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Absence of the Aharonov-Bohm effect of chiral Majorana fermion edge states
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Majorana fermions in a superconductor hybrid system are charge neutral zero-energy states. For the detection
of this unique feature, we propose an interferometry of a chiral Majorana edge channel, formed along the interface
between a superconductor and a topological insulator under an external magnetic field. The superconductor is of a
ring shape and has a Josephson junction that allows the Majorana state to enclose continuously tunable magnetic
flux. Zero-bias differential electron conductance between the Majorana state and a normal lead is found to be
independent of the flux at zero temperature, manifesting the Majorana feature of a charge neutral zero-energy
state. In contrast, the same setup on graphene has no Majorana state and shows Aharonov-Bohm effects.
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Introduction. There have been efforts to find evidence of
Majorana fermions in superconductor hybrid systems [1–4].
In the systems, Majorana fermions appear at zero exci-
tation energy in the superconducting energy gap. Recent
experiments [5–8] studied a superconductor coupled to a
semiconductor nanowire with strong spin-orbit coupling. The
result such as zero-bias resonant tunneling agrees with the
behavior of a Majorana bound state [9,10] formed at the end of
a topological superconducting region. Other experiments [11]
found an anomalous Fraunhofer diffraction pattern in a
Josephson junction on a topological insulator (TI) [12,13].
This may be related to a Majorana state [14], however,
more studies are necessary to understand it. There are also
other proposals [15–22], including Z2 interferometers [15–17]
formed along a superconductor-ferromagnet interface on a TI.

To achieve more direct evidence, one needs to explore
other Majorana features. One goal of the present work is
to develop an experimentally feasible test for a Majorana
fermion as a charge neutral zero-energy state, based on
an Aharonov-Bohm interferometer; a similar strategy was
adapted [23] to experimentally confirm the charge neutrality of
neutrons. As a charge neutral particle, Majorana fermions will
not show Aharonov-Bohm effects. This is a direct consequence
of the fact that Majorana fermions “are their own antiparticles,”
namely, that the Majorana operator is self-conjugate or real,
not carrying a complex Aharonov-Bohm phase factor.

It is nontrivial to find an interferometry where Majorana
states do not show Aharonov-Bohm effects, because of a few
reasons. First, the interferometry has to be formed solely by
extended Majorana channels [15–17]. When an interference
loop enclosing magnetic flux is composed of Majorana bound
states and electron paths, Aharonov-Bohm effects occur [24].
It is because a Majorana state in solids is a superposition of an
electron and a hole, hence, the tunneling between a Majorana
state and an electron path carries flux information. Second, the
interferometry should enclose continuously tunable magnetic
flux. Its candidate is a superconducting ring with a Josephson
junction, rather than a closed ring [20] enclosing quantized
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flux. This setup was recently studied [18,19] in a different
context from our study.

In this work, we propose a Majorana version of quantum
Hall interferometers [25] for detecting a Majorana state (see
Fig. 1). It is based on a chiral Majorana fermion edge channel,
formed along the interface between an s-wave superconductor
ring and the integer quantum Hall state of a TI surface. The
ring has a Josephson junction, which connects the Majorana
channels of the inner and outer boundaries of the ring. It allows
the Majorana state to enclose continuously tunable magnetic
flux �. Zero-bias electron tunneling differential conductance
from a normal lead to the ring is found to be independent of � at
zero temperature, demonstrating the unique Majorana feature
of a charge neutral zero-energy state. The setup also exhibits
Majorana features at finite bias and temperature. To prove that
this behavior is a sensitive probe of Majorana physics, we show
that in the same setup on graphene, which also has zero-energy
states (because of Berry phase π of its Dirac fermions) but has
Bogoliubov (a complex superposition of an electron and a
hole, such as quasiparticles in a typical superconductor) rather
than Majorana fermions, Aharonov-Bohm effects are present.
We discuss the experimental feasibility of our setup.

