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Enhanced compressibility due to repulsive interaction in the Harper model
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We study the interplay between a repulsive interaction and an almost staggered on-site potential in one
dimension. Specifically, we address the Harper model for spinless fermions with nearest-neighbor repulsion, close
to half filling. Using the density matrix renormalization group, we find that, in contrast to standard behavior,
the system becomes more compressible as the repulsive interaction is increased. By deriving a low-energy
effective model, we unveil the effect of interactions using mean-field analysis: The density of a narrow band
around half filling is anticorrelated with the on-site potential, whereas the density of lower occupied bands follows
the potential and strengthens it. As a result, the states around half filling are squeezed by the background density,
their band becomes flatter, and the compressibility increases.
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There has been much interest in the influence of electron-
electron (e-e) interactions on the compressibility of electronic
systems. This interest is motivated by the intricate many-body
physics revealed by the behavior of the compressibility, as
well as by the technological challenge of building field effect
transistors with a larger capacitance, essential for lower power
consumption and quicker clock rates [1,2].

The compressibility of an electronic system, i.e., the change
in the number of electrons residing in a system as the chemical
potential is varied, can be measured via capacitive coupling
to another metallic system. Alternatively, the system can be
weakly coupled to a plunger gate and leads. Jumps in the
current that passes through the leads as a function of the
gate voltage count the number of electrons in the system as a
function of the chemical potential. In the context of quantum
dots, this is known as the addition spectrum [3].

Compressibility is measurable also in highly controlled
many-body systems such as molecular manipulation on metal
surfaces [4] and ultracold atoms and ions in optical lattices
[5–8]. In optical lattices, transport measurements are challeng-
ing. Nevertheless, squeezing the trapping potential acts on the
density as a variation of the chemical potential, revealing the
bulk compressibility [9].

Usually, the influence of repulsive interactions on the
ground state of disordered metallic systems is well described
by a mean-field theory, which may be reduced to the classical
capacitance of the system. Increasing the repulsive interaction
then corresponds to reduced capacitance, i.e., the system
becomes less compressible, and eventually localizes [10].
This is true even beyond the mean-field treatment, as shown
for one-dimensional (1D) Luttinger liquids with K < 1 [11],
and in zero-dimensional (0D) quantum dots [3]. There are
some cases, in clean systems near a Mott transition, where
the opposite occurs [12–14]. Interestingly, there are several
unexplained counter examples measured in disordered semi-
conducting dots [15,16].

In this Rapid Communication, we present a simple 1D
nonhomogeneous metallic system for which the compress-
ibility increases with a weak e-e interaction, i.e., we report
on a flow from a metal to localization, driven by a repulsive
interaction, that is outside the standard paradigm. Specifically,

we study the Harper (or Aubry-André) model [17,18] of
spinless fermions close to half filling with a nearest-neighbor
repulsive interaction. The on-site potential is spatially modu-
lated with a frequency of an almost two lattice-sites period,
corresponding to a fast modulation with a slow envelope.
Using the density matrix renormalization group (DMRG), we
numerically extract the inverse compressibility as a function
of the density, and find it decreasing with the interaction
strength. We analytically show that this effect results from
the presence of a flat band at half filling, which is composed of
a superlattice of states that reside at the valleys of the potential
envelope. The repulsive interaction from occupied lower bands
squeezes these valley states, and accordingly, the central band
flattens and its compressibility increases. Our approach can
be extended to numerous other models, such as disordered
systems with fast and slow spatial components of disorder,
and Harper models with spin.

The tight-binding Harper model for spinless fermions with
nearest-neighbor repulsive interaction is

H =
L∑

j=1

[tc†j cj+1 + H.c. + λ cos(2πbj + φ)nj + Unjnj+1],

(1)

where cj is the single-particle annihilation operator at site j ,
nj = c

†
j cj is the density, t is a real hopping amplitude, λ > 0

controls the amplitude of the on-site potential, and U > 0 is
the strength of the repulsive interaction. The potential is cosine
modulated in space with frequency b, and φ is an arbitrary
phase factor.

