX }d ?,

with respect to B. This determines the optimal artificial

temperature, which ensures that the averaged cost function as

well as the averaged spectral weight are as smooth functions

of ¢ as possible, given the set of calculated minima {a,(¢)}.
As in many optimization problems, an arbitrariness exists in

the definition of the quantities m) R(p,B) and mf (¢,B), as well
as in choosing the values of the weights w®, wX, and w*. In
our case, all of the weights were chosen to be equal to one in
units of 7.

An improvement of the results, to a certain degree at least,
could be expected when making use of extensions like a

165105-13



DORDA, NUSS, VON DER LINDEN, AND ARRIGONI

bias dependent B(¢). This has not been considered in this
work since already a single variable 8 provided quite smooth
observables. As mentioned in the main text, in any case, it
is obligatory to examine besides the averaged results also the
ones for the absolute minima and/or for different averaging
schemes, in order to avoid that physical discontinuities are
averaged out. We stress that this approach has to be taken with
due care since it is in some aspects arbitrary. However, it is
useful to give an estimate of the error of the calculation, and
can certainly identify regions in parameter space where the
error is negligibly small.

APPENDIX C: LINEAR CORRECTIONS

In this section, we present a scheme to correct physical
quantities up to linear order in the difference [165]

D(w) = A, (@) = Ay (@)

between the auxiliary and the exact hybridization functions.
Although D(w) decreases rapidly with increasing number of
auxiliary bath sites Np, the size of the Hilbert space also
increases exponentially with Ng. This poses a clear limit to
the maximum value of Np.

The idea is based on the fact that each physical quantity
O[A] is a functional of A(w). Its exact value is, thus,
obtained as O[ A,.]. For a finite Np there will always be
a nonzero value of D(w) at some energies, so we will always
obtain an approximate value O[A, . ]. A linear correction
can be obtained by evaluating numerically the functional
derivative of O[ A ]. Strictly speaking, considering that only
Im[AR(w)] and Im[AX (w)] are independent functions, O is
a functional O[Im(AR),Im(AX)]. Suppose one knows the
functional derivatives

S0[A]
——, «a €{R,K}
S Im[A%(w)]
then to linear order in D(w)
O[A 1~ O[A ;]
sO0[A
b Y [t D e doy
ae(R.K} m[A%(wo)] A=A,
+0(D%), (1)
withr = 1.

We evaluate the functional derivative numerically in the

following way. One first evaluates O[ A, ] at the optimum

A, x(@). Then, O is evaluated at a “shifted” Im[A%(w)],
obtained by adding a delta function peaked around a certain

energy wo:

80)()(('0) = 8(60 - CUO),
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multiplied by a small coefficient €. The functional derivatives
are then approximated linearly, by making use of the equations

SO[A] S0[A]
§Im[AR(wo)] ~ 8 Im[AK ()]

~ é(O[Im(AR),Im(AK)]

— O[Im(AR) — €8, Im(AX) F 2€8,,1),
which become exact in the € — 0 limit.

A (quasi)delta-peak correction €§,, to A%(w) can be
obtained by attaching an additional bath site (Np + 1) with
onsite energy Ey,+1.n,+1 = wo directly to the impurity site
with a hopping Ey,41, 5 = +/€/m. The sum of F%gH!Nﬁ]
and Fﬁ; FLNpt1 is proportional to the width of §,, and, thus,
should be taken as small as possible. In practice, one uses a
discretization of the integration over wy in Eq. (C1) and the
width of the delta peaks has to be adjusted accordingly. Setting
one of the components I'y, | ., to zero yields a peak in the
Keldysh component with a coefficient £2¢, respectively, as
used in Eq. (C2).

Notice that the functional derivative (C2) amounts to
carrying out two many-body calculations for each point @, on
a system with Nz + 1 bath sites. However, it is not necessary
to repeat the calculation for each physical quantity of interest.
In the linearly corrected current values presented in Sec. III B,
a wo mesh of 200 points was used, whereby this number is
likely to be reduced when optimizing the method.

Strictly speaking, the coefficient 7 in Eq. (C1) should be 1.
However, for cases in which the linear correction is not small,
this could produce an “overcorrection.” In order to avoid this,
we introduce a smaller ratio r which is determined as follows:
We evaluate the corrected self-energy at each w via Eq. (C1)
and O = X(w) with some value of r < 1 and denote it X, ().
We do the same for the Green’s function of the auxiliary system
and denote it G, (w). Using Egs. (5) and (6), we now have an
estimate of an effective r-dependent auxiliary hybridization
function of the linearly corrected system via

Ay (@) = g7 (@) = G (@) — Z,().

(€2

In principle, for r =1 this gives A, (w) up to O(D?. In
practice, for finite D(w), one can introduce a cost function x (r)
analogous to Eq. (12) to minimize the difference |A,, . (w) —
A, .(w)| as a function of r. We checked that for the case
in which the linear correction is a good approximation, the
minimum occurs at ¥ = 1. If the minimum of x (r) is situated
at some value rp;, < 1, then one corrects also other physical
quantities according to Eq. (C1) with the same r = ry;y.

Alternatively to the correction (C1) discussed above, one
can use the numerical functional derivative evaluated via
Eq. (C2) in order to estimate the sensitivity of the value of
O with respect to variations of Im[AY  (w)] as a function of
w and «. This is of use, in a second step, to adjust the weight
function W*(w) in Eq. (12), so that more sensitive w regions
acquire a larger weight.
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