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We show that in transition-metal compounds containing structural metal dimers there may exist in the presence
of different orbitals a special state with partial formation of singlets by electrons on one orbital, while others are
effectively decoupled and may give, e.g., long-range magnetic order or stay paramagnetic. A similar situation can
be realized in dimers spontaneously formed at structural phase transitions, which can be called the orbital-selective
Peierls transition. This can occur in the case of strongly nonuniform hopping integrals for different orbitals and
small intra-atomic Hund’s rule coupling JH . Yet another consequence of this picture is that for an odd number
of electrons per dimer there exists competition between the double-exchange mechanism of ferromagnetism and
the formation of a singlet dimer by the electron on one orbital, with the remaining electrons giving a net spin
of a dimer. The first case is realized for strong Hund’s rule coupling, typical for 3d compounds, whereas the
second is more plausible for 4d-5d compounds. We discuss some implications of these phenomena, and consider
examples of real systems, in which the orbital-selective phase seems to be realized.
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Introduction. Molecular-like clusters exist in many inor-
ganic transition-metal (TM) compounds. Sometimes these are
determined just by the crystal structure, such as dimers in
CuTe2O5 [1,2] or trimers in Ba4Ru3O10 [3]. However such
molecular clusters may also appear spontaneously from a
homogeneous solid, e.g., due to the Peierls or spin-Peierls
transition, which results in the formation of dimers in VO2 [4],
MgTi2O4 [5], or CuGeO3 [6], trimers in LiVO2 [7], tetramers
in CaV4O9 [8], or even heptamers like in AlV2O4 [9]. In many
such cases the TM ions have several electrons in different
orbital states, and often just one particular orbital is responsible
for the formation of a molecular cluster. The question arises,
what is in such a case the role and the “fate” of other electrons
which can exist on a TM ion.

Usually the intra-atomic Hund’s rule exchange JH binds
all electrons of an ion into a state with maximum spin, and,
e.g., when one particular electron on a certain orbital forms
a valence bond with the neighboring site, other electrons just
follow, so that all electrons are in a spin singlet state with
the neighboring site. However it is not the only possibility.
One can argue that if the intersite electron hopping is large
compared with the Hund’s exchange (which can happen
especially in 4d and 5d systems, in which the covalency is
strong, but JH is reduced), only one “active” electron at a
site would participate in the formation of a molecular orbital
(MO), the other electrons being, in a sense, decoupled and
able to live their own life. For example if the remaining
electrons would interact with other sites, they could form
some magnetically ordered state, which would coexist with
the molecular orbitals formed by “active” electrons. That is,
in this case we can speak about the orbital-dependent dimer
formation, or orbital-dependent Peierls transition. The same
mechanism leads to the competition between double-exchange
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ferromagnetism and the formation of singlet dimers for a
fractional number of electrons per center.

In this Rapid Communication we substantiate this picture
by different means, using analytical and numerical calcula-
tions, and discuss some experimental examples, in which this
phenomenon seems to take place.

Model treatment. Suppose we have a dimer, or a chain of
dimers with different orbitals at each site, only one of which
has a strong overlap with neighboring sites [white orbitals in
Fig. 1(a)]. Those orbitals provide strong intersite hopping tc. If
there will be two electrons per site in a dimer, then one electron
is localized on the bonding combination of c orbitals, while
another electron can occupy the orbital which has no, or much
smaller, overlap and hopping td with the neighbors [shaded
orbitals in Fig. 1(a)]. These localized electrons (d electrons)
interact with the “mobile” c electrons by the Hund’s rule
interaction HHund = −JH ( 1

2 + 2�Sid
�Sic), where Sid and Sic are

spins of localized and mobile electrons at site i. And of course
all electrons in principle would experience a local (Hubbard)
repulsion U . Thus the total model for the case of two different
orbitals per site can be written in the following form:

H =
∑
〈ij〉σ

(−tcc
†
iσ cjσ − tdd

†
iσ djσ ) + U

∑
iσσ ′

niσ niσ ′

− JH

∑
i

(
1

2
+ 2�Sid

�Sic

)
+ Hinter. (1)

Here the first three terms describe electrons in a dimer, and
Hinter takes into account electron hopping and other coupling
terms (e.g., the exchange interaction) between dimers. The
ground state of a dimer would be different depending on the
ratios of different parameters in Eq. (1).

(1) If we first ignore the Hubbard interaction and assume
the strong hopping, tc � JH (and td is small), the c electrons
would form a singlet state, a bonding state described by the
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FIG. 1. (a) The sketch illustrating how different hopping inte-
grals may appear in the system. The tddσ hopping between white
orbitals is larger than between gray tddδ . (b) Corresponding level
splitting.

usual MO [see Fig. 1(b)]: |MO〉 = 1
2 |(c†1↑ + c

†
2↑)(c†1↓ + c

†
2↓)〉.

