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Absence of thermospin current response of a spin-orbit-coupled two-dimensional electron gas
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We consider the spin current flowing in a two-dimensional electron gas with Rashba and linear Dresselhaus
spin-orbit interaction as a linear response to a temperature gradient, taking into account the contribution due
to the thermoelectric effect. We derive a relation connecting the electrically and thermally driven spin and
charge conductivities, for the Hamiltonians corresponding to samples grown in the main crystallographic
directions. Based on this connection, it is shown that the transverse and longitudinal spin currents generated
by the temperature gradient vanish exactly for each spin-orbit Hamiltonian case. This result is in contrast to the
recently predicted finite thermospin Hall effect for such class of systems.
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Low-dimensional electron systems with spin-orbit interac-
tion (SOI) show a variety of spin-dependent effects arising
from the coupling between charge and spin degrees of
freedom. The most remarkable examples are the spin Hall
effect [1] and the current-induced spin polarization [2], where
an electric current can induce a transverse spin current and a
nonequilibrium spin accumulation across the sample or near
the boundaries. It has been observed in SO-coupled systems
such as two-dimensional electron gases (2DEGs) or quantum
wells formed in semiconductor heterostructures. In this class
of systems the dominant SO contributions are the Rashba (R)
and Dresselhaus (D) couplings.

On the other hand, charge and spin currents can be generated
not only by electric fields, but also due to temperature
gradient [3,4]. One such phenomenon is the spin-Seebeck
effect, where longitudinal spin current and spin voltage are
generated by a temperature gradient. This effect has been
observed in spin-polarized metals [5], semiconductors [6], and
insulators [7]. Recently, there is a growing interest in spin
related thermoelectric effects in systems with SOI, where a
temperature gradient gives rise to a spin polarization [8,9] or
a spin current [10]. In addition to the spin-Seebeck effect,
an intrinsic thermospin effect called the thermospin Hall
current has been predicted, which refers to the creation of
a transverse spin current generated by a temperature gradient
and the thermoelectric effect in a 2DEG with Rashba SOI [10].
First-principles calculations of this thermospin Hall effect in
crystals with impurities [11] and for some metallic alloys [12]
have been recently reported.

In this paper we revisit the problem studied in Ref. [10]
taking into account the simultaneous presence of both SO
contributions, the Rashba and linear Dresselhaus couplings.
It is well known that the interplay between these couplings
in a 2DEG opens the possibility of new effects such as a
nonballistic spin transistor [13], emergence of a persistent
spin helix [14], vanishing of interband light absorption [15],
SOI-induced anisotropies of plasmon dynamics [16], con-
trol of the spin and charge optical conductivities or of
the electric-field-induced spin polarization [17,18], just to
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mention a few. Here, we investigate the longitudinal and
transverse spin currents generated by a temperature gradient
and the thermoelectric effect, in a 2DEG with both types
of SO coupling. We calculate the corresponding thermospin
conductivity tensor describing the spin current response to a
spatially homogeneous temperature gradient under the usual
Seebeck conditions. This thermospin current arises from the
direct response to a temperature gradient and from the spin Hall
effect induced by the thermoelectric field. We find that these
two contributions cancel each other yielding a null thermospin
current. This result is in remarkable contrast to the predicted
finite effect mentioned above [10].

We consider a two-dimensional free electron gas lying at
the z = 0 plane described by the one-electron Hamiltonian
H0 = �

2k2/2m + HSO with spin-orbit contribution

HSO = �

2
�iσi = σiμij kj (i,j = x,y,z), (1)

where we use the convention of sum over any repeated index,
σi are the Pauli matrices, and the effective spin-orbit field
(�/2)�(k) is assumed linear in the electron in-plane wave
vector k = (kx,ky,0); m is the effective mass. The matrix
μij = (�/2)∂�i/∂kj contains the parameters characterizing
the strengths of SO couplings due to structural inversion
asymmetry (Rashba coupling) and bulk inversion asymmetry
(Dresselhaus coupling). For narrow quantum wells (QW)
grown along the [001], [110], and [111] directions, this matrix
takes the forms

μij =

⎛
⎜⎝

−β[001] α 0

−α β[001] 0

0 0 0

⎞
⎟⎠ , μij =

⎛
⎜⎝

0 α 0

−α 0 0

β[110] 0 0

⎞
⎟⎠

μij =

⎛
⎜⎝

0 α̃ 0

−α̃ 0 0

0 0 0

⎞
⎟⎠ , (2)

respectively, where α is the SO coupling strength of the Rashba
interaction, β[hkl] is the SO parameter of the Dresselhaus
coupling of a sample grown in the crystalloghraphic direction
[hkl], and α̃ = α + β[111]. For a [001]-grown QW, the co-
ordinate system x,y,z is x ‖ [100],y ‖ [010],z ‖ [001]; for a
[110]-grown QW, it is z ‖ [110], x ‖ [ 110], y ‖ z × x ‖ [001];
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and for a [111]-grown QW, it is z ‖ [111], y ‖ [ 110], x ‖
y × z = [112 ] [19]. The energy spectrum of the above
Hamiltonian is ελ(k) = �k2/2m + λ|�(k)|/2, where λ = ±
specifies the chirality of the spin states |kλ〉 and the upper (+)
and lower (−) parts of the spectrum. The energy spin splitting is
determined by ε+(k) − ε−(k) = �|�(k)| = 2

√
μijμilkj kl . We

shall use the symbol R + D[hkl] to denote each Hamiltonian
case.