Chiral Majorana edge channel. In Fig. 1, a magnetic
field B is perpendicularly applied to the TI surface outside
the proximity region with superconducting gap �0. The
resulting Landau-level orbits of the surface undergo Andreev
reflections [26] and form chiral Majorana edge channels along
the interface between the superconducting-gap region and
the Landau-gap region [27,28]; a Majorana channel can be
also formed when a Zeeman gap induced by a ferromagnet
[15–17,21] replaces the Landau gap. The number of the
channels is odd (since the TI has an odd number of Dirac
cones), indicating that the Majorana states are stable, and
it is determined by B, the chemical potential μ [27], and
g factor g [28] of the TI surface. Hereafter we focus on
the case of a single Majorana channel γ well localized near
the interface, and on energy scales ��0. The particle-hole
symmetry ensures that γ satisfies γ (x) = γ †(x) and γ

†
k =

γ−k ∼ ∫
dx γ (x)e−ikx , with coordinate x and momentum k

along the channel. Its Hamiltonian is

HMF = −i�vM

∫
dx γ (x)∂xγ (x). (1)
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FIG. 1. (Color online) Interferometer of a chiral Majorana
fermion edge channel γ (arrows), formed along the interface between
an s-wave superconductor ring (S) and the integer quantum Hall state
of a topological-insulator (TI) surface under a magnetic field �B. It
has a Josephson junction (dashed circle, right panel), which behaves
as a beam splitter for the Majorana channel and allows the channel
to enclose continuously tunable magnetic flux �. Zero-bias electron
tunneling differential conductance between a normal lead and the ring
shows that the Majorana state is independent of �.

vM = vM (B,�0,μ,g) is the propagation velocity of γ .
The Josephson junction in Fig. 1 is in the short junction

limit. It describes the coupling of Majorana channels γL,R

between its two sides. Its model Hamiltonian [14] is

HJJ = −2i

∫
dx tq(x)γL(x)γR(x). (2)

tq(x) = �0 cos(φ/2) for |x − x0| � W/2, and tq(x) = 0 oth-
erwise, where x0 and W are the junction center and width.
Superconducting phase difference φ across the junction is
induced by � as φ/2 = 2π�/�0,e with �0,e = h/e. The
junction behaves as a beam splitter of γk . The channel γk,in
with momentum k, incoming to the junction from the outer
or inner boundary of the ring, is scattered into outgoing ones,
γk,out. We obtain the unitary scattering matrix SJJ for this (see
Fig. 1),(

γL,out
γR,out

)
= SJJ

(
γL,in
γR,in

)
, SJJ =

(
t r ′

r t ′

)
, (3)

reflection coefficient r = −r ′ = (η−1 sinh α)�0 cos φ

2 ,
and transmission coefficient t = t ′ = �vMα/(ηW ),
where α = W

√
[�0/(�vM )]2 cos2(φ/2) − k2 and

η = �vM (αW−1 cosh α − ik sinh α); the same expression
was found in Ref. [19]. Note that r and t depend on φ, hence,
on � in a nontrivial way; when φ = π and k → 0, Majorana
states occur in the junction so that r → 0 and t → 1. We will
see that the flux dependence does not affect the Majorana
resonance state at k = 0 in our setup.

Resonance. We study scattering between the incoming
and outgoing channels of the outer ring boundary, γL,in and
γR,out, at the Josephson junction. Because there is no loss
of Majorana fermions along the inner boundary of the ring,
the scattering causes phase shift θ� only. From Eq. (3) and
γR,in = eikdγL,out (the accumulation of dynamical phase kd

along the circumference d of the inner ring boundary), we
obtain γR,out = eiθ�γL,in,

eiθ� = r + t t ′eikd

1 − r ′eikd
= r + (r2 + t2)eikd

1 + reikd
(4)

for |r| �= 1. The first equality of Eq. (4) comes from the direct
scattering between γL,in and γR,out and from the paths with
multiple winding of the flux � along the inner boundary, while
the second comes from the unitarity of SJJ .

We notice a number of interesting points from Eq. (4). First,
θ� depends on � in a nontrivial way through r(�) and t(�).
This is distinct from usual electron cases where the flux depen-
dence couples with dynamical phase such as kd + 2π�/�0,e.
Second, at zero energy (i.e., k = 0), the following are satisfied,
irrespective of �: r0(�) ≡ r(k = 0) = tanh(W�0

�vM
cos 2π�

�0,e
) is

real, r2 + t2 = 1 (partially from the unitarity of SJJ ), thus
eiθ� = 1 is real. These are attributed to the fact that the Ma-
jorana operator is real self-conjugate. Third, near zero energy
(k 
 0), r2 + t2 
 1 and r 
 |r0(�)|sgn(cos 2π�/�0,e) are
almost real [29]. Then, when kd = mπ with m = 1,2, . . . is
satisfied, the phase shift becomes θ� 
 mπ , almost indepen-
dent of �. Considering the resonance condition kd + π +
arg r = 2m′π (with integer m′) of the inner boundary and
arg r = π [1 − sgn(cos 2π�/�0,e)]/2, we find that kd = mπ

means on or off resonance of the inner boundary, depending
on �. However, regardless of on or off resonance, θ� is almost
independent of �. In contrast, for kd �= mπ , θ� varies with �.
Fourth, Eq. (4) describes well the vortex limit where the ring is
fully closed. In this case, � will be quantized as � = l�0,e/2
with integer l so that r = (−1)l and t = 0; hence, eiθ� = (−1)l .

The resonance condition of the whole setup (including both
the inner and outer boundaries) is found as

kL + π + nvπ + θ� = 2nπ, (5)

where kL is the dynamical phase along the circumference L of
the outer boundary, π is the Berry phase [15–17] of Majorana
fermions circulating the setup, nv is the number of vortices
inside the superconducting area, and n is an integer.

The resonances can be detected by electron tunneling
from a normal lead to the outer ring boundary. The lead
is modeled by one-dimensional electrons with Hamiltonian
HL = −i�vL

∑
σ=↑,↓

∫ ∞
−∞ dy ψ†

σ (y)∂yψσ (y), where ψ†
σ (y) is

the electron field operator with spin σ at position y and
vL is electron velocity in the lead. The tunneling Hamilto-
nian is HMF−L = −2itlγ (x1)γ̄ (y1), where tunneling strength
tl is real, x1 and y1 are tunneling positions, γ̄ (y1) =
(1/2)

∑
σ [eiχσ ψ†

σ (y1) + e−iχσ ψσ (y1)] is a Majorana represen-
tation of states in the lead, and eiχσ is the phase factor from the
tunneling. At zero temperature, the differential conductance
dI/dV from the lead with bias V to the grounded ring has the
form [17] of

dI

dV
= 2e2

h
|she|2 = 2e2

h

t̃4
l cos2(θs/2)

sin2(θs/2) + t̃4
l cos2(θs/2)

, (6)

where she describes Andreev reflections in the lead, t̃l =
tl/(2�

√
vMvL), and θs = kL + π + nvπ + θ�. The resonance

condition in Eq. (5) is written as θs = 2nπ .
We first discuss dI/dV at zero temperature (see Fig. 2). At

zero bias, it is determined by the Majorana state with k = 0,
which shows eiθ� = 1. Hence, the resonance condition of
Eq. (5) and dI/dV (V = 0) do not depend on �. This demon-
strates the absence of Aharonov-Bohm effects of the Majorana
state, the manifestation of the fact that Majorana fermions are
charge neutral. dI/dV (V = 0) is also independent of system

161408-2



RAPID COMMUNICATIONS

ABSENCE OF THE AHARONOV-BOHM EFFECT OF CHIRAL . . . PHYSICAL REVIEW B 89, 161408(R) (2014)