The other electrons, not participating in formation of this
singlet, would be then effectively decoupled; i.e., the total
wave function would be

|M̃O〉 = 1
2 |(c†1↑ + c

†
2↑)(c†1↓ + c

†
2↓)�d〉. (2)

The d electrons can be also described by the singlet state
[but in Heitler-London (HL) form more appropriate for lo-
calized electrons]: �HL

d = |d†
1↑d

†
2↓ − d

†
1↓d

†
2↑〉/√2, or by other

combinations of localized spins, e.g., �AFM
d = |d†

1↑d
†
2↓〉 or

�FM
d = |d†

1↑d
†
2↑〉, to model partially ordered states. A particular

choice of �d depends on properties of the system, but the
orbital-selective behavior can be observed in any of them. If
we chose the HL form of �HL

d , then one gains in M̃O the full
bonding energy given by tc, but does not lower the total energy
due to the Hund’s term, 〈M̃O|HHund|M̃O〉 = 0.

(2) If, instead, JH > tc(� td ), then first of all the strong
Hund’s exchange would couple two spins at a site into
one common state with S = 1, and then we should form a
singlet out of these two states S = 1 at neighboring sites. The
corresponding wave function would have the form [10]

|H̃L〉 = |Stot = 0〉 = 1√
3

(∣∣Sz
1 = 1,Sz

2 = −1
〉

+ ∣∣Sz
1 = −1,Sz

2 = 1
〉 − ∣∣Sz

1 = 0,Sz
2 = 0

〉)
= 1√

3

(
|c†1↑d

†
1↑c

†
2↓d

†
2↓〉 + |c†1↓d

†
1↓c

†
2↑d

†
2↑〉

− 1

2
|(c†1↑d

†
1↓ + c

†
1↓d

†
1↑)(c†2↑d

†
2↓ + c

†
2↓d

†
2↑)〉

)
. (3)

We see that for strong Hund’s coupling the dimer wave function
has actually not MO, but HL form, the two-electron analog of
the usual HL wave function |HL〉 = 1√

2
|c†1↑c

†
2↓ − c

†
1↓c

†
2↑〉: it

does not contain ionic configurations of the type c
†
1↑c

†
1↓, etc.

For this state we gain the full Hund’s energy, but lose large
part of the bonding energy, which for JH > (tc,td ) is more
favorable.

The same state, (3), one would get also when we have
strong Hubbard interaction [(U,JH ) > (tc,td )]. It is interesting
to notice that both strong Hund’s exchange and Hubbard
repulsion lead to localization of electrons at respective sites,
and to the HL wave function. This is reminiscent of the notion
of Hund’s metal (or here rather Hund’s insulators) [11,12].

These limiting cases (1) and (2) may be not very realistic,
and one has to consider intermediate values of parameters
and include both the Hund’s rule exchange JH and the

Hubbard U . But we will see that the effect illustrated on the
limiting case JH = U = 0—the formation of a singlet state by
electrons on one orbital, other electrons remaining decoupled
and “magnetic”—survives also in a more realistic case. For
spontaneous dimerization, such as at a Peierls transition, this
would mean that we have a (strong coupling) orbital-selective
Peierls transition.

In the general case we can consider this situation using
the variational procedure, taking the wave function as the
superposition of the M̃O and H̃L states:

|�〉 = c(|M̃O〉 + α|H̃L〉), (4)

where c is the normalization factor, and minimizing total
energy 〈�|H |�〉. For simplicity the Hund’s rule interaction
will be treated in the mean-field way, i.e., substituting �S by
Sz in Eq. (1). Straightforward calculations show that indeed
the solution approaches to pure M̃O state for tc � (U,JH ),
and tends to the H̃L state in the opposite limit. For JH 
 tc
the coefficient α ∼ JH /tc. In the opposite limit JH � tc
the solution tends to the pure HL state, 1/α ∼ tc/JH . For
intermediate values the system gradually switches from one
regime, in which the first electron forms a singlet dimer with
the neighbor and the second is largely decoupled (orbital-
selective dimer formation), to a state in which both electrons
are in a singlet state.

