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Dissipationless kinetics of one-dimensional interacting fermions
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We study the problem of evolution of a density pulse of one-dimensional interacting fermions with a nonlinear
single-particle spectrum. We show that, despite the non-Fermi-liquid nature of the problem, nonequilibrium
phenomena can be described in terms of a kinetic equation for certain quasiparticles related to the original
fermions by a nonlinear transformation which decouples the left- and right-moving excitations. Employing this
approach, we investigate the kinetics of the phase-space distribution of the quasiparticles and thus determine
the time evolution of the density pulse. This allows us to explore a crossover from the essentially free-fermion
evolution for weak or short-range interaction to hydrodynamics emerging in the case of sufficiently strong,
long-range interaction.
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Understanding nonequilibrium phenomena is one of the
central themes in condensed matter physics. For Fermi-
liquid systems (e.g., electrons in metals) such phenomena
are conventionally described in the framework of a quantum
kinetic equation for quasiparticle excitations. According to
Landau Fermi-liquid theory, it has the same form as for weakly
interacting particles up to a renormalization of parameters
(effective mass, interaction constants, and scattering integral).
This equation governs the evolution of a single-particle density
matrix (characterizing the quasiparticle phase space distribu-
tion) and readily yields various physical observables [1–3].

For a variety of strongly interacting fermionic systems,
the Fermi-liquid theory (at least, in its standard form) is
not applicable: interaction destroys the quasiparticle pole. In
these cases one has to find an alternative way to describe
transport and nonequilibrium phenomena. This is usually
done by formulating effective theories in terms of some
collective degrees of freedom. A famous realization of a
non-Fermi-liquid state is provided by one-dimensional (1D)
interacting fermions. This system is characterized by a strongly
correlated ground state—Luttinger liquid (LL) [4–8]—which
exhibits an infrared divergence of an electronic self-energy,
eliminating the quasiparticle pole from the spectral function.
This manifests itself in a power-law suppression of the
tunneling (zero-bias anomaly) and indicates that quasiparticle
excitations are ill defined. A well-known tool for dealing
with such correlated 1D systems is bosonization [4–8]. After
linearization of the fermionic spectrum, it allows one to map
the problem onto one of noninteracting bosons. For arbitrary
distribution functions, the nonequilibrium bosonization yields
results for LL correlation functions in terms of singular
Fredholm determinants [9,10].

In this work we explore the kinetics of interacting 1D
fermions, having in mind the following model setup. Initially,
a density perturbation (hump or dip of amplitude �ρ and
width �x) is created by an external potential. At time t = 0
the potential is switched off, and electronic pulses start to
propagate to the right and to the left. The evolution of the

electronic density as a function of time is measured. While
experiments of this type are particularly natural in the context
of cold atomic gases [11,12], we expect them to also be feasible
for electronic systems [13]. Since for a linearized spectrum the
pulse moves without changing its form, a curvature 1/m of the
single-particle spectrum is absolutely essential for the problem
under consideration. Specifically, due to the combined effect
of Fermi statistics and curvature, the top of the pulse moves
faster than its bottom. Thus, a tendency to “overturn” of the
pulse develops at a certain time tc ∼ m�x/�ρ, making the
pulse evolution for times t > tc a challenging problem [14].

The nonlinearity of a fermionic spectrum induces an
interaction between bosonic collective modes [15–21], giving
rise to a quantum hydrodynamic theory. Such “nonlinear
Luttinger liquids” arise in a variety of fermionic, bosonic,
and spin systems and have recently attracted considerable
attention [22,23].

A natural idea is to try to tackle the interaction between
the bosonic modes perturbatively [24]. As it turns out, the
1D character of the problem induces infrared singularities
invalidating the naive perturbative expansion. The bosonized
theory is treatable only in the limit of strong and long-ranged
interaction, which justifies the saddle-point approximation, as
was done in Ref. [14] for the Calogero model and in Ref. [25]
for a generic interaction. Equations of motion obtained in
this way can be viewed as Euler and continuity equations
for an ideal fluid, and therefore the system is described by
a nondissipative classical hydrodynamics. Depending on the
sign of the initial pulse, an interplay between nonlinearity and
dispersion leads to the emergence of strong density oscillations
or of solitons after the shock [25].