FIG. 2. (Color online) (a) dI/dV of the setup on a TI surface
(see Fig. 1) at zero temperature and at zero bias, as a function of
the magnetic flux �, for the cases of odd nv (blue dashed curve)
and even nv (black solid). (b) The same as in (a), but for the setup
on graphene. Both in (a) and (b), B changes from 0.85 T to 1 T,
and we choose �0 = 1.5 meV, L = 7000 nm, d = 1000 nm, g factor
g = 2, chemical potential μ = 15 meV, and Fermi velocity vf =
5 × 105 m/s; these parameters lead to vM = 0.14vf . We also choose
W such that the maximum value of |r|2 is 0.6 for (a) and 0.8 for (b),
and t̃l = 0.48 for (a) and t̃l = 0.62 for (b). The Majorana state in case
(a) does not exhibit Aharonov-Bohm effects, while the zero-energy
Bogoliubov excitations in graphene case (b) do.

lengths (L, d, and W ) and coupling strengths (tq and tl). It
shows the Z2 property [15–17] that the interferometry has off
(on) resonance and dI/dV = 0 (dI/dV = 2e2/h), when nv

is even (odd).
Next, we discuss dI/dV at zero temperature, but at finite

bias (see Fig. 3). The zero-bias behavior mentioned above
appears at V = 0. At finite bias, resonances occur whenever
Eq. (5) is satisfied. For low energy of kd � 1, we find θ� 

1−r0
1+r0

kd and obtain resonance center Vr ,

eVr 
 �vM (2nπ − π − nvπ )

L + d(1 − r0)/(1 + r0)
. (7)

Vr depends on � through (1 − r0)/(1 + r0), oscillating with
period �0,e. |Vr | has maxima (minima) at (half-)integer
multiples of �0,e; the gradual decrease of |Vr | with increasing
� is due to the dependence of vM on B. For kd � 1, the level
broadening �V of the resonances also depends on � as

e�V 
 2�vM t̃2
l

L + d(1 − r0)/(1 + r0)
, (8)

which has maxima (minima) at (half-)integer multiples of
�0,e. This behavior of Vr and �V is the consequence of the
Majorana feature of tq ∝ cos(φ/2) in Eq. (2). Note that the
range of V in Fig. 3 does not reach the condition of kd = mπ

with nonzero m, at which θ� 
 mπ and dI/dV is almost
independent of � (as discussed above). We emphasize that

FIG. 3. (Color online) dI/dV of the setup on a TI surface at zero
temperature, as a function of � and V , for the case of (a) even nv and
(b) odd nv . The same parameters as in Fig. 2 are used.

at V = 0 and zero temperature, dI/dV remains constant (0
or 2e2/h) for finite �V (�) [even if �V (�) is larger than
resonance level spacing] for both even and odd nv .

At finite temperature T , one has dI/dV (V = 0) =
2e2

h

∫ ∞
0 dε|she(ε)|2 β

1+cosh βε
[15], where β = (kBT )−1 and ε =

�vMk is the excitation energy. In this case, thermal broadening
causes dI/dV (V = 0) to depend on �. From |she| in Eq. (6),
we find that at kBT � e�V and �vM/L, dI/dV (V = 0)
weakly depends on � as dI/dV (V = 0) = 2e2

h
[1 − 4(kBT )2

(e�V )2 +
O(T 4)] for odd nv , and as dI/dV (V = 0) 
 2e2

h

4t̃8(kBT )2

(e�V )2 for

even nv . The dependence on � becomes suppressed as ∼T 2

at lower temperature, in sharp contrast to the usual electron
interferometers [25] where interference visibility becomes
enhanced at lower temperature. This is a finite-temperature
signature of the absence of Aharonov-Bohm effects of the
Majorana state. Note that nv can vary by temperature or B

change, leading to jumps of dI/dV (V = 0) between 0 and
2e2/h [30,31]. The jumps are distinct from Aharonov-Bohm
effects as they are not periodic in �.