Using the wave function (4) with the coefficient α deter-
mined variationally, we can also find the value of the average
spin at a site, e.g., for the case of antiparallel orientation of
spins at two sites, i.e., taking �AFM

d = |d†
1↑d

†
2↓〉 in (2), and

the corresponding part of the HL wave function [the first
term in (3), with proper normalization]. The coefficient α in
this case is α = JH /2tc for JH/tc 
 1, and α = 2JH /tc in
the opposite limit. The average spin 〈Sz

i 〉 on the ith site
in this case interpolates between the values 〈Sz

i 〉 = 1/2 for
JH = 0 and the “full” value 〈Sz

i 〉 = 1 for very large JH . The
asymptotic behavior is 〈Sz

i 〉 = 1/2 + JH /4tc for JH /tc 
 1
and 〈Sz

i 〉 = 1 − (tc/JH )2/8 for JH /tc � 1.
It is important to note that at intermediate values of JH /tc

the average spin at a site has the value intermediate between
1/2 and 1; i.e., the magnetic moment is 1μB < μ < 2μB .
It is this moment, strongly reduced as compared with 2μB

usually expected for the d2 configuration, which would be
seen in susceptibility and which could eventually participate
in magnetic ordering. Such strong quenching of a moment in
such systems may be a signature of partial orbital-selective
dimerization.

We can also take into account Hubbard repulsion between
electrons in the variational procedure. The results are very
similar to the case of Hund’s coupling only, with the substi-
tution JH → JH + U/4 (for the spin-ordered state considered
above). Thus we see that if both (JH ,U ) 
 tc, the system is in
an orbital-selective regime (c electrons form singlet dimers,
d electrons are effectively decoupled from those), and for
(JH ,U ) � t (either both, or at least one of them), we have a
HL state (3) with the total spin S per site and suppressed ionic
configurations. We see that the strong Hubbard and Hund’s
couplings act in the same direction: they both suppress the
MO state, localize electrons at particular sites, and couple
spins at the same ion into a total spin S. For strong Hubbard

161112-2



RAPID COMMUNICATIONS

ORBITAL-DEPENDENT SINGLET DIMERS AND ORBITAL- . . . PHYSICAL REVIEW B 89, 161112(R) (2014)

〉

〉

FIG. 2. (Color online) The total and partial magnetization per
dimer, calculated in C-DMFT. t ′ = 0.1 eV, td = 0.2 eV, tc = 6td ,
JH = td/2, U = 5td , T = 0.1 eV. Inset shows dependence of total
magnetization on Hund’s rule exchange.

interactions U � t already a relatively weak Hund’s coupling
JH > t2/U is sufficient for that. But in principle we can get
the HL state only due to the strong Hund’s coupling, even
without Hubbard repulsion.

DMFT calculations. To check the treatment presented
above we consider a model system—a one-dimensional chain
of dimers—using the cluster extension of the dynamical mean-
field theory (C-DMFT) [13] with the Hirsh-Fye (HF-QMC)
solver [14]. There are two orbitals and two electrons per site
in the dimer. Intradimer hoppings are td and tc, interdimer
−t ′ is the same for both orbitals and allowed only for
the neighboring sites. We neglected the intersite Coulomb
interaction, so that the sites are coupled by the kinetic energy
term only. The on-site Coulomb repulsion term was taken to be
Uσσ ′

mm = U , Uσσ ′
mm′ = U − 2JH , Uσσ

mm′ = U − 3JH . The Hund’s
rule exchange was considered in the Ising form.

The field dependence of the magnetization presented in
Fig. 2 shows that there is no magnetic response in a zero
external field (as here both tc and td are nonzero, the ground
state of a dimer is a singlet for both electrons). An increase of
Bext drives the systems to the orbital-selective regime, when c

electrons initially are predominantly in the MO singlet state,
while d electrons are detached, and start to be polarized only
at higher fields, and also the c-electron singlet is broken and c

electrons become polarized. As was argued above an internal
exchange field (e.g., Heisenberg exchange) may result in a
similar situation. Moreover the range of the orbital-selective
phase depends on the JH /tc ratio (see inset of Fig. 2).

A different character of the orbitals is also reflected
in the temperature dependence of the uniform magnetic
susceptibility χ (T ). It is seen in Fig. 3 that the overall
temperature behavior of χ is consistent with what one may
expected for dimers: a drastic decrease at low temperatures
(LT) due to the spin singlet state formation and Curie-like
tail at high temperatures. However partial contributions to the
susceptibility is again quite different. The orbital with the
smallest hopping provides the largest contribution at low T.
Corresponding electrons behave as free spins at intermediate
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FIG. 3. (Color online) Uniform magnetic susceptibility, calcu-
lated in C-DMFT as χ = M/Bext, where M is magnetization per
dimer, and Bext external magnetic field. t ′ = 0.1 eV, td = 0.4 eV,
Bext = 0.1 eV, U = 5.25t ′, tc = 3td , JH = 1.25td .

temperatures, whereas c electrons are still in a singlet dimer
state. Only with further increase of the temperature the second
orbital starts to contribute. This may result in the shift of
the magnetic susceptibility maximum and has to be taken
into account in the fitting procedures (to evaluate exchange
integrals) for systems with the orbital-selective behavior.

Thus these results indeed confirm our model treatment
presented above: for the chosen parameters one may ob-
serve formation of the orbital-selective singlet state, which,
if we start from a regular system and make spontaneous
dimerization, would correspond to the orbital-selective Peierls
transition.