The ξ -current density generated by an electric field E and
a temperature gradient ∇T is phenomenologically given by

J
(ξ )
i = L

(ξe)
ij Ej + L

(ξq)
ij

(
−∇j T

T

)
, (3)

where ξ = e,q,s denotes an electric charge, heat, or spin
current, and the transport coefficients L

(ξν)
ij are the correspond-

ing conductivity tensors with spatial subscripts i,j = x,y.
Given that is usual in measurements, we consider open circuit
conditions where the electrical current vanishes, J(e) = 0.
This implies that there will be an internal electric field
Ei = Sij∇j T , in accordance to expression (3), related to the
externally driving thermal force −∇T/T through the ther-
mopower Sij = [L(ee)]−1

il L
(eq)
lj /T , where L

(ee)
ij and L

(eq)
ij are the

electric and thermoelectric conductivity tensors, respectively.
Under this condition, there is a spin current associated with

the temperature gradient via the thermoelectric effect

J
(s)z
i = �

(s)z
ij ∇j T , (4)

flowing along the i direction with the spin polarized in the z

direction, where [see Eq. (3)]

�
(s)z
ij = 1

T

[
T L

(se)z
il Slj − L

(sq)z
ij

]
(5)

= L
(se)z
il

(
Slj − S

(s)z
lj

)
(6)

is the zero charge current thermospin conductivity tensor. The
second line writes this tensor in terms of the spin thermopower
S

(s)z
ij = [L(se)z]−1

il L
(sq)z
lj /T [20]. Without loss of generality, we

choose the temperature gradient ∇T along the x direction
(∇yT = 0 and ∇xT �= 0). Thus, the only components in (5)
are

�(s)z
xx = 1

T

[
T

(
L(se)z

xx Sxx + L(se)z
xy Syx

) − L(sq)z
xx

]
, (7)

�(s)z
yx = 1

T

[
T

(
L(se)z

yx Sxx + L(se)z
yy Syx

) − L(sq)z
yx

]
. (8)

The transverse component �(s)z
yx , named thermospin Hall

conductivity, determines a spin current J (s)z
y that flows per-

pendicularly to the gradient ∇xT , and describes a thermo-
spin Hall effect (via thermoelectric effect). The longitudinal
conductivity �(s)z

xx is relevant to a spin-Seebeck-type effect
which relates an applied thermal gradient to an induced spin
current J (s)z

x flowing parallel to it. The transport coefficients
L

(ξν)
ij can be obtained within the linear response theory [21].

Indeed, through a purely Hamiltonian approach with external
fields, the response to a thermal perturbation can be found by
introducing an auxiliary vector potential A(q) which works
as a driving force for the heat current, analogous to the
electrical conductivity L

(ee)
ij describing the response to an

electromagnetic vector potential A(e) [8]. For a spatially

homogeneous electric field and a temperature gradient, the cor-
responding vector potentials are given by A(e) = (c/iω)Ee−iωt

and A(q) = −(1/iω)(∇T/T )e−iωt [10,22]. In the frequency
domain [23,24], the Kubo formulas for the ξ -current–ν-current
correlation functions L

(ξν)
ij (ω) are

L
(ξν)
ij (ω) = 1

�ω̃

∫ ∞

0
dt eiω̃t

〈[
Ĵ

(ξ )
i (t),Ĵ (ν)

j (0)
]〉
, (9)

with ω̃ = ω + i0+. The symbol 〈[Â(t),B̂(0)]〉 =∑
λ

∫
d2k f [ελ(k)]〈kλ|[Â(t),B̂(0)]|kλ〉 indicates quantum

and thermal averaging of the commutator of the operators
Â and B̂, and f [ελ(k)] = (1 + e(ελ(k)−μ)/kBT )−1 is the Fermi
distribution function, where μ is the chemical potential, and kB

is the Boltzmann constant. The charge, heat-, and spin-current
operators are defined as Ĵ

(e)
i = ev̂i , Ĵ

(q)
i = {H0,v̂i}/2 − μv̂i ,

and Ĵ
(s)a
i = �{v̂i ,σa}/4, respectively, where v̂i = ∂H0/�∂ki

is the velocity operator, and {·,·} means the anticommutator;
the spin index a = x,y,z refers to the direction of the spin.

Figure 1 shows the Hall component Re L
(sq)z
xy (ω) for a

sample with R + D[001] SOI, for several values of the ratio
β[001]/α. The spectral features can be explained in terms of
the nonisotropic momentum space available for electric-dipole
inter-spin-split subband transitions and the presence of critical
points in the joint density of states [17]. The spectra differs
notably from the pure Rashba or R + D[111] case which
presents an isotropic spin splitting of the subbands ελ(kx,ky).
Besides the temperature dependence and the tunability of
the Rashba interaction through electrical gating, the spectral
characteristics shown in Fig. 1 suggests new possibilities of
spin manipulations via thermal perturbations.

As for the thermospin conductivity components (7) and (8),
it is useful to consider relations between some of the coeffi-
cients L

(ξν)
ij (ω). Several authors have established connections

between the electric conductivity L
(ee)
ij and the spin current

conductivity L
(se)
ij in the presence of SOI [17,18,25,26],

even under very general conditions, such as arbitrary
(spin-independent) disorder, electric-field strