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Quench dynamics in a model with tuneable integrability breaking
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We consider quantum quenches in an integrable quantum chain with tuneable-integrability-breaking
interactions. In the case where these interactions are weak, we demonstrate that at intermediate times after
the quench local observables relax to a prethermalized regime, which can be described by a density matrix
that can be viewed as a deformation of a generalized Gibbs ensemble. We present explicit expressions for the
approximately conserved charges characterizing this ensemble. We do not find evidence for a crossover from the
prethermalized to a thermalized regime on the time scales accessible to us. Increasing the integrability-breaking
interactions leads to a behavior that is compatible with eventual thermalization.
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I. INTRODUCTION

Important advances in manipulating cold-atomic gases have
allowed recent experiments [1–6] to realize essentially unitary
time evolution for extended periods of time. Stimulated by
such experiments, there has been immense theoretical effort
(see, e.g., [7] for a recent review) to understand fundamental
questions about the nonequilibrium dynamics of quantum
systems: Do observables in a subsystem relax to stationary
values? If so, can expectation values be reproduced with a
thermal density matrix? What governs how and to which values
observables relax?

It is generally accepted that conservation laws and dimen-
sionality play important roles in the time evolution of isolated
quantum systems. This is highlighted by the ground-breaking
experiments of Kinoshita, Wenger, and Weiss [2]. There, it
was found that a three-dimensional condensate of 87Rb atoms
driven out of equilibrium rapidly relaxed to a thermal state
(“thermalized”), while a condensate constrained to move in
a single spatial dimension relaxed slowly to a nonthermal
ensemble. It is thought that the presence of additional (ap-
proximate) conservation laws in the one-dimensional case lies
at the heart of this difference.

Theoretical investigations on translationally invariant mod-
els have established two central paradigms for the late-time
behavior after a quantum quench: (1) subsystems thermalize
and are then described by a Gibbs ensemble (GE) [8];
(2) subsystems do not thermalize, but at late times after
the quench are described by generalized Gibbs ensembles
(GGEs). There is substantial evidence [9–29] that the latter
case applies quite generally to quenches in quantum integrable
models, as suggested in a seminal paper by Rigol et al.
[30].

The dichotomy in the dependence of stationary behavior
after a quench on integrability then poses an intriguing
question: what happens if integrability is weakly broken? Does
the system thermalize, and if so, how fast does it relax? Might
there be an intermediate time scale still governed by the physics
of integrability?

Early numerical studies [31] suggested that even with an
integrability-breaking term the system does not thermalize on
the accessible time scales and system sizes. Studies using
analytical methods [32] for d > 1 and numerical methods

in the dynamical mean field limit [33] (d → ∞) showed
that on intermediate time scales the system approaches a
nonthermal quasistationary state (a prethermalization plateau).
At later times the system is expected to thermalize [15,34].
Prethermalization plateaus have also been observed in a
nonintegrable quantum Ising chain with long-range interac-
tions [35]. It has been suggested recently [36] that the time
scale for integrability breaking (leaving the prethermalization
plateau) is not necessarily related to the strength of the
integrability-breaking term. Experimental evidence for the
prethermalization plateau in systems of bosonic cold atoms
was reported in Refs. [6,37,38]. In spite of the aforementioned
works exhibiting prethermalization plateaus in specific mod-
els, a general understanding of if, when, and how such plateaus
emerge when integrability is broken remains open. Similarly, a
precise characterization of such plateaus in terms of statistical
ensembles has not been achieved.

In this work we study the effects of integrability-breaking
interactions on the dynamics following a quantum quench.
Our setup allows us to compare integrable quantum quenches
to quenches where an additional integrability-breaking inter-
action is added to the postquench Hamiltonian. By combining
analytical calculations with time-dependent density matrix
renormalization group (t-DMRG) results we demonstrate the
existence of a prethermalization plateau in the sense that
local observables relax to nonthermal values at intermediate
times. We characterize this prethermalization plateau in
terms of a statistical description that we call the “deformed
GGE.”

This paper is organized as follows. In Sec. II we introduce
the model under study. In Sec. III we consider integrable
quenches and compare the observed stationary behavior to
thermal and generalized Gibbs ensembles. The continuous
unitary transformation technique is introduced and used to
study a weakly nonintegrable quench of the model in Sec. IV.
In Sec. V we establish the existence of the prethermalized
regime and describe the approximately stationary behavior in
this regime by constructing a “deformed GGE.” The dynamics
in the presence of strong integrability-breaking interactions
is studied numerically in Sec. VI. Section VII contains
a summary and discussion of our main results. Technical
details underpinning our analysis are consigned to two
appendices.
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II. THE MODEL

We consider the following Hamiltonian of spinless fermions
with dimerization and density-density interactions:

H (δ,U ) = −J

L∑
l=1

[1 + (−1)lδ](c†l cl+1 + H.c.)

+U

L∑
l=1

c
†
l clc

†
l+1cl+1, (1)

with periodic boundary conditions. Here {c†l ,cj } = δl,j and we
restrict our attention to the parameter regime J > 0, U � 0,
and 0 < δ < 1. We work at half filling throughout; i.e., the
total number of fermions is L/2. When showing results for
the time evolution of observables we measure time in units
of J−1 throughout. An important characteristic of H (δ,U )
is that fermion number is conserved by virtue of the U (1)
symmetry:

cj −→ eiϕcj , ϕ ∈ [0,2π ]. (2)

The presence of the U (1) symmetry is a crucial feature of our
model: on the one hand it leads to dramatic simplifications in
our analytical calculations, while at the same time it enables
us to access very late times in our t-DMRG computations
(as compared to existing studies of other nonintegrable one-
dimensional models).

We note that the Hamiltonian (1) is equivalent to a spin-1/2
Heisenberg XXZ chain with a dimerized XX term as can be
shown by means of a Jordan-Wigner transformation. The
model with finite U,δ has previously been studied in order
to investigate the effect of interactions on the equilibrium
dimerization of the chain [39,40]. Density matrix renormal-
ization group calculations suggest that for large values of
the interaction parameter U � 4, the Peierls transition to a
dimerized ground state is suppressed [40].

There are several limits in which exact results on the
equilibrium phase diagram of H (δ,U ) are available. First, in
the absence of interactions (U = 0) and for any value of the
dimerization parameter δ we obtain a model of a noninteracting
Peierls insulator. Second, for vanishing dimerization δ = 0 and
U � 0 a Jordan-Wigner transformation maps the model to the
spin-1/2 Heisenberg XXZ chain. Finally, in the regime of small
|δ| and U < J , the low-energy limit of the model is given by
the integrable sine-Gordon model [41].

A. Peierls insulator

The special case H (δ,0) describes a Peierls insulator and
can be solved by means of a Bogoliubov transformation

cl = 1√
L

∑
k>0

∑
α=±

γα(l,k|δ)aα(k). (3)

Here aα(k) are fermion annihilation operators fulfilling

{aα(k),aβ(q)} = 0, {aα(k),a†
β(q)} = δα,βδk,q . (4)

The coefficients are chosen as

γα(l,k|δ) = e−ikl[uα(k,δ) + vα(k,δ)(−1)l], (5)

where

vα(k,δ) =
[

1 +
∣∣∣∣2J cos(k) − εα(k)

2δJ sin(k)

∣∣∣∣
2
]−1/2

,

uα(k,δ) = ivα(k)
2J cos(k) − εα(k)

2δJ sin(k)
, (6)

εα(k,δ) = 2αJ
√

δ2 + (1 − δ2) cos2(k). (7)

The “+” and “−” bands are separated by an energy gap of
4δJ . Finally,

∑
k>0 is a shorthand notation for the momentum

sum

∑
k>0

f (k) =
L/2∑
n=1

f

(
2πn

L

)
. (8)

In terms of the Bogoliubov fermions the Peierls Hamiltonian
is diagonal:

H (δ,0) =
∑
k>0

εα(k,δ)a†
α(k)aα(k). (9)

B. Integrability-breaking interactions

Adding interactions to the Peierls Hamiltonian leads to a theory
that is not integrable. An exception is the low-energy limit
for |δ| � 1, which is described by a quantum sine-Gordon
model [41]. In the following we will be interested in the regime
0.4 � δ � 0.8, which is far away from this limit. It is useful
to express the density-density interaction in H (δ,U ) in terms
of the Bogoliubov fermions diagonalizing H (δ,0):

Hint = U

L∑
l=1

c
†
l clc

†
l+1cl+1

= U
∑
kj >0

Vα1α2α3α4 (k1,k2,k3,k4)a†
α1

(k1)

× aα2 (k2)a†
α3

(k3)aα4 (k4),

Vα(k) = 1

L2

∑
l

γ ∗
α1

(l,k1|δ)γα2 (l,k2|δ)γ ∗
α3

(l + 1,k3|δ)

× γα4 (l + 1,k4|δ) (10)

= 1

L
ei(k3−k4)

{
δk1+k3,k2+k4

[
wα1α2 (k1,k2)wα3α4 (k3,k4)

− xα1α2 (k1,k2)xα3α4 (k3,k4)
]

+ δk1+k3+π,k2+k4

[
xα1α2 (k1,k2)wα3α4 (k3,k4)

−wα1α2 (k1,k2)xα3α4 (k3,k4)
]}

.