The Harper model is a wellspring of physical phenomena,
and is therefore under continuous study. For example, when
the modulation frequency b is an irrational number, and in
the absence of an interaction, a metal-insulator transition
takes place as a function of the potential strength at λ =
2t [6,18–23]. Much effort has gone into understanding the
influence of interactions on this transition [24–27]. Recently,
it was also found that for an irrational b, the Harper model is
topologically nontrivial, and may have topological boundary
states [28–31].
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FIG. 1. (Color online) The effect of interactions: (a) The single-
particle spectrum of the Harper model [cf. Eq. (1) with U = 0] with
an open boundary condition, for L = 200, t = 1, λ = 0.7, φ = 0.7π ,
and b = √

30, which corresponds to ε ≈ −0.023. The central band
(bright green) is almost flat, as seen in the zoom-in inset [35]. (b) The
inverse compressibility as a function of the number of particles [cf.
Eq. (2)], obtained by DMRG, for various values of interaction strength
U . Surprisingly, the central band becomes more compressible as a
function of interaction strength U .

Here, we take a different approach, and study the effect
of the interplay between the inhomogeneous potential and the
interaction on compressibility. Therefore, in the following,
we assume that we are in the metallic phase, i.e., λ < 2t .
Moreover, we consider the cases of b mod 1 = 1/2 + ε with
|ε| � 1/2, be it rational or irrational. The striking property of
such b is that in the vicinity of half filling, the energy spectrum
is composed of an almost flat central band separated from the
other bands by large gaps, as depicted in Fig. 1(a). Therefore,
even a weak interaction may generate interesting phenomena.

The inverse compressibility of a system with N particles
�2(N ) is defined as the change in the chemical potential due
to the insertion of the N th particle. For many-body systems, it
is given by

�2(N ) = E(N ) − 2E(N − 1) + E(N − 2), (2)

where E(N ) is the system’s many-body ground-state energy
with N particles. For noninteracting systems at zero temper-
ature, �2(N ; U = 0) = EN − EN−1, where EN is the N th
single-particle eigenenergy.

A finite sized Harper model can be thought of as a qua-
sidisordered 1D quantum (anti)dot. At low temperatures, the
inverse compressibility of a disordered quantum dot is usually
described by the constant-interaction (CI) model, which has
been shown to fit experimental measurements very well [3].
According to this model, �2(N ) = �2(N ; U = 0) + e2/C,
where C ≈ L is the total capacitance, and e2 ≈ U . Thus, an
increase in U increases �2.

We extract �2(N ) of our interacting system using
DMRG [32,33]. We choose b = √

30 and φ = 0.7π . The
former corresponds to ε ≈ −0.023 [34]. The system is of
length L = 200, with N = 91,92, . . . ,108 electrons. For
t = 1, the potential amplitude is λ = 0.7, which creates a
central band that is very flat, but keeps �2 greater than the
numerical accuracy. Interaction strengths of U = 0.1,0.2,0.3
are considered. The boundary condition is open, since it
significantly improves accuracy [32,33]. Keeping 384 target
states, we extract the ground-state energy E(N ) for each N .
The numerically obtained �2(N ), using Eq. (2), is depicted
in Fig. 1(b). The accuracy of �2 drops as U increases,
and is about ±3 × 10−4t for U = 0.3. Strikingly, the inverse
compressibility decreases with increasing U . This implies that
the underlying physics is very different than the one of the CI
model.

Remarkably, we can reproduce this behavior analytically.
First we study the noninteracting case, i.e., U = 0. The on-
site cosine modulation can be rewritten as λ cos(2πbj + φ) =
λ cos(2πεj + φ)(−1)j . Since ε � 1, the potential is locally
oscillating with modulation frequency b = 1/2, while being
subject to an amplitude envelope λ(j ) varying slowly in space
with wavelength 1/ε [see Fig. 2(a)].

We postulate that the low-energy physics around E = 0,
and in particular that of the central flat band, is governed by
states that minimize both the kinetic and potential energies.
The potential energy is minimized by states that reside

FIG. 2. (Color online) Modulated potential: (a) The on-site
potential (red dots) is a product of a fast alternating part and a
slow envelope (solid gray line), corresponding to cos(2πεj + φ).
Inset: At its valleys, the potential is linearly approximated. (b) The
density of the central band (green), and the background density of the
occupied states below it (blue). The filling corresponds to numerical
results, whereas the dots correspond to the analytical expressions
[cf. Eqs. (5) and (9), respectively]. The central band is composed of
waves of hybridized Gaussians that form a superlattice. Remarkably,
the states of the central band reside in the potential valleys, whereas
the background density follows the potential peaks.
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within the valleys of the potential, where the envelope
vanishes, i.e., in the vicinity of j ≈ lz, where 2πεlz + φ ≈
(Z + 1/2)π . Within the zth valley of the potential, we can lin-
early approximate the envelope, cos(2πεj + φ) ≈ 2π |ε|(j −
lz)sz, where sz = −sgn [sin(2πεlz + φ)] = ±1. The effective
Hamiltonian for a particle confined to the valley is therefore

H valley =
L∑

j=1

[tc†j cj+1 + H.c. + sz2π |ε|λ(−1)j (j − lz)c
†
j cj ]

=
∫ π

0

dk

2π/L
ψ

†
k[2t cos(k)σx + sz2π |ε|λ(p̂k − lz)σz]ψk,

(3)

where p̂k = i∂k , σi are Pauli matrices, and ψk = (cek,cok)T

is the sublattice pseudospinor that splits the lattice into even
and odd sites, according to cek = √

2/L
∑L/2

j=1 eik2j c2j and

cok = √
2/L

∑L/2
j=1 eik(2j−1)c2j−1.

Around zero kinetic energy, we linearize cos(k) ≈ −(k −
π/2). Now, using the rotation T̂ = (1 + iszσx)/

√
2, we rewrite

the Hamiltonian in a supersymmetric form,

H valley =
√

8
t

ξ

∫ π

0

dk

2π/L
(T̂ ψk)†

(
0 a

†
k

ak 0

)
(T̂ ψk), (4)

where ak = −(k − π/2)ξ/
√

2 + i(p̂k − lz)/
√

2ξ , and ξ 2 =
t/(πλ|ε|). Since ak satisfies [ak,a

†
k] = 1, it is a ladder operator.

Remarkably, this momentum-space Hamiltonian is similar to
that of the two-dimensional (2D) massless Dirac equation in
the presence of a perpendicular magnetic field in the Landau
gauge. Using the ladder operators, we find that the energy
spectrum of H valley is ±√

8nt/ξ , where n = 0,1, . . . [36]. In
particular, there is a zero-energy solution with an eigenstate

|lz〉 ≈ (πξ 2)−1/4
L∑

j=1

(sz)
jSj e

−(j−lz)2/2ξ 2 |j 〉, (5)

where |j 〉 = c
†
j |vacuum〉, Sj = √

2 cos (jπ/2 − π/4) =
. . . ,1,1,−1,−1,1,1, . . ., and we used the fact that ξ � 1.
This wave function is confined to a Gaussian of width ξ

around lz. Notably, the wave functions of the excited states
are also confined with the same Gaussian, similar to the
eigenstates of the harmonic oscillator [36].

Turning back to the original noninteracting Hamiltonian,
there is a superlattice of valleys, each with its corresponding
zero-energy state. We expect these states to hybridize and
form the central band. The |lz〉 states form a basis for this
subspace, since 〈lz|lz±1〉 = 0 and |〈lz|lz′ 〉| � e−(lz−lz′ )2/2ξ 2 � 1.
We can therefore project the Hamiltonian to this subspace.
The projected Hamiltonian is given by the matrix elements
〈lz|H (U = 0)|lz′ 〉. The diagonal elements z′ = z vanish, since
|lz〉 is of zero energy. The Gaussian decay implies that for |z′ −
z| � 2, the matrix elements are negligible. We are therefore
left only with 〈lz|H (U = 0)|lz±1〉, namely, hopping between
neighboring valleys. The resulting effective Hamiltonian for
the central band is [36]

H central = −t̄
∑Lz

z=1c
†
lz
clz+1

+ H.c., (6)

where Lz = 	2|ε|L
 is the number of valleys, and t̄ ≈
e−ξ 2/(4ξ 2ε)2{2te−1/4ξ 2

sinh[(4ξ 2|ε|)−1] − λe−π2ε2ξ 2}.

Notably, we obtain t̄ ≈ 0.0012, which is slightly smaller
than the numerically observed t̄ ≈ 0.0019 [cf. the inset of
Fig. 1(a)]. The small discrepancy arises from using the linear
approximation of the potential also between the valleys,
leading to a too fast decay of the wave function. Substituting
1.16ξ 2 for ξ 2 in the expression of t̄ corrects the bandwidth.

For a periodic boundary condition, the eigenstates of
H central are plane waves |k〉 = L

−1/2
z

∑Lz

z=1 eikz|lz〉 with spec-
trum Ecentral(k) = −2t̄ cos k, where k = 2πn/Lz with n =
1, . . . ,Lz. Note that these are plane waves of valley Gaussians,
as can be seen from Fig. 2(b), which depicts the total density
of the central band. Notably, the bandwidth of the central band
4t̄ is much smaller than the gap to the bands of the first excited
states

√
8t/ξ , as seen in Fig. 1(a). Therefore weak interactions

and low temperatures will not mix it with the other bands.
At the presence of the repulsive interaction U , the effective

model of the central band enables us to describe the increase
in compressibility using mean-field theory. Here,

∑
j nj+1nj

is approximated by
∑

j [(〈nj+1〉 + 〈nj−1〉)nj − 〈nj 〉〈nj+1〉 −
〈pj 〉c†j+1cj − 〈pj 〉∗c†j cj+1 + |〈pj 〉|2], with 〈nj 〉 as the back-

ground density, and 〈pj 〉 = 〈c†j cj+1〉 as the background ex-
change energy, both created by the occupied satellite bands
below the central band. The constant terms do not contribute
to �2(N ), and will therefore be ignored. The mean-field
approximation adds effective single-particle terms, both on-
site potential and hopping, which are modified according to
the background density and exchange energy.

We therefore turn to estimate 〈nj 〉 and 〈pj 〉, and be-
gin by solving the simplest Hamiltonian of Eq. (1) with
U = ε = 0. This Hamiltonian describes a uniform staggered
potential (−1)jλ cos φ. Its spectrum is gapped, unless the
staggered potential is turned off at φ = π/2. If the lower
band is fully occupied, then the many-body density is also
staggered, 〈nj 〉|ε=0 = 1/2 − (−1)j n̄(λ cos φ/2t), whereas the
many-body exchange energy is constant in space 〈pj 〉|ε=0 =
p̄(λ cos φ/2t), where

n̄(x) = π−1 sgn(x)K(−x−2), (7)

p̄(x) = −π−1|x|[E(−x−2) − K(−x−2)], (8)

and K(x) and E(x) are the complete elliptical integrals of the
first and second kind, respectively [36].