Real materials. As we saw above, the orbital-selective
singlet state can occur for specific conditions: when hopping
for one orbital in a dimer is comparable or larger than the
intra-atomic Hund’s exchange (and Hubbard repulsion). This
is less likely in 3d systems, for which U or JH are usually larger
than hopping (U ∼ 3–6 eV, JH ∼ 0.7–1.0 eV), and this is why
this situation is not realized in V2O3 [15], as was proposed by
Castellani et al. [16].

But such state could easily appear in 4d and 5d systems,
where both JH and U are strongly reduced, while t is getting
larger. Thus for 5d metals typically U ∼ 1–2 eV, JH ∼ 0.5 eV,
but the radius of 5d orbitals is larger than of 3d, and we can
get to the situation with dd hopping at least of order or larger
than (U , JH ).

Such a situation may be met in some systems with
dimerization, e.g., Li2RuO3, where Ru-Ru dimers are formed
in the common edge (of RuO6 octahedra) geometry. The
hopping between two xy orbitals directed to each other in
the dimer is ∼1.2 eV, which is much larger than between any
other of t2g orbitals (∼0.3 eV) [17]. This may explain why in
the high-temperature phase magnetic susceptibility behaves as
for paramagnetic S = 1/2, not S = 1, centers (as it should be
for Ru4+) [17].

Also some 3d compounds can show the behavior described
above, although it is less likely than for 4d and 5d systems.
Most probably this is the situation in V4O7 [18–20]. The NMR
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FIG. 4. (Color online) Possible orbital states in the case of the
dimer with 2 orbitals per site and 3 electrons per dimer.

data suggest that there is a partial formation of singlets in
V3+ chains, with the remaining magnetic moment of V3+ (d2)
strongly reduced [19]. Thus, though this system is hardly an
example of complete decoupling of two electrons on each V,
it is apparently “half way” to this regime.

Yet another realization of orbital-selective dimerization can
exist when electrons on one orbital form dimers, but the others
fill three-dimensional bands, so that the resulting state could
be a metal, but with dimers. Such state seems to exist in MoO2

[21]. MoO2 has a rutile structure, and Mo ions form dimers
similar to those existing below the famous metal-insulator
transition in VO2. But, whereas in VO2 there is one electron
per site, which forms singlet dimers, so that the LT state of
VO2 is a diamagnetic insulator, in Mo there are two electrons
per Mo, one of which gives in MoO2 the same dimers as in
VO2, and the other electrons provide metallic conductivity.

A special situation can exist if there is fractional occupation
of d levels, giving an odd number, e.g., three, of electrons
per dimer [22]. When JH > t , one expects the usual double
exchange (DE), which gives the state with all spins parallel
[Fig. 4(b)] with the energy E2b = −tc − JH , if the Hund’s rule
term in Eq. (1) is treated in a mean-field way. In the opposite
case [Fig. 4(a)] two electrons form a singlet bonding state, with
the remaining unpaired spin-1/2 per dimer and with the energy
E2a = −2tc − td − JH/2. Thus the DE ferromagnetism is
realized if JH > 2(tc + td ); in the opposite limit a partial
singlet formed on strongly overlapping orbitals suppresses DE
and reduces total spin. The first situation is typically realized

in 3d systems with large JH , e.g., in Zener polarons in doped
manganites (note that Zener suggested this concept just for Mn
dimers) [23,24]. The alternative state, with partial singlets,
is more plausible for 4d-5d systems; e.g., it was found in
Y5Re2O12 [25].

Conclusions. Using analytical and numerical calculations
we demonstrate that in systems with orbital degrees of freedom
there may exist structural dimers in the orbital-selective
singlet state, or there may appear a (strong coupling) orbital-
selective Peierls transition: electrons on one orbital, having
strong overlap and large hopping within the dimers, form a
singlet state (bonding MO), whereas other electrons remain
essentially decoupled and can, for example, give long-range
magnetic ordering (with strongly reduced moment) or stay
paramagnetic. This situation resembles somewhat that of the
orbital-selective Mott transition [26]. For partial filling of
d levels, e.g., three electrons per dimer, this can lead to
the suppression of the usual double-exchange mechanism
of ferromagnetism: mobile electrons can form singlets, the
remaining electrons being decoupled from those. Typically
such phenomena may occur when hopping between particular
orbitals becomes larger than (or at least comparable to) the
Hubbard repulsion U and Hund’s exchange JH . It is not very
plausible for 3d systems (although there are such examples);
but it is likely for 4d-5d compounds, for which both U and
JH are strongly reduced, but the covalency and hopping are
increased. We discuss different possible states which may
appear in this situation, consider its possible experimental
manifestation, and present some real examples of systems in
which this physics seems to play a role.
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