Here we have defined

wαβ(k,p) = u∗
α(k,δ)uβ(p,δ) + u → v, (11)

xαβ(k,p) = u∗
α(k,δ)vβ(p,δ) + u ↔ v. (12)

III. INTEGRABLE QUANTUM QUENCHES

We first consider a quantum quench of the dimerization
parameter δ in the limit of vanishing interactions U = 0. The
system is initially prepared in the ground state |	0〉 of H (δi,0),
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FIG. 1. (Color online) Green’s function G0(j,l,t) for a quench
with δi = 0.75, δf = 0.25, and a lattice with L = 100 sites.

and at time t = 0 the dimerization is suddenly quenched from
δi to δf . At times t > 0 the system evolves unitarily with the
new Hamiltonian H (δf ,0).

The diagonal form of our initial Hamiltonian is

H (δi,0) =
∑
α=±

∑
k>0

εα(k,δi)b
†
α(k)bα(k), (13)

and describes two bands of noninteracting fermions. The
ground state is obtained by completely filling the “−” band;
i.e.,

|	0〉 =
∏
k

b
†
−(k)|0〉, (14)

where |0〉 is the fermion vacuum defined by bα(k)|0〉 = 0,
α = ±, k ∈ (0,π ]. At times t > 0 the system is in the state

|	0(t)〉 = e−iH (δf ,0)t |	0〉. (15)

The new Hamiltonian is diagonalized by the Bogoliubov
transformation (3)

H (δf ,0) =
∑
α=±

∑
k>0

εα(k,δf )a†
α(k)aα(k), (16)

and by virtue of (3) the Bogoliubov fermions aα(k), a†
α(k)

are linearly related to bα(k), b†α(k). Using this relation it is a
straightforward exercise to obtain an explicit expression for
the time evolution of the fermion Green’s function (see Fig. 1)

G0(j,
,t) = 〈	0(t)|c†j c
|	0(t)〉

= 1

L

∑
k>0

∑
αβ

γ ∗
α (j,k|δf )γβ(
,k|δf )

× ei[εα (k)−εβ (k)]t S−
α (k)S−

β (k)∗, (17)

where

Sβ
α (k) = uα(k,δf )u∗

β(k,δi) + u ↔ v. (18)

The late-time behavior can be determined by a stationary
phase approximation, which gives

lim
t→∞ G0(j,
,t) ∼ g1(j,
) + g2(j,
)t−3/2 + · · · . (19)

A. Generalized Gibbs ensemble (GGE)

The stationary state of the dimerization quench is described
by a GGE [30]. We now briefly review the construction of the
GGE following Refs. [9,11,12]. In the thermodynamic limit
the system after the quench possesses an infinite number of
local conservation laws I (n)

a (a = 1,2,3,4, n ∈ N)[
I (n)
a ,I

(m)
b

] = 0, I
(1)
1 = H (δf ,0). (20)

An explicit construction of these conservation laws is pre-
sented in Appendix A. Given these conserved quantities we
defined a density matrix

�GGE = 1

ZGGE
exp

⎡
⎣−

4∑
a=1

∑
j�1

λ(j )
a I (j )

a

⎤
⎦ , (21)

where ZGGE ensures normalization [42]. The Lagrange multi-
pliers are fixed by the requirements that the expectation values
of the conserved quantities are the same in the initial state and
in the GGE:

lim
L→∞

1

L
〈	0|I (j )

a |	0〉 = lim
L→∞

1

L
tr

[
�GGEI (j )

a

]
. (22)

We then bipartition the system into a segment B of 
 contiguous
sites and its complement A and form the reduced density
matrix

�GGE,B = trA[�GGE]. (23)

On the other hand the reduced density matrix of segment B
after our quantum quench is simply

�B(t) = trA[|	0(t)〉〈	0(t)|]. (24)

At late times after the quench it can be shown by using free
fermion techniques (see, e.g., [11]) that

lim
t→∞ lim

L→∞
�B(t) = �GGE,B. (25)

An alternative [9,14,30] but equivalent [12] construction of the
GGE is based on the mode occupation numbers

n̂α(k) = a†
α(k)aα(k). (26)

By construction these commute with H (δf ,0) and among
themselves, and we can express the density matrix in the form

�GGE = 1

ZGGE
exp

[
−

∑
k>0

∑
α=±

β
(α)
k n̂α(k)

]
. (27)

The Lagrange multipliers are fixed by the conditions

〈	0|n̂α(k)|	0〉 = tr
[
�GGEnα(k)

]
, (28)

which are solved by

e−β
(+)
k = |S−

+ (k)|2
1 − |S−

+ (k)|2 ,

(29)

e−β
(−)
k = |S−

− (k)|2
1 − |S−

− (k)|2 .

Here the functions Sα
β (k) are defined in (18).
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B. GGE vs thermal expectation values

In the following it will be important to quantify the
difference between the GGE constructed above and a Gibbs
ensemble (GE)

�G = 1

ZG
exp[−βeffH (δf ,0)], (30)

constructed by requiring that the average thermal energy
density be equal to the energy density in the initial state

lim
L→∞

〈	0|H (δf ,0)|	0〉
L

= lim
L→∞

tr[�G(βeff) H (δf ,0)]

L
.

(31)

Using the fact that the fermions diagonalizing H (δf ,0) and
H (δi,0) are linearly related by

a†
α(k) = Sβ

α (k) b
†
β(k), (32)

we can rewrite (31) in the form∑
k>0

ε+(k,δf )[|S−
− (k)|2 − |S−

+ (k)|2]

=
∑
k>0

ε+(k,δf ) tanh

[
βeff

2
ε+(k,δf )

]
. (33)

1. Mode occupation numbers

In order to exhibit the difference between Gibbs and
generalized Gibbs ensembles it is useful to consider the mode
occupation numbers, which are given by

〈n̂α(p)〉 =
{ 1

1+exp(βeffεα (k,δf )) for GE,
1

1+exp(β(α)
k )

for GGE.
(34)

Clearly the mode occupation numbers shown in Figs. 2
and 3 are very different in the two ensembles.
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FIG. 2. (Color online) Comparison between the mode occupa-
tion numbers 〈n+(k)〉 for Gibbs and generalized Gibbs ensembles for
a quench with δi = 0.75, δf = 0.25. The effective inverse temperature
for this quench is βeff = 2.95782J .
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FIG. 3. (Color online) Comparison between the mode occupa-
tion numbers 〈n−(k)〉 for Gibbs and generalized Gibbs ensembles for
a quench with δi = 0.75, δf = 0.25. The effective inverse temperature
for this quench is βeff = 2.95782J .

2. Green’s function

As has been emphasized in [11], as we are dealing with the
nonequilibrium dynamics of an isolated quantum system, we
should focus on the expectation values of local (in space)
operators, as descriptions in terms of statistical ensembles
most naturally apply to them (see also [12,43]). We therefore
consider the fermionic Green’s function in position space, and
furthermore focus on its short-distance properties. The Green’s
functions in the GGE and thermal ensembles are

〈c†j cl〉 = 1

L

∑
p>0

∑
α

γ ∗
α (j,p|δf )γα(l,p|δf )〈n̂α(p)〉, (35)

where the mode occupation numbers are given by (34). In
Fig. 4 we show a comparison between the results for the
fermion Green’s function calculated in the appropriate Gibbs
and generalized Gibbs ensembles. We observe that in contrast
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FIG. 4. (Color online) Green’s function 〈c†L/2cL/2+j 〉 calculated
in the Gibbs and generalized Gibbs ensembles for a quench with
δi = 0.75, δf = 0.25, and a lattice with L = 100 sites. The effective
inverse temperature for this quench is βeff = 2.95782J .
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to the mode occupation numbers, the difference between the
short-distance behavior of the Green’s function in the two
ensembles is fairly small.

IV. QUENCHING TO A WEAKLY INTERACTING MODEL

We now modify our quantum quench as follows. We still
start out our system in the ground state |	0〉 of the pure Peierls
Hamiltonian H (δi,0) given by Eq. (14), but we now quench
to H (δf ,U ), where we consider U/J to be small compared
to min(δi,δf ). Our main interest is to quantify how a nonzero
value of U modifies the dynamics after the quench.

To tackle the quench problem in the nonintegrable weakly
interacting model we employ the continuous unitary trans-
formation (CUT) technique [44,45], which has been applied
extensively to nonequilibrium problems (see, for example,
Refs. [32,46]). We provide a brief overview of the CUT
technique for out-of-equilibrium many-body systems and
proceed to calculate the time-dependent Green’s function and
the four-point function.

A. Time-evolution of observables by CUT

For a nonintegrable interacting model it is no longer
possible to calculate the time-evolution induced by the
Hamiltonian (1) exactly. We use the CUT technique to obtain a
perturbative expansion in U of the time-evolved observables.

The central idea of the CUT method is to construct
a sequence of infinitesimal unitary transformations, chosen
such that the Hamiltonian becomes successively more energy
diagonal. A family of unitarily equivalent Hamiltonians H (B)
characterized by the parameter B can be constructed from the
solutions of the differential equation

dH (B)

dB
= [η(B),H (B)], (36)

where η(B) is the anti-Hermitian generator of the unitary
transformation. Wegner [44] showed that the Hamiltonian
in the final basis H (B = ∞) is energy diagonal if η(B) =
[H0(B),Hint(B)], where H0 is the quadratic part of the
Hamiltonian and Hint is the remainder. In practice (36) is used
by expanding all operators in power series in an appropriate
small parameter, which in our case will be the interaction
strength U .

Following the transformation with an appropriate choice
of generator, the Hamiltonian is energy diagonal (but not
integrable). To perform the time evolution we must introduce
an additional approximation: We normal-order the interaction
term with respect to the initial state |	0〉 and neglect the
normal-ordered quartic (and higher order) terms:

H (B = ∞) = H0(B = ∞) + Hint(B = ∞)

= H ′+ : Hint(B = ∞) : ,

U(t) ≈ exp(−iH ′t),

where the time-evolution operator U(t) depends only on
the quadratic Hamiltonian H ′ whose single-particle energies
have O(U ) contributions. By construction this approximation
introduces a maximal time scale, on which we expect our
calculations to be accurate by virtue of the smallness of
U . Estimating this time scale within the CUT formalism is

FIG. 5. A schematic of the CUT method for finding the approxi-
mate time evolution of the operator O to order U .

difficult, as it requires a reliable treatment of the neglected
energy diagonal interaction terms. For this reason we exten-
sively compare our CUT results to t-DMRG computations (see
Sec. IV E). Importantly, we can perform our CUT calculations
for very large systems of hundreds of sites, for which we
have verified that finite-size effects do not play a role on time
scales less then the revival time (the results shown below
are for times less than the revival time). The procedure for
calculating the approximate time evolution of observables is
shown schematically in Fig. 5.

B. The canonical generator and flow equations
for the Hamiltonian

We start by constructing the “canonical generator” of the
unitary transformation [45] given by

η(B) = [H0(B),Hint(B)]. (37)

The flow-dependent operators are defined by

H0(B) =
∑
α=±

∑
k>0

εα(k|B)a†
α(k)aα(k), (38)

Hint(B) =
∑
kj >0

Vα(k|B)a†
α1

(k1)aα2 (k2)a†
α3

(k3)aα4 (k4) + · · · ,

(39)

where the parameters in the Hamiltonian have been promoted
to functions of the flow parameter B and where the dots
indicate terms sextic and higher in creation and annihilation
operators. The canonical generator is given by

η = U
∑
kj >0

Wα(k|B)a†
α1

(k1)aα2 (k2)a†
α3

(k3)aα4 (k4) + O(U 2),

(40)

where

Wα(k|B) = Vα(k|B)Eα(k|B),

Eα(k|B) = εα1 (k1|B) − εα2 (k2|B) + εα3 (k3|B) − εα4 (k4|B).

By inserting the canonical generator (40) and the flow
Hamiltonian

H (B) = H0(B) + Hint(B) (41)

into the flow equation (36) and integrating the result-
ing differential equations, we find the flow-dependent
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single-particle energies and interaction vertices:

εα(k|B) = εα(k|B = 0), (42)

Vα(k|B) = Vα(k|B = 0)e−BE2
α (k). (43)

Setting B = ∞ we obtain the Hamiltonian in the energy-
diagonal basis:

H (B = ∞) =
∑
α=±

∑
k>0

εα(k)a†
α(k)aα(k)

+
∑
kj >0

V̆α(k)a†
α1

(k1)aα2 (k2)a†
α3

(k3)aα4 (k4)

+O(U 2), (44)

where indeed the interaction vertices conserve energy:

V̆α(k) ≡ Vα(k|B = ∞) = Vα(k)δEα(k),0. (45)

We note that to leading order in U the single-particle energies
εα(k) remain unchanged by the unitary transformation. Having
found the energy-diagonal form of the Hamiltonian to leading
order we now consider the unitary transformation induced by
the canonical generator (40) on the Green’s function.

C. Green’s function

Our main objective is to determine the fermion Green’s
function on the time-evolved initial state

G(j,l; t) = 〈	0(t)|c†j cl|	0(t)〉. (46)

Using the expression for the original fermions in terms of the
Bogoliubov fermions aα(k), we see that

c
†
j cl = 1

L

∑
k,q>0

∑
α,β=±

γ ∗
α (j,k|δf )γβ(l,q|δf )

× n̂αβ(k,q|B = 0), (47)

where γα(j,k|δ) are defined in Eq. (5) and n̂αβ(k,q|B = 0) =
a†

α(k)aβ(q). Hence the basic objects we need to calculate
are expectation values of n̂αβ (p,q|B = 0). This is done by
following the procedure set out in Fig. 5. The flow equations

dn̂αβ (p,q|B)

dB
= [η(B),n̂αβ(p,q|B)] (48)

are easily constructed to order O(U ) and integrating them
gives

n̂αβ(k,p|B) = n̂αβ (k,p|B = 0) + U
∑
qj >0

Nα
αβ (q|k,p,B)a†

α1
(q1)

× aα2 (q2)a†
α3

(q3)aα4 (q4) + O(U 2), (49)

where we have defined

Nα
αβ(q|k,p,B) = δq4,pδα4,β Ṽα1α2α3α(q1,q2,q3,k|B)

+ δq2,pδα2,β Ṽα1αα3α4 (q1,k,q3,q4|B)

− δq3,kδα3,αṼα1α2βα4 (q1,q2,p,q4|B)

− δq1,kδα1,αṼβα2α3α4 (p,q2,q3,q4|B),

Ṽα(q|B) = 1 − e−B[Eα (q)]2

Eα(q)
Vα(q). (50)

1. Approximate time evolution

In the next step of the procedure sketched in Fig. 5
we consider the time evolution induced by the B = ∞
Hamiltonian (44). We approximate the time-evolution operator
U(t) by

U(t) = e−iH (B=∞)t ≈ e−iH ′t , (51)

where the Hamiltonian H (B = ∞) has been replaced by the
free fermion Hamiltonian

H ′ =
∑
α=±

∑
k>0

ε̃α(k)a†
α(k)aα(k),

with single-particle energies

ε̃α(k) = εα(k) + UPα(k). (52)

The additional term Pα(k) is given by

Pα(k) =
∑
γ,δ

∑
q>0

[V̆ααγ δ(k,k,q,q) + V̆γ δαα(q,q,k,k)

− V̆αδγ α(k,q,q,k) − V̆γ ααδ(q,k,k,q)]nγδ(q), (53)

where V̆α(k) is defined in Eq. (45). The expectation values
nγδ(q) = 〈	0|n̂γ δ(q,q)|	0〉 taken in the initial state are given
by

n−−(k) = |S−
− (k)|2,

n++(k) = |S−
+ (k)|2,

n+−(k) = S−
+ (k)S−

− (k)∗,

n−+(k) = S−
− (k)S−

+ (k)∗,

(54)

where functions Sβ
α (k) are defined by Eq. (18). The correction

to the single-particle energies Pα(k) arises from normal-
ordering the interaction term with respect to the initial state
|	0〉. The normal-ordering prescription for the quartic term is
given by

a†
α1

aα2a
†
α3

aα4 = : a†
α1

aα2a
†
α3

aα4 : +nα1α2 (k1)δk1,k2 : a†
α3

aα4 :

+ nα3α4 (k3)δk3,k4 : a†
α1

aα2 :

− nα1α4 (k1)δk1,k4 : a†
α3

aα2 :

− [nα3α2 (k3) − δα2,α3 ]δk2,k3 : a†
α1

aα4 :

+ nα1α2 (k1)nα3α4 (k3)δk1,k2δk3,k4 − nα1α4 (k1)

× [nα3α2 (k2) − δα2,α3 ]δk1,k4δk2,k3 . (55)

The normal-ordered quartic interaction term on the right-
hand side of (55) has been neglected for the time evolution
in Eq. (51). Following this approximation, the time evolu-
tion of fermion operators results only in additional phase
factors

U†(t)a†
α(k)U(t) = eiε̃α (k)t a†

α(k). (56)

Using (56) in (49) provides an explicit expression for the time-
evolved operators n̂αβ(k,p|B = ∞,t). In the final step shown
in Fig. 5 we reverse the CUT. Integrating back to the initial
basis B = 0, and then taking the expectation value with respect
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to the initial state |	0〉, we obtain

〈n̂αβ (p,q|B = 0,t)〉 = δp,qe
i(ε̃α (p)−ε̃β (q))t nαβ(p)

+Ucαβ(p,q|t) + O(U 2). (57)

Here the order U piece is

cαβ(p,q|t) =
∑
q,r>0

N
γ
αβ (r,r,q,q|p,q|t)nγ1γ2 (r)nγ3γ4 (q)

−N
γ
αβ (r,q,q,r|p,q|t)nγ1γ4 (r)

× [nγ3γ2 (q) − δγ2,γ3 ], (58)

where we have defined

N
γ
αβ(k|p,q|t) = N

γ
αβ(k|p,q,B = ∞)[eiẼγ (k)t − ei[ε̃α (p)−ε̃β (q)]t ],

Ẽγ (k) = ε̃γ1 (k1) − ε̃γ2 (k2) + ε̃γ3 (k3) − ε̃γ4 (k4). (59)

Substitution of the observables (57) into Eq. (47)
and imposing the momentum-conserving delta functions
in the vertices (10) gives the time-dependent Green’s
function

G(j,l; t) = 〈	0(t)|c†j cl|	0(t)〉

= 1

L

∑
k>0

∑
α,β=±

γ ∗
α (j,k|δf )γβ(l,k|δf )

× [ei[ε̃α (k)−ε̃β (k)]t nαβ(k) + Ucαβ(k,k|t)] + O(U 2).

(60)

The remaining momentum sum
∑

k>0 has to be evaluated
numerically.

D. CUT results for the Green’s function

We first compare the U �= 0 CUT results to the exactly
solvable U = 0 case. Figures 6 and 7 show the nearest-
neighbor and next-nearest-neighbor Green’s functions for
the quench δi = 0.8 → δf = 0.4 for several values of U .
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FIG. 6. (Color online) Comparison of exact (solid) U = 0
nearest-neighbour Green’s function G(L/2,L/2 + 1) = 〈cL/2c

†
L/2+1〉

with the CUT results for the quench δi = 0.8 → δ = 0.4 and Ui =
0 → U on the L = 100 chain.
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FIG. 7. (Color online) Comparison of exact (solid) U = 0 next-
nearest-neighbor Green’s function G(L/2,L/2 + 2) = 〈cL/2c

†
L/2+2〉

with the CUT results for the quench δi = 0.8 → δ = 0.4 and Ui =
0 → U on the L = 100 chain.

With increasing U the periodicity of the oscillations and the
asymptotic value of the nearest-neighbor Green’s function are
continuously deformed away from the noninteracting result.
The next-nearest-neighbor Green’s function is an imaginary
quantity that decays asymptotically to zero for both the
noninteracting and CUT result.

In Figs. 8 and 9 we show the fermion Green’s function
G(L/2,L/2 + j ) = 〈cL/2c

†
L/2+j 〉 for separations j = 1,2 for

the quench δi = 0.75 → δ = 0.5 and Ui = 0 → U = 0.15
for the L = 200 chain. In both cases the long-time decay of
the CUT result is compatible with the noninteracting t−3/2

power-law decay. This is a consequence of the fact that the
CUT result (60) has the same general t dependence as the
noninteracting case (17).
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CUT U=0.15
0.025t−3/2

FIG. 8. (Color online) A comparison of the CUT Green’s func-
tion |G(100,101,t) − G(100,101,t → ∞)| and the free fermion
asymptotic form, Eq. (19), on the L = 200 chain for the quench
δi = 0.75 → δ = 0.5 and Ui = 0 → U = 0.15. The prefactor of the
power law t−3/2 is used as a fit parameter. The revival time of the
L = 200 chain is t ∼ 50 and the asymptotic value G(100,101,t →
∞) = −0.482275.

165104-7



ESSLER, KEHREIN, MANMANA, AND ROBINSON PHYSICAL REVIEW B 89, 165104 (2014)

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

10

0.1 1 10

|G
(L 2

,
L 2

+
2,

t)
|

Time t

CUT U=0.15
0.075t−3/2

FIG. 9. (Color online) A comparison between the free fermion
asymptotic form of the Green’s function, Eq. (19), and the CUT
result for the quench δi = 0.75 → δ = 0.5 and Ui = 0 → U = 0.15
on the L = 200 chain. The prefactor of the power law t−3/2 is used
as a fit parameter.

E. Accuracy of the CUT approach: Comparison to
time-dependent density matrix renormalization

group at small U/ t

In order to assess the accuracy of the CUT approach we have
carried out extensive comparisons to numerical results ob-
tained by the time-dependent density matrix renormalization
group (t-DMRG) algorithm. As is customary in density matrix
renormalization group studies, we impose open boundary
conditions. We have carried out computations for systems up
to L = 200 lattice sites, but for the purposes of comparing to
our CUT results we choose a system size of L = 50. Up to
1500 density matrix states were kept in the course of the time
evolution, and a discarded weight of ε = 10−9 was targeted.
In order to assess the accuracy of the results at later times,
we carried out comparisons to results obtained with a target
discarded weight of ε = 10−11, and in addition compared to
simulations using different time steps of δt = 0.005 or δt =
0.01, respectively. Some details are presented in Appendix B.
As shown there, the difference between the results at the end
of the time evolution is ∼10−4 or smaller for L = 100 sites,
which means t-DMRG errors are negligible in our comparison
to the CUT results.

The revival time τr for measurements in the center of a finite
chain of noninteracting particles is L/2vmax, where L is the
system size and vmax is the maximal velocity. In the small-U
regime of interest here we can obtain a good estimate of τr by
calculating it in the U = 0 limit. The estimate can be improved
by searching for features associated with revivals at times close
to the free fermion estimate. By comparing data with different
systems sizes L, we have verified that finite-size effects are
negligible in the t-DMRG data for times less than the revival
time τr . Finally, we carry out a comparison between CUT and
t-DMRG results only for times t sufficiently smaller than τr .
We note that as far as the t-DMRG computations are concerned,
we have been able to reach times ∼200 for system size L = 50.
While for short enough times the error in the observable can be
estimated as ∼√

ε, at longer times, even if the discarded weight
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FIG. 10. (Color online) Comparison of the CUT and t-DMRG
results for G(L/2,L/2 + 1) = 〈cL/2c

†
L/2+1〉 for the quench δi =

0.75 → δ = 0.5 and Ui = 0 → U = 0.15 on a L = 50 chain. The
revival time for the L = 50 system is τr ∼ 13.

is kept constant, the accumulation of errors in the course of
the sweeps needs to be taken into account. Therefore, for the
situations in which times > 20 are discussed, a more detailed
error analysis is necessary, which is presented in Appendix B.
In Figs. 10–12 we show a comparison of the CUT and
t-DMRG results for the time dependence of the nearest-
neighbor Green’s function G(25,26) for the length L =
50 chain. We quench the dimerization parameter δi =
0.75 → δ = 0.5 and the interaction strength U = 0 → U =
0.15,0.25,0.5. There is good, quantitative agreement between
the CUT and t-DMRG results provided U is small. The
remaining discrepancies have their origin in the order O(U 2)
corrections to the CUT results as is shown in Fig. 13, where
we plot the rescaled difference between the t-DMRG data and
the CUT result for three values of U . The oscillatory nature
of these differences can be explained as a “beat frequency”
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FIG. 11. (Color online) Comparison of the CUT and t-DMRG
results for G(L/2,L/2 + 1) = 〈cL/2c

†
L/2+1〉 for the quench δi =

0.75 → δ = 0.5 and Ui = 0 → U = 0.25 on a L = 50 chain.
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FIG. 12. (Color online) Comparison of the CUT and t-DMRG
results for G(L/2,L/2 + 1) = 〈cL/2c

†
L/2+1〉 for the quench δi =

0.75 → δ = 0.5 and Ui = 0 → U = 0.5 on a L = 50 chain.

arising from subtracting two oscillatory data sets where the
frequencies do not match exactly.

Figures 14–16 show that the good agreement between CUTs
and t-DMRG is not limited to the nearest-neighbor Green’s
function by comparing results for 〈(cL/2c

†
L/2+j )(t)〉 with j =

2,3,4 for the case of U = 0.15.

F. CUT results for the four-point function

The procedure which we have outlined above for the
single-particle Green’s function can be generalized to N -point
functions. The next nonvanishing correlation function is the
four-point function

〈	(t)|c†j cj ′c
†
l cl′ |	(t)〉

= 1

L2

∑
qj >0

∑
αj =±

〈	0|Âα(q,t)|	0〉

× γ ∗
α1

(j,q1)γα2 (j ′,q2)γ ∗
α3

(l,q3)γα4 (l′,q4), (61)
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FIG. 13. (Color online) Rescaled difference between the
t-DMRG and CUT data for G(25,26) and different values of U .
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FIG. 14. (Color online) G(L/2,L/2 + 2) for the quench δi =
0.75 → δ = 0.5, Ui = 0 → U = 0.15 on an L = 50 chain.

where γα(j,k) are defined in Eq. (5) and

Âα(q,t) = a†
α1

(q1,t)aα2 (q2,t)a
†
α3

(q3,t)aα4 (q4,t). (62)

Going to the B = ∞ basis by applying the CUT and then time
evolving with (51), we obtain

Âα(q,t |B = ∞)

= eiẼα (q)t a†
α1

(q1)aα2 (q2)a†
α3

(q3)aα4 (q4)

+U
∑
kj >0

∑
γj =±

ei[ε̃α1 (q1)−ε̃α2 (q2)]tNγ
α3α4

(k|q3,q4|t)

× a†
α1

(q1)aα2 (q2)a†
γ1

(k1)aγ2 (k2)a†
γ3

(k3)aγ4 (k4)

+U
∑
kj >0

∑
γj =±

ei[ε̃α3 (q3)−ε̃α4 (q4)]tNγ
α1α2

(k|q1,q2|t)a†
γ1

(k1)

× aγ2 (k2)a†
γ3

(k3)aγ4 (k4)a†
α3

(q3)aα4 (q4) + O(U 2), (63)

where Ẽα(q) and N
γ

αβ(k|p,q|t) are defined in Eq. (59). Taking
the expectation value of Eq. (63) on the initial state using
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FIG. 15. (Color online) G(L/2,L/2 + 3) after the quench δi =
0.75 → δ = 0.5, Ui = 0 → U = 0.15 on an L = 50 chain.
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FIG. 16. (Color online) Comparison of the CUT and t-DMRG
results for G(L/2,L/2 + 4) for the quench δi = 0.75 → δ = 0.5,
Ui = 0 → U = 0.15 on an L = 50 chain.

Wick’s theorem and substituting into Eq. (61) yields the real-
space four-point function.

V. PRETHERMALIZED REGIME

The combination of CUT and t-DMRG results establishes
that at intermediate times the fermion Green’s function
G(j,l,t) after a quench (δi,0) → (δf ,U ) decays in a power-law
fashion with approximate exponent −3/2 to a stationary value;
i.e.,

G(j,
,t) −→ g(j,
) + O(t−3/2), J t � τ0. (64)

It is very instructive to compare this to the result (19) for
the quench (δi,0) → (δf ,0). By virtue of the perturbative
nature of the CUT approach, and its excellent agreement
with t-DMRG for small U and the time scales relevant to the
present discussion, we obtain the following relation between
the asymptotic values of the Green’s function for the two
quenches:

g(j,
) − g1(j,
) = O(U ). (65)

We will now show that g(j,
) cannot be described by a thermal
ensemble, which implies that the stationary regime observed
by t-DMRG is in fact a prethermalization plateau.

(1) For the quench (δi,0) → (δf ,0) the observed plateau
corresponds to the true stationary state and is characterized by
a GGE; i.e.,

g1(j,
) = tr[�GGEc
†
j c
]. (66)

(2) As we showed in Sec. III B, the GGE expectation
values for the Green’s function are generally different from the
thermal expectation values at the appropriate effective inverse
temperature β0 characterizing the quench:

tr[�GGEc
†
j c
] − tr[�G(β0)c†j c
] = O(1). (67)

(3) If the stationary state after the quench (δi,0) → (δf ,U )
was described by a thermal distribution, its effective inverse

temperature βeff would be determined by

lim
L→∞

〈	0|H (δf ,U )|	0〉
L

= lim
L→∞

tr[�G(βeff) H (δf ,U )]

L
.

(68)

On the other hand, given that Wick’s theorem holds in the state
|	0〉, we conclude that

〈	0|H (δf ,U )|	0〉 = 〈	0|H (δf ,0)|	0〉 + O(U ). (69)

Hence

βeff = β0 + O(U ). (70)

(4) Combining (70) with (67) we conclude that

tr[�GGEc
†
j c
] − tr[�G(βeff) c

†
j c
] = O(1). (71)

(5) Finally, combining (65), (66), and (71), we conclude
that

g(j,
) − tr[�G(βeff) c
†
j c
] = O(1), (72)

and hence g(j,
) is not described by a thermal distribution.

A. Characterization of the prethermalized regime through
approximate conservation laws

In the previous section we have shown that the CUT
result cannot produce an effective thermal Gibbs ensemble
in the long-time limit. Given that the CUT results for the
Green’s function are in excellent agreement with t-DMRG
data at intermediate times, this establishes the existence of a
“prethermalized stationary regime.” An obvious question is
then how to characterize the statistical ensemble describing
the corresponding plateau values of local observables.

1. Approximate conservation laws

In our CUT analysis of the nonequilibrium dynamics the
generator of time evolution was taken to be

H ′ =
∑
α=±

∑
k>0

ε̃α(k)a†
α(k)aα(k). (73)

Clearly the mode occupation number operators nαα(k) com-
mute with H ′, and hence constitute conservation laws (to first
order in U ) within our CUT approach. Their pre-images under
the CUT, accurate to order O(U ), are simply

Qα(k) = a†
α(k)aα(k) − U

∑
qj >0

Nγ
αα(q|k,k,B = ∞)

× a†
γ1

(q1)aγ2 (q2)a†
γ3

(q3)aγ4 (q4). (74)

By construction these operators approximately commute with
one another:

[Qα(k),Qβ(p)] = O(U 2). (75)

However, the commutator with the Hamiltonian is in fact

[Qα(k),H (δf ,U )] = O(U ); (76)

i.e., the charges (74) are not (approximately) conserved on
an operator level, but only their expectation values with
respect to |	0(t)〉 are (approximately) time independent. This
is a fundamental difference from the proposal put forward
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in Ref. [33] for describing prethermalization plateaus. The
charges Qα(k) have a very transparent physical meaning:
they are the number operators for approximately conserved
“quasiparticles,” and the quartic terms describe the leading
contribution to the dressing of the noninteracting fermions.

2. Approximate description by a “deformed GGE”

It is natural to attempt a description of the prethermalized
regime in terms of a statistical ensemble of the form

�PT = 1

ZPT
exp

(∑
k,α

λ
(α)
k Qα(k)

)
. (77)

Here the Lagrange multipliers λ
(α)
k are fixed by the require-

ments

tr[�PT Qα(k)] = 〈	0|Qα(k)|	0〉. (78)

The left-hand side of (78) is most easily evaluated in the B =
∞ basis, where it becomes

1

ZPT
tr
[
e
∑

k,α λ
(α)
k a

†
α (k)aα (k)a†

α(k)aα(k)
] = 1

1 + e−λ
(α)
k

. (79)

The right-hand side of (78) is equal to

nαα(k) − U
∑
qj >0

Nγ
αα(q|k,B = ∞)

{
nγ1γ2 (q1)nγ3γ4 (q3)

× δq1,q2δq3,q4 + nγ1γ4 (q1)
[
δγ2,γ3 − nγ3γ2 (q2)

]
δq1,q4δq2,q3

}
.

(80)

Equating (80) with (79) and using (54) we obtain an
explicit expression for the Lagrange multipliers λ

(α)
k . The

fermion Green’s function evaluated with respect to the density
matrix (77) is

GPT(j,
) = tr[�PTc
†
j c
]

= 1

L

∑
q>0

∑
α=±

γ ∗
α (j,q|δf )γα(
,q|δf )

× tr[�PTa†
α(q)aα(q)]. (81)

We wish to show that this is equal to the infinite-time limit of
the CUT result up to order O(U 2) corrections; i.e.,

GPT(j,
) = lim
t→∞ G(j,
; t) + O(U 2). (82)

The trace in (81) is most easily evaluated in the B = ∞ basis:

tr[�PTa†
α(q)aα(q)]

= 1

ZPT
tr
[
e
∑

k,α λ
(α)
k a

†
α(k)aα (k)n̂α,α(q,q|B = ∞)

]
= nαα(q) − U

∑
k1,2>0

Nγ
αα(k1,k1,k2,k2|q,q,B = ∞)

× nγ1γ2 (k1)nγ3γ4 (k2)(1 − δγ1,γ2δγ3,γ4 )

−U
∑

k1,2>0

Nγ
αα(k1,k2,k2,k1|q,q,B = ∞)

× nγ1γ4 (k1)
[
δγ2,γ3 − nγ3γ2 (k2)

]
(1 − δγ1,γ4δγ2,γ3 ). (83)

Substituting (83) into (81) we obtain an expression that indeed
agrees with the infinite-time limit of (60) in the thermodynamic
limit L → ∞. This establishes (82). Hence the Green’s func-
tion G(j,
) (for fixed j,
 in the thermodynamic limit) on the
prethermalization plateau is described by the GGE (77) with
deformed charges (74). This observation is consistent with
a description of local observables on the prethermalization
plateau in terms of a deformed GGE. On the other hand there
are nonlocal operators, n+−(k) being a simple example, which
in fact do not relax at intermediate times and are therefore not
described by the ensemble �PT (without time averaging).

3. “Deformed GGE” description of the four-point function

The preceding section shows that the value of the Green’s
function on the prethermalization plateau is given by the
deformed GGE �PT . We now show that the deformed GGE
also reproduces the t → ∞ expectation value of the CUT
result for the four-point function (61). We wish to calculate

tr[�PT c
†
j cj ′c

†
l cl′ ]

= 1

L2

∑
qj >0

∑
αj =±

γ ∗
α1

(j,q1)γα2 (j ′,q2)γ ∗
α3

(l,q3)γα4 (l′,q4)

× tr
[
�PT a†

α1
(q1)aα2 (q2)a†

α3
(q3)aα4 (q4)

]
, (84)

with �PT given in (77). As in the previous section, this trace
is most easily performed in the B = ∞ basis

tr[�PT Âα(q)]

= 1

ZPT

tr
[
e
∑

k,α λ
(α)
k a

†
α (k)aα (k)Âα(q,B = ∞)

]
= 1

ZPT

tr
[
e
∑

k,α λ
(α)
k a

†
α (k)aα (k)Âα(q)

]
+ U

ZPT

∑
kj >0

Nγ
α3α4

(k|q3,q4,∞)

× tr
[
e
∑

k,α λ
(α)
k a

†
α (k)aα (k)a†

α1
(q1)aα2 (q2)Âγ (k)

]
+ U

ZPT

∑
kj >0

Nγ
α1α2

(k|q1,q2,∞)

× tr
[
e
∑

k,α λ
(α)
k a

†
α (k)aα (k)Âγ (k)a†

α3
(q3)aα4 (q4)

] + O(U 2),

(85)

where Âγ (k) = a†
γ1

(q1)aγ2 (q2)a†
γ3

(q3)aγ4 (q4). The GGE ex-
pectation values are easily calculated using Wick’s theorem
and (78). Retaining only terms up to O(U ) and substituting
the result back into (84), we obtain the deformed GGE value
for the four-point function on the prethermalization plateau.

In Fig. 17 we plot the difference between the deformed
GGE result obtained in this way and the stationary value of
the CUT result [found by projecting onto the stationary terms
of Eq. (61)] for a number of system sizes and separations. In
all cases the difference between the CUT and deformed GGE
results scales as 1

L
and vanishes in the thermodynamic limit

L → ∞. This confirms that the t → ∞ stationary value of
the CUT four-point function is reproduced by the deformed
GGE (77). This is a rather nontrivial check of our proposal
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FIG. 17. (Color online) The L dependence of the difference
between the deformed GGE and the t → ∞ CUT result for the
four-point function for a number of separations. The solid lines are
linear fits cL−1 to the data.

that prethermalization plateaus can be described in terms of a
deformed GGE.

In Figs. 18 and 19 we present comparisons between
t-DMRG results and predictions of the deformed GGE for
nearest-neighbor and next-nearest-neighbor density-density
correlation functions (84) for the quench δi = 0.8 → δf =
0.4 and U = 0 → 0.4. Taking into account that Uf is not
particularly small, the observed agreement between the two
results is quite satisfactory. This supports our assertion that
the deformed GGE provides a good description of higher order
correlation functions on the prethermalization plateau. We see
similarly good agreement for all separations (up to 4 sites)
that we explicitly checked. The deformed GGE predictions
and the CUT result of Fig. 18 are calculated for system sizes
L = 40,50 rather than L = 100, because the computational
cost of carrying out the momentum sums in the expression for
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FIG. 18. (Color online) Nearest neighbor density-density corre-
lation function 〈n( L

2 )n( L

2 + 1)〉 for a quench from δi = 0.8 → δf =
0.4 and U = 0 → 0.4 computed by t-DMRG for system size L =
100. For comparison we show CUT results for L = 40 and the
asymptotic value predicted by the L = 50 deformed GGE.
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FIG. 19. (Color online) Next-nearest-neighbor density-density
correlation function 〈n( L

2 )n( L

2 + 2)〉 for a quench from δi = 0.8 →
δf = 0.4 and U = 0 → 0.4 computed by t-DMRG for system size
L = 100. The correlator relaxes to a stationary value consistent with
the deformed GGE prediction (evaluated for L = 50).

the four-point function (61) increases very rapidly with system
size.

VI. T-DMRG RESULTS FOR LARGER VALUES OF U AND
ABSENCE OF THERMALIZATION ON ACCESSIBLE

TIMES SCALE

In this section we turn to numerical results obtained for
quenches to final Hamiltonians with both weak and strong
interactions, i.e., when U � |δi − δf |. As can be seen, in
all cases the time evolution seems to reach a plateau and
remains—on the accessible time scales—on this plateau. This
is observed for quenches starting from a noninteracting initial
state as well as when Uini = 5.

A. Extent of prethermalization plateaus

The first issue we want to address is the time scale over
which we observe prethermalization plateaus. In Figs. 10–12
and 14–16 results are shown only up to t ≈ 10 in order to avoid
revivals. The prethermalization plateau for U = 0.4 persists to
much later times of at least t ≈ 30, as can be seen in Fig. 20,
where we present data for L = 16, L = 100, L = 200. On the
accessible time scales there is no sign that the L = 200 system
starts to deviate from the plateau at late times.

B. Time averages

A standard method for extracting stationary values of
observables from finite systems is to consider time-averaged
quantities; e.g.,

1

T

∫ T

0
dt G(L/2,L/2 + 1). (86)

For the L = 16 system shown in Fig. 20 the average over
long times is in good agreement with the plateau value for the
L = 100 and L = 200 data. One question that can be asked is
whether time averages may reveal signs of the system deviating
from the prethermalization plateau. In order to investigate this
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FIG. 20. (Color online) Time evolution of G(L/2,L/2 + 1) for
quenches with δi = 0.8 → δf = 0.4 and Ui = 0 → U = 0.4 and
system sizes L = 16, L = 100, and L = 200 sites. The data for
L = 16 are ED results for systems with periodic boundary conditions
(PBCs) and are seen to exhibit many revivals.

issue, we have carried out t-DMRG simulations for a L = 50
system up to very late times t = 200. The results are shown in
Fig. 21. Time averages of the t-DMRG data do not reveal any
signs of deviations from the plateau value at late times.

C. The role of interactions in the prequench and
postquench Hamiltonians

In this section we present results for a variety of interaction
strengths 0.4 � U � 10 in the postquench Hamiltonian, as
well as for quenches from the ground state at a finite value of
the interactions. We provide two benchmarks for comparison.
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FIG. 21. (Color online) Time evolution of G(L/2,L/2 + 1) for
quenches with δi = 0.8 → δf = 0.4 and Ui = 0 → U = 0.4. L =
50 site system up to t ∼ 200, with error bars estimated in Appendix B.

TABLE I. Summary of the effective temperature β and chemical
potential μ used in the QMC to calculate the Green’s function
G( L

2 , L

2 + 1) on the L = 100 chain as presented in Figs. 22–29. The
energy density E/L is found by taking the expectation value of the
interacting Hamiltonian H (t > 0) at t = 0+.

QMC
U E/L β μ G( L

2 , L

2 + 1) Error

0.4 −0.664373 3.0741 0.4 −0.46358 1.62 × 10−3

1 −0.589142 2.6494 1 −0.46247 2.98 × 10−4

2 −0.463757 2.0437 2 −0.44347 6.94 × 10−5

3 −0.338371 1.5882 3 −0.40153 6.49 × 10−5

4 −0.212986 1.2175 4 −0.34284 3.06 × 10−4

6 0.037784 0.7250 6 −0.23885 1.34 × 10−4

8 0.288550 0.4868 8 −0.17441 3.15 × 10−4

10 0.539324 0.3591 10 −0.13514 1.23 × 10−4

1. Gibbs ensemble

One useful comparison is with the appropriate Gibbs
ensemble describing a putative thermal ensemble at late times.
We have computed these by quantum Monte Carlo (QMC) us-
ing the ALPS collaboration [47] directed loop stochastic series
expansion [48] code. Using the Jordan-Wigner transformation
to map onto a spin model, the QMC calculations are performed
in the grand canonical ensemble; the chemical potential and
the effective temperature are fixed to ensure the correct energy
and number densities (within the QMC error): these are given
in Table I (see also Figs. 22–29). In the QMC simulations
of the L = 100 chain we perform 5 × 107 thermalization steps
and perform measurements of the nearest-neighbor Green’s
function after 1.5 × 108 sweeps.

2. Diagonal ensemble

A second useful benchmark is provided by the diagonal
ensemble. Given an initial state |	0〉 and a basis {|n〉} of energy
eigenstates, the diagonal ensemble average of an observable
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FIG. 22. (Color online) Comparison of the t-DMRG, time-
averaged (t-av) ED, and QMC results for the nearest-neighbor
Green’s function at time t after the quench δi = 0.8 → δf = 0.4,
U = 0 → 0.4. t-DMRG and QMC simulations are performed on the
L = 100 chain, while ED studies the L = 16 chain.
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FIG. 23. (Color online) Comparison of the t-DMRG, time-
averaged (t-av) ED, and QMC results for the nearest-neighbor Green’s
function at time t after the quench δi = 0.8 → δf = 0.4, U = 0 → 1.
t-DMRG and QMC simulations are performed on the L = 100 chain,
while ED studies the L = 16 chain.