For ε �= 0, the on-site potential corresponds locally to
(−1)j , while λ cos φ varies slowly in space. Therefore, we
expect that the above expressions to remain valid locally and
vary slowly in space,

〈nj 〉 ≈ 1/2 − (−1)j n̄ [λ cos(2πεj + φ)/2t] , (9)

〈pj 〉 ≈ p̄[λ cos(2πεj + φ)/2t]. (10)

Figure 2(b) depicts the background density 〈nj 〉 obtained
both numerically and analytically, according to Eq. (9), and
they fit very well. It can be seen that 〈nj 〉 follows the
cosine modulation. Therefore, between the valleys, 〈nj 〉 ≈
1/2 − (−1)j n̄(λ/2t) cos(2πεj + φ), to first approximation.
The background exchange energy 〈pj 〉 is approximately
uniform in space, and thus 〈pj 〉 ≈ p̄(λ/2t).

Substituting these simplifications in the mean-field approx-
imation of H , we find that the background density increases the

161106-3



RAPID COMMUNICATIONS

KRAUS, ZILBERBERG, AND BERKOVITS PHYSICAL REVIEW B 89, 161106(R) (2014)

FIG. 3. (Color online) Mean-field theory: (a)–(c) The effect of
interaction between the central band and the background density,
parametrized by the strength U , on (a) the effective on-site and
hopping amplitudes λeff and teff for bare t = 1 and λ = 0.7 [cf.
Eq. (11)], (b) the width of the single-valley Gaussian ξ 2 [cf. Eq. (5)],
and (c) the resulting hopping amplitude t̄ of the central band’s
effective model [cf. Eq. (6)]. (d) The inverse compressibility of the
central band obtained by the effective model of the central band (open
circles) compared to that obtained by DMRG (solid lines and dots;
cf. Fig. 1). An increasing interaction corresponds to darker (green)
shades.

modulated on-site potential, and the exchange energy enhances
the hopping,

H MF =
L∑

j=1

[teffc
†
j cj+1 + H.c.

+ λeff cos(2πbj + φ)nj + Unj ], (11)

where λeff = λ + 2Un̄(λ/2t) and teff = t + Up̄(λ/2t). Simi-
lar to H (U = 0), H MF has a central band of superlattice states.
Nevertheless, the width of the valley states ξ and their hopping
amplitude t̄ are here determined by λeff and teff , rather than by
λ and t . Although both λeff and teff increase with U , λeff grows
faster. Therefore, ξ = ξ (teff/λeff) decreases as a function of U ,
making the Gaussians squeezed. Consequently, t̄ also reduces,

and the central band becomes narrower [see Figs. 3(a)–3(c)].
Intuitively, it is caused by the fact that the background density
follows the on-site potential, whereas the states of the central
bands are localized in its valleys. Therefore, the repulsion from
the background density squeezes the Gaussians and reduces
their overlap.

In order to recover the enhanced compressibility in the
interacting case, one can diagonalize the effective noninter-
acting model of the central band H central [cf. Eq. (6)] with
t̄(teff,λeff), and extract �2. Figure 3(d) depicts �2(N,U ) that
is obtained following this procedure. Clearly, it fits nicely to
the one observed by DMRG. We note that the low-energy
excitations of the satellite bands are also composed of valley
states, and therefore they also have decreasing compressibility,
as implied by Fig. 1(b). However, since the gap that separates
them from the background states is much smaller, they will
mix for a much weaker interaction and lower temperatures.

To summarize, we study an unusual increase of compress-
ibility due to a repulsive interaction, which does not fit the
standard paradigm on the influence of an e-e interaction on
a metallic state in 1D. In turn, we expect an interesting
flow to localization by interactions. Our analysis is readily
extended to any potential that has fast oscillations times a
slowly modulated envelope, be it ordered or random. Such
potentials will exhibit localized states within the potential
valleys—states that would get squeezed by the interaction with
the background. As such, this may be an appropriate model for
describing granular disordered metals, and an inhomogeneous
background potential of quantum dots. For the latter, it captures
the essential ingredients for the solution of that long-standing
puzzle: The experiments show increasing compressibility with
repulsive interactions, and evidence that consecutive electrons
that enter the system at a very close chemical potential reside
in different regions of the sample [15,16]. Last, it would be
interesting to study the effects of an interaction on similar 2D
models [37].
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