The problem has been also studied in the opposite limit of
free fermions [25,26], where the evolution of the Wigner func-
tion is described by a simple kinetic equation. For sufficiently
long times, t > tc, a population inversion occurs [27], leading
to density oscillations that can be viewed as Friedel-type
oscillations between different Fermi edges.
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Thus, the pulse evolution was analyzed in two opposite
limits (no vs strong long-range interaction) by different means
(fermionic vs bosonic), and within different physical pictures
(inverted population vs hydrodynamic waves). We now address
this problem for an arbitrary interaction. By bosonizing
the system, performing a certain unitary transformation and
refermionizing it, we explicitly build corresponding quasipar-
ticle operators and formulate a kinetic description in their
terms. The latter describes, in particular, the sought density
evolution.

The problem is characterized by a Hamiltonian H = H0 +
Hint, where the kinetic part H0 describes two spinless chiral
modes (labeled by subscript η = R,L or, occasionally, η =
±1) with a nonlinear spectrum

H0 =
∑
η,k

ηkvF : a+
ηkaηk : +(1/2m)

∑
η,k

k2 : a+
ηkaηk : . (1)

The interaction part reads

Hint = (1/2)
∫

dx1dx2g(x1 − x2)ρ(x1)ρ(x2), (2)

where ρ = ρL + ρR is the density. The kinetic term can be
bosonized as follows [15]:

H0 = πvF

∫
dx

(
ρ2

R + ρ2
L

) + (4π2/6m)
∫ (

ρ3
R + ρ3

L

)
(3)

with Fourier components of the densities satisfying the
standard commutation relations (L is the system length)
[ρη,q,ρη′,−q ′ ] = ηδη,η′δq,q ′Lq/2π . The interaction mixes the
chiral sectors. On the quadratic level, this coupling can be
eliminated by a canonical transformation Rq = U2ρR,qU

†
2 ,

Lq = U2ρL,qU
†
2 of the standard Bogoliubov form

ρR,q = cosh κqRq − sinh κqLq, (4)

ρL,q = − sinh κqRq + cosh κqLq, (5)

where tanh 2κq = gq/(2πvF + gq). In terms of new fields, the
quadratic part is

H (2) = (π/L)
∑

q

uq(RqR−q + LqL−q) (6)

with a sound velocity uq = vF (1 + gq/πvF )1/2 = vF /Kq .
As a side effect of Bogoliubov transformation, the cubic

part of the Hamiltonian acquires a form that mixes the right
and left movers:

H (3) = (2π2/3mL2)
∑

q

�q[(R1R2R3 + L1L2L3)

+ 3�′
q(R1R2L3 + L1L2R3)]. (7)

Here we have introduced notations q ≡ {q1,q2,q3}, Ri = Rqi
,

Li = Lqi
; the summation over q is restricted to q1 + q2 + q3 =

0 and we have defined vertices (κi ≡ κqi
)

�q = ch κ1 ch κ2 ch κ3 − sh κ1 sh κ2 sh κ3,
(8)

�′
q = sh κ1 sh κ2 ch κ3 − ch κ1 ch κ2 sh κ3 .

The decoupling of the right and left sectors of the theory
can be extended to the cubic level. To this end, we perform

an additional unitary transformation ρ̃R = U3RU
†
3 and ρ̃L =

U3LU
†
3 , determined by the operator

U3 = exp
∑

q

[fqR1R2L3 − (L ↔ R)], (9)

where

fq = 2π2

mL2

�
′
q

uq1q1 + uq2q2 − uq3q3
. (10)

After this transformation, the Hamiltonian H mixes the left
and right modes only due to the terms quartic in the density

H = (π/L)
∑
η,q

uqρ̃η,q ρ̃η,−q

+ (2π2/3mL2)
∑
η,q

�qρ̃η,1ρ̃η,2ρ̃η,3 + O(ρ̃4) . (11)

The O(ρ̃4) terms are small and will be neglected.
We have thus obtained a chiral bosonic theory (11), with

interaction originating from the nonlinearity of the fermionic
spectrum and a q-dependent sound velocity originating
from the electron-electron interaction. We now proceed by
refermionizing this theory, following the idea put forward
in Ref. [28] (see also [22,29]), where such a mapping was
performed after the conventional Bogoliubov transformation
U2. It is crucial for our problem that we also carry out the
transformation U3, decoupling the chiral sectors, and only
then refermionize. More specifically, we define “composite
fermion” operators that are built from the original ones by
consecutive rotations

	̃η = U3U2	ηU
†
2U

†
3 . (12)

Since the rotation is exponential in the density fields, this
somewhat resembles the composite-fermion transformation
in the fractional quantum Hall regime. In terms of the new
operators, the Hamiltonian is given by

H =
∑
η,k

	̃
†
η,k

(
ηu0k + k2

2m∗

)
	̃η,k + 1

2L

∑
η,q

Vqρ̃η,q ρ̃η,−q

+ 2π2

3mL2

∑
η,q

γqρ̃η,q1 ρ̃η,q2 ρ̃η,q3 . (13)

The quadratic part of the Hamiltonian (13) is parametrized by
the renormalized Fermi velocity u0 ≡ uq=0 and the spectral
curvature

1/m∗ � �q=0/m. (14)

There is also a residual interaction between particles repre-
sented by two-particle and three-particle vertices

Vq = 2π (uq − u0), γq = �q − �q=0. (15)

The residual interaction Vq vanishes at low momenta (Vq ∝ q2

for a generic finite-range interaction) and is irrelevant in the
renormalization-group sense. The three-body interaction is
still weaker (γq ∝ q2 and, in addition, contains the factor
ρ/m∗u 	 1) and we neglect it from now on [30]. The
disappearance of the interaction at small momenta makes
perturbation theory for the composite fermions regular in the
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FIG. 1. (Color online) The initial quasiparticle Wigner function
f̃0(x,p). The thick black line shows the classical Fermi surface
pF (x) = 2πρ0(x).

infrared limit, and the system behaves as a weakly interacting
Fermi gas.

We define the quasiparticle density matrix

f̃η(x,y,t) = 〈	̃†
η(x − y/2,t)	̃η(x + y/2,t)〉

=
∫

(dp/2π )eipyfη(x,p,t) (16)

that within the Hartree approximation satisfies the collisionless
quantum kinetic equation

∂t f̃η(p,x,t) + (p/m∗)∂xf̃η(p,x,t) +
∫

(dp/2π )e−ipy

× f̃η(x,y,t)[φ̃η(x + y/2) − φ̃η(x − y/2)] = 0, (17)

with the self-consistent electric field

φ̃η(x,t) =
∫

dx ′V (x − x ′)ρ̃η(x ′,t). (18)

To obtain the physical density ρ out of the solution ρ̃ one needs
to use the relation between the densities; in the leading order
ρ � √

Kρ̃ (see [31]). Note that Eq. (17) is exact in the limits
of noninteracting electrons and of a harmonic LL (m → ∞,
arbitrary electron interaction) (see [31]).

In order to analyze the pulse dynamics, we solve Eq. (17)
numerically (see [31]), focusing on times exceeding the
“shock formation time” tc ∼ m�x/�ρ when the phase-space
distribution of noninteracting fermions develops an inverse
population. The Wigner function in the initial state was
discussed in Refs. [25,32] (see also [31]). We plot it in Fig. 1
for a Gaussian density hump [ρ̃0(x) = �ρ exp(−x2/2σ 2)
with σ = 200/mvF and �ρ = 0.01mvF ] in the initial state.
Besides changing from 0 to 1 at classical Fermi surface
pF (x) = 2πρ̃0(x), the Wigner function exhibits phase-space
oscillations (that do not manifest themselves in the total density
for a spatially smooth hump).

While our approach is very general, we now focus on a
model of finite-range interaction

g(q) = (1/l0m) exp
(−q2l2

int

)
, (19)

with two lengths l0 and lint parametrizing its strength and range.
The classical hydrodynamics emerges if two conditions are
fulfilled:

l0�ρ 	 1, l2
int�ρ/l0 � 1. (20)

FIG. 2. (Color online) Quasiparticle phase-space distribution
(Wigner function) for a short interaction range, lint = 6/mvF , at
t = 4.6tc. Inset: corresponding density (solid red line) in comparison
to the density of noninteracting fermions (blue dotted) and the
predictions of classical hydrodynamic theory (dashed green).

In the opposite limit (if at least one of the inequalities l0�ρ �
1 and l2

int�ρ/l0 	 1 is fulfilled) the solution remains close to
that for free fermions. To illustrate the behavior of the solution
of the kinetic equation (17) in both regimes and in a crossover
between them, we fix l0 = 1/mvF and �ρ = 0.01mvF such
that the first of the conditions (20) is well fulfilled and vary lint.

For a sufficiently short-range interaction, an inverse popula-
tion develops for t > tc. This is demonstrated in Fig. 2, where
a snapshot of the phase space at time t = 4.64tc is shown
for interaction range lint = 6/mvF . In this case the second
parameter of Eq. (20) is relatively small, i.e., l2

int�ρ/l0 = 0.36.
The inset shows the corresponding density in comparison
to that of noninteracting fermions and the predictions of
hydrodynamic theory. As one sees, the interacting density is
close to that of free fermions, meaning that the composite
fermion interaction effects are weak, as expected. It should be
emphasized that the original electron interaction may well be
strong in this regime; i.e., the parameter 1/l0mvF does not need
to be small. (In our modeling it is equal to unity and can also be
larger.) As for free fermions, one observes oscillations of the
total density that originate from the phase-space oscillations
in the initial state and develop in the region where the inverse
population is formed [25,26]. We also provide a comparison
with the density calculated by using a classical hydrodynamic
equation (obtained as a saddle point of the bosonic theory).
Clearly, the classical hydrodynamics, which yields much
stronger oscillations, is not a proper way to describe the system
in this regime of weakly interacting quasiparticles.

As the quasiparticle interaction becomes stronger (lint =
20/mvF ), the density significantly deviates from the free-
fermion limit and the agreement with the hydrodynamics
improves (see Fig. 3). However, the system still shows clear
traces of the population inversion leading to deviations from
the hydrodynamic solution that proliferate with time and
become quite substantial at t = 4.6tc. In this intermediate
regime neither the free-fermion model nor the hydrodynamic
approximations are valid, and the kinetic approach is the only
adequate tool to controllably address the problem.

With a further increase of the interaction strength (lint =
40/mvF ) the agreement between hydrodynamic and kinetic
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FIG. 3. (Color online) Same as in Fig. 2 but for a medium-range
interaction, lint = 20/mvF , at t = 2.3tc (top) and t = 4.64tc (bottom).

approaches is reached (see Fig. 4). In this regime the
phase-space distribution is approximately given by a Fermi
function with a position-dependent Fermi momentum pF (x),
determined by the classical hydrodynamic equation. On top
of the sharp Fermi surface, we observe an additional “fine
structure” in the phase-space distribution, shown in Fig. 4.
It remains to be seen whether these details of the quantum
state, which are beyond the hydrodynamic picture, lead to
strong deviations from the hydrodynamic solution at the longer
times [33].

In addition to the self-consistent electric field, the quasi-
particle interaction in Eq. (13) causes inelastic quasiparticle
scattering. When taken into account, these processes generate
a collision integral in the kinetic equation (17). Dominant
contributions originate from triple collisions [34–40] and from
the ρ̃3 term in Eq. (13). A quick estimate shows that the rate
1/τin of such processes is proportional to a high power of a

FIG. 4. (Color online) Same as in Fig. 2 but for a long-range
interaction, lint = 40/mvF , at time t = 4.6tc.

small parameter �ρ/mvF (or of T/mvF at finite temperature
T ) and is thus very small. Therefore there is a parametrically
broad range of times, t < τin, for which the collisionless kinetic
equation studied in this work is applicable. A detailed analysis
of the inelastic relaxation leading to a viscous hydrodynamics
at t > τin will be presented elsewhere.

To summarize, we have studied the evolution of a density
pulse of 1D interacting fermions with a nonlinear single-
particle spectrum. We identified excitations that play a role
of weakly interacting quasiparticles for nonequilibrium phe-
nomena inside the wire and described their dynamics by a
quantum kinetic equation. The evolution of the corresponding
phase-space distribution is determined by two competing
effects: the dispersion that tends to overturn the Fermi surface,
and the quasiparticle interaction that tends to stabilize it. By nu-
merically solving the kinetic equation, we have demonstrated
a crossover from the free-fermion-like evolution for weak or
short-range interaction to hydrodynamics emerging in the case
of sufficiently strong, long-range interaction.

Our work shows that while 1D interacting systems are not
Fermi liquids in the conventional sense, kinetic phenomena in
such systems can be cast into the Landau paradigm of weakly
interacting fermionic quasiparticles. We foresee numerous
extensions and applications of our formalism, including
other types of interaction, relaxation phenomena (also in the
presence of disorder), and edge states of integer and fractional
quantum Hall systems and topological insulators.

We acknowledge discussions with I. V. Gornyi and support
by Alexander von Humboldt Foundation, ISF, GIF, and DFG
SPP1666.
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