O is defined as

〈O〉DE =
∑

n

〈n|O|n〉|〈n|	0〉|2. (87)

For finite systems this equals the long-time average (over many
recurrences). We compute the diagonal ensemble for a system
of L = 16 sites by exact diagonalization (ED).

3. Difference between diagonal and Gibbs averages

In Fig. 30 we show the difference between the expectations
values of the nearest-neighbor Green’s function G(L/2,L/2 +
1) in the diagonal and Gibbs ensembles respectively for
different values of Uf . As the diagonal ensemble is available
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FIG. 24. (Color online) Comparison of the t-DMRG, time-
averaged (t-av) ED, and QMC results for the nearest-neighbor Green’s
function at time t after the quench δi = 0.8 → δf = 0.4, U = 0 → 2.
t-DMRG simulations have been performed on the L = 100,200 chain,
QMC results are presented for the L = 100 chain, and ED studies the
L = 16 chain.
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FIG. 25. (Color online) Comparison of the t-DMRG, time-
averaged (t-av) ED, and QMC results for the nearest-neighbor Green’s
function at time t after the quench δi = 0.8 → δf = 0.4, U = 0 → 3.
t-DMRG and QMC simulations are performed on the L = 100 chain,
while ED studies the L = 16 chain.

only for system size L = 16, we display the quantities

〈c†L/2cL/2+1〉DE,L=16 − 〈c†L/2cL/2+1〉Gibbs,L=16,
(88)

〈c†L/2cL/2+1〉DE,L=16 − 〈c†L/2cL/2+1〉Gibbs,L=100.

We see that for small values Uf the two averages are close
to one another, but for large Uf they become very different.

4. Results

As can be seen from Figs. 22, 28, and 29, the nearest-
neighbor Green’s function approaches plateau values at late
times, which are compatible with the diagonal ensemble (given
that the latter was calculated for L = 16 we expect there to be
finite-size effects), but not the Gibbs ensemble.
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FIG. 26. (Color online) Comparison of the t-DMRG, time-
averaged (t-av) ED, and QMC results for the nearest-neighbor Green’s
function at time t after the quench δi = 0.8 → δf = 0.4, U = 0 → 4.
t-DMRG and QMC simulations are performed on the L = 100 chain,
while ED studies the L = 16 chain.
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FIG. 27. (Color online) Comparison of the t-DMRG, time-
averaged (t-av) ED, and QMC results for the nearest-neighbor Green’s
function at time t after the quench δi = 0.8 → δf = 0.4, U = 0 → 6.
t-DMRG and QMC simulations are performed on the L = 100 chain,
while ED studies the L = 16 chain.

On the other hand, the plateau for intermediate values U ≈
2 is compatible with a thermal ensemble on the accessible
time scales. We propose the following explanation for these
observations:

(1) The small-U regime is described by a prethermalization
plateau as discussed in Sec. V. It can be understood in
terms of a deformation of the generalized Gibbs ensemble
characterizing the stationary state of the U = 0 quench.

(2) The large-U regime is also described by a prethermal-
ization plateau, which now can be understood in terms of a
deformation of the generalized Gibbs ensemble characterizing
the stationary state of the δf = 0 quench. This corresponds to
a quench to the Heisenberg XXZ chain in the massive regime.
Given that our initial state has a short correlation length, GGE
expectation values of local observables could be calculated by
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FIG. 28. (Color online) Comparison of the t-DMRG, time-
averaged (t-av) ED, and QMC results for the nearest-neighbor Green’s
function at time t after the quench δi = 0.8 → δf = 0.4, U = 0 → 8.
t-DMRG and QMC simulations are performed on the L = 100 chain,
while ED studies the L = 16 chain.
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FIG. 29. (Color online) Comparison of the t-DMRG, time-
averaged (t-av) ED, and QMC results for the nearest-neighbor
Green’s function at time t after the quench δi = 0.8 → δf = 0.4,
U = 0 → 10. t-DMRG simulations have been performed on the
L = 100,200 chain, QMC results are presented for the L = 100
chain, and ED studies the L = 16 chain.

the method of Ref. [24]. In order to test our interpretation,
we have investigated the dependence of the plateau value on
δf (δf = 0 corresponding to an integrable quench in the XXZ
chain). In Fig. 31 we show a comparison between quenches
to Uf � 1 and δf = 0 or δf > 0, respectively. The correlator
clearly approaches a plateau, the value of which is only very
weakly dependent on the integrability-breaking parameter δf ,
which supports our interpretation.

(3) In the intermediate-U regime there is no prethermal-
ization plateau, but the system relaxes slowly towards a Gibbs
ensemble.
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FIG. 30. (Color online) Difference in the value of G(L/2,L/2 +
1) between finite-temperature results obtained with QMC (L = 100)
or ED (L = 16) to the time-average values obtained via ED for L =
16 for a quench with δi = 0.8 → δf = 0.4 and Ui = 0 → Uf as
a function of Uf . Finite-size effects are less pronounced for small
values of Uf , but prominent for Uf > 1. The intermediate region
1 � Uf < 8 is the best candidate to obtain thermalization on long
time scales in this system.
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FIG. 31. (Color online) Comparison of t-DMRG results for the
time evolution of G(L/2,L/2 + 1) for systems with L = 100 sites
for quenches with initial Ui = 0, δi = 0.8 to values of Uf = 10 and
δf = 0.4 or δf = 0, respectively. As can be seen, the expectation
value for both cases is very similar.

5. Initial-state dependence

A final issue we would like to address is whether our
findings are sensitive to our particular choices of initial
state. In order to assess this question we have carried out t-
DMRG computations for quenches starting in the ground state
of strongly interacting Peierls insulators, i.e., Hamiltonians
H (δi,Ui > 0). Results for quenches of the form

(δi = 0.8,Ui = 5) −→ (δf = 0.4,Uf ) (89)

with several values of Uf are shown in Figs. 32 and 33. Here the
expectation values of both the diagonal and Gibbs ensembles
have been computed for L = 16 site systems. Hence finite-size
effects should be taken into account when making comparisons
to the t-DMRG data.
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FIG. 32. (Color online) Green’s function results from t-DMRG
and ED for the quench δi = 0.8 → δf = 0.4 with Ui = 5 to U =
0,0.2. As with Figs. 22–29 we see that the time-averaged (t-av) ED is
compatible (up to finite-size effects) with the t-DMRG plateau value,
while the thermal expectation is not.
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FIG. 33. (Color online) Green’s function results from t-DMRG
and ED for the quench δi = 0.8 → δf = 0.4 with Ui = 5 to U =
0.5,1.0. As with Figs. 22–29 we see that the time-averaged (t-av)
ED is compatible (up to finite-size effects) with the t-DMRG plateau
value.

The observed behavior is qualitatively very similar to that
seen for quenches starting in noninteracting ground states.
Observables relax to plateau values that are incompatible with
thermalization when Uf is either small or large.

VII. CONCLUSIONS

Using a combination of analytical calculations based on the
continuous unitary transform technique and time-dependent
density matrix renormalization group computations we have
established the existence of a robust prethermalization regime
at intermediate times after a quantum quench to the weakly
nonintegrable interacting Peierls insulator Hamiltonian (1).
The combination of analytical and numerical techniques we
use to analyze this plateau enables us to essentially eliminate
finite-size effects. Our results thus represent true “bulk”
physics, and in particular are free from revival effects. To
the best of our knowledge, our work constitutes the first one-
dimensional example of a robust prethermalization plateau in
a model with short-range interactions.

The CUT results allowed us to explicitly construct a
“deformed generalized Gibbs ensemble,” which provides an
approximate statistical description of the prethermalization
plateau. The deformed GGE is constructed from charges
Qα(k), cf. Eq. (74), that form a mutually commuting set
but do not commute with the Hamiltonian (44). As such, the
deformed charges are not conserved at the operator level; only
the expectation values 〈Qα(k)〉 with respect to the time-evolved
state |	(t)〉 are approximately conserved. Our construction is
therefore quite different from that of Ref. [33]. We conjecture
that the deformed GGE idea applies more widely to quantum
quenches in one-dimensional models with weak integrability
breaking. It would be interesting to test this conjecture for
other examples.

We expect that at very late times the system will actually
thermalize, but we are not able to access sufficiently long times
scales with either the perturbative CUT approach or t-DMRG.
A possible approach to describe the dynamics at very late times
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might be through a quantum Boltzmann equation (see, e.g.,
Refs. [49]). This possibility is currently under investigation.
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APPENDIX A: LOCAL CONSERVATION LAWS FOR H0

To derive the local conservation laws for the noninteracting
Hamiltonian H (δ,0) we follow Appendix C of Ref. [12].
Below we give the local conservation laws and summarize
the salient points of the derivation.