Non-Majorana case. To compare the above findings with a
non-Majorana case, we consider the same setup on graphene.
Similarly to a TI, graphene has Dirac fermions [32], and
zero-energy excitations by superconducting proximity effects.
But it has two Dirac cones at K and K ′ valleys, which are
transformed into each other by time reversal. Moreover, the
momentum of its Dirac fermions couples to the pseudospin
representing the sublattice sites, rather than spin. As a result,
near zero excitation energy, there occur four chiral edge
channels of �1 = (eK

↑ ,hK ′
↓ ), �2 = (eK ′

↑ ,hK
↓ ), �3 = (eK

↓ ,hK ′
↑ ),

and �4 = (eK ′
↓ ,hK

↑ ) along the interface between the super-
conducting region and the Landau-gap region [26], where �

represents an electron-hole (e-h) pair with opposite spin (↑,
↓) and valley. In the same way as the TI case, we compute
dI/dV , taking into account the energy dispersion of �i [33].
We ignore intervalley mixing and spin scattering in the setup,
and neglect minor correction to SJJ by Zeeman energy for
simplicity; these effects do not alter our finding that dI/dV

shows Aharonov-Bohm effects at V = 0 in graphene.
The chiral channels in graphene were theoretically stud-

ied in Ref. [26], ignoring Zeeman energy. We derive the
energy dispersion εi(k) = �vDk + EZ,i of channel �i=1,2,3,4,
following Ref. [26], but including Zeeman energy. vD is the
propagation velocity, and the Zeeman contribution EZ,i is
finite and channel dependent [28,33]. For zero Zeeman energy,

FIG. 4. (Color online) dI/dV of the setup on graphene at zero
temperature, as a function of � and V , for the case of (a) even nv and
(b) odd nv . The same parameters as in Fig. 2 are used. The result is
distinct from Fig. 3, since there are four chiral channels, each carrying
nonzero charge, in the graphene case.
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�i is charge neutral with equal weight between its electron and
hole parts, and dI/dV can be independent of � at V = 0. In
contrast, in the realistic case of finite Zeeman energy, �i carries
charge even at zero energy, since its electron and hole parts
have opposite spin to each other, and hence, have different
weight due to Zeeman energy. As a result, �i does not satisfy
the Majorana condition of γ

†
k = γ−k and γ †(x) = γ (x), and

dI/dV (V = 0) exhibits �-dependent oscillation for both even
and odd nv [see Figs. 2(b) and 4].

Conclusion. The absence of Aharonov-Bohm effects at zero
bias in our Majorana interferometry is a direct consequence of
the essence that a Majorana fermion is its own antiparticle, i.e.,
a real operator. It is in contrast to the � dependence of dI/dV

of the same setup at large bias. It should be also distinguished
from Bogoliubov fermions, such as those in the graphene case,
that show Aharonov-Bohm effects unless there is fine-tuning
(e.g., unrealistic tuning to zero Zeeman energy for graphene).

We now discuss experimental feasibility. For the supercon-
ducting ring, one may use niobium. It has �0 ≈ 1.5 meV,
superconducting critical temperature of 9 K, the lower and

upper critical fields of 2.7 and 4 T, coherence length ξC 

200 nm, and penetration depth ξD 
 350 nm [34–36]. It was
used to study proximity effects under high magnetic fields in
graphene [34] and in a two-dimensional electron gas [37,38].
While d/(2π ) should be longer than magnetic length (
25 nm
at B = 1 T), L needs to satisfy πξC,πξD < L < �vM/(kBT ),
which means 350 nm < L/π < 11 500 nm at T = 12 mK;
Majorana resonance energies are resolved in the setup with
L < �vM/(kBT ), we estimate vM 
 0.14vf [27], and T 

12 mK was achieved [11]. This indicates that a range of L

is available for our prediction. Under the parameters (L =
7000 nm) used in Fig. 2, the energy splitting near zero bias
is about 0.024 meV in the Majorana case (see Fig. 3), and
0.022 meV in the graphene case (Fig. 4). Hence, the two
cases are distinguishable at a currently available temperature
of 12 mK (
0.001 meV).
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