The Hamiltonian can be written in the form

H0 =
2L−1∑
i,j=0

aiHij aj ,

where ai are Majorana fermions {ai,aj } = 2δi,j defined by

a2n = c†n + cn,

a2n+1 = i(c†n − cn),

and H is a skew-symmetric block-circulant matrix of the form

H =

⎡
⎢⎢⎢⎢⎣

Y0 Y1 . . . YL̃−1

YL̃−1 Y0
...

...
. . .

...
Y1 . . . . . . Y0

⎤
⎥⎥⎥⎥⎦ ,

where Yn are 4 × 4 matrices with Yn = −YT
L̃−n

and L̃ = L/2.
We define the Fourier transform of the block matrices as

(Yn)jj ′ = 1

L̃

L̃∑
k=1

e
2πik

L̃
n(Yk)jj ′

with (Yk)jn = −(Y−k)nj .
For free fermions a complete set of local conservation laws

can be given by fermion bilinears

I (r) = 1

2

∑
l,n

alI (r)
ln an,

where the matrices I (r) must satisfy

[H,I (r)] = 0 and [I (r),I (r ′)] = 0. (A1)

The problem of deriving local conservation laws has now
become the problem of finding a set of mutually commuting
matrices that also commutes with the Hamiltonian matrix H.
At first sight the complexity of the problem does not seem to
have been reduced, but we can now utilize a useful property of
the Hamiltonian matrix H: the projectors onto eigenvectors
of block circulant matrices are themselves block circulant
matrices. This means one can consider I (r) that are block
circulant:

I (r) =

⎡
⎢⎢⎢⎢⎢⎣

Ȳ (r)
0 Ȳ (r)

1 . . . Ȳ (r)
L̃−1

Ȳ (r)
L̃−1

Ȳ (r)
0

...
...

. . .
...

Ȳ (r)
1 . . . . . . Ȳ (r)

0

⎤
⎥⎥⎥⎥⎥⎦ .

Imposing Eqs. (A1), we obtain the conditions (for all k)

[
Yk,Ȳ

(r)
k

] = 0,
[
Ȳ

(r)
k ,Ȳ

(r ′)
k

] = 0,

where Ȳ
(r)
k is the Fourier transform of Ȳ (r).

The construction of Ȳ
(r)
k is straightforward as

Yk = Ak ⊗ σy,

where

Ak =
[
J (1 + δ) + J (1 − δ) cos

(
2πk

L̃

)]
σx

− J (1 − δ) sin

(
2πk

L̃

)
σy.

So Ȳ
(r)
k takes the form

Ȳ
(r)
k = q̄

(r)
k Ak ⊗ σy + q

(r)
k Ak ⊗ 12

+ ω̄
(r)
k 12 ⊗ σy + ω

(r)
k 12 ⊗ 12,

where the functions ω
(r)
k , ω̄

(r)
k , q

(r)
k , and q̄

(r)
k are chosen such

that the Fourier transform satisfies (Ȳk)jn = −(Ȳ−k)jn.
The ambiguity in choice of functions leads to different

representations of the conservation laws; following Ref. [12]
we make a particular choice that ensures there is a finite real-
space range r0 of the conservation laws: I (r)

ln = 0 for |l − n| >

r0. We consider the conservation laws associated with each of
the terms in Ȳ

(r)
k separately, and Fourier transforming back to

real space we find

I
(r)
1 = −

L̃−1∑
n=0

J

2
(1 + δ)[c†2nc2n−2r+3 + c

†
2nc2n+2r−1 + c

†
2n+1c2n−2r+2 + c

†
2n+1c2n+2r−2 + H.c]

−
L̃−1∑
n=0

J

2
(1 − δ)[c†2nc2n−2r+1 + c

†
2nc2n+2r−3 + c

†
2n+1c2n−2r+4 + c

†
2n+1c2n+2r + H.c.],
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FIG. 34. (Color online) Differences between runs with different parameters and different quenches (L = 100 in all cases).

I
(r)
2 = −

L̃−1∑
n=0

J

2
(1 + δ)[i(c†2nc2n−2r+1 − c

†
2nc2n+2r+1 + c

†
2n+1c2n−2r − c

†
2n+1c2n+2r ) + H.c.]

−
L̃−1∑
n=0

J

2
(1 − δ)[i(c†2nc2n−2r−1 − c

†
2nc2n+2r+1 + c

†
2n+1c2n−2r+2 − c

†
2n+1c2n+2r+2) + H.c.],

I
(r)
3 =

L̃−1∑
n=0

[i(c†2n+2r+2c2n + c
†
2n+1c2n+2r+3) + H.c.], I

(r)
4 =

L̃−1∑
n=0

[i(c†2n+2r+2c2n − c
†
2n+1c2n+2r+3) + H.c.],
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where r is a measure of the locality of the conservation laws
and takes values 1 to L̃.

The local conservation laws I
(r)
3 ,I

(r)
4 are independent of the

microscopic parameters of the theory; they arise from the 12 ⊗
12 and 12 ⊗ σy terms in Ȳ

(r)
k . The remaining local conservation

laws are dependent on the dimerization parameter δ. Energy
conservation is also manifest in the set of local conservation
laws with I

(1)
1 ∝ H0.

APPENDIX B: ERROR ESTIMATE FOR THE t-DMRG

In this appendix, we estimate the error for the long-time
simulations. In principle, the error in a given observable
can be estimated by the discarded weight ε, and due to the
variational nature of the DMRG for ground-state calculations,
it is ∼√

ε [50]. At short times this provides a reasonable
estimate for time-evolved quantities as well. On longer time
scales a number of complications emerge. (1) Due to the
entanglement growth, the discarded weight grows quickly in
time [51]. This can be addressed by adjusting the number of
density matrix eigenstates, so that ε is smaller than a chosen
threshold (in our case 10−9 or 10−11 for some simulations).
(2) The error due to the Trotter decomposition becomes
sizable. (3) Errors incurred in the sweeping procedure ac-
cumulate. In each DMRG step, the change of basis needed
during the sweeps introduces an error ∼ε as a result of
the basis truncation. Hence, each sweep introduces an er-
ror ∼Lε for a system of size L. This error is present
at each time step. After a certain time T , a simulation
with a step size dt leads to an error ∼(T/dt)Lε. This
error is in addition to the error in the observable due
to the density matrix truncation discussed above. At short
times the error due to the basis truncation ∼√

ε dominates,
but at later times other error sources can no longer be
neglected. This can be seen by varying both the target
discarded weight and the time step. In Fig. 34 we show
the difference of runs with different parameters to a refer-
ence run with ε = 10−11 and dt = 0.01. The error between
the results with a target discarded weight of 10−11 and
10−9 is seen to be roughly two orders of magnitudes,
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FIG. 35. (Color online) Error estimates for t-DMRG results on
the time evolution of G(L/2,L/2 + 1) for a system with L = 200
sites and a quench δi = 0.75 → δf = 0.5 and Ui = 0 → Uf = 0.5.
The data are obtained using a time step of δt = 0.005 and a target
discarded weight of ε = 10−9. The red error bars (lines) are obtained
from the estimate discussed in Appendix B; the blue ones (asterisks)
are obtained by comparing to the results of a run with time step
δt = 0.01. The error estimate appears to be larger, but of similar order
of magnitude to the actual deviation between the results at times ∼50.
From this estimate we obtain at the end of the time evolution a relative
error of the order of 1.5%.

as expected from the above estimate. The error bars shown
in Figs. 21 and 35 are estimated on the basis of the above
considerations. The error bars grow significantly towards the
end of the time evolution, but still permit us to make qualitative
statements. For the runs considered, this indicates that on the
time scales treated the quasistationary state does not change;
i.e., the prethermalization plateau is still present. Together with
ED results obtained for small systems for times up to t = 1000,
this indicates that thermalization happens at much larger time
scales (�100), if at all.
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U. Schöllwock, J. Eisert, and I. Bloch, Nat. Phys. 8, 325 (2012).

[5] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, P. Schauss,
T. Fukuhara, C. Gross, I. Bloch, C. Kollath, and S. Kuhr, Nature
(London) 481, 484 (2012).

[6] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer,
M. Schreitl, I. Mazets, D. A. Smith, E. Demler, and
J. Schmiedmayer, Science 337, 1318 (2012).

[7] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore,
Rev. Mod. Phys. 83, 863 (2011).

[8] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991); M. Srednicki, Phys.
Rev. E 50, 888 (1994); M. Rigol, V. Dunjko, and M. Olshanii,
Nature (London) 452, 854 (2008); E. Canovi, D. Rossini,
R. Fazio, G. Santoro, and A. Silva, New J. Phys. 14, 095020
(2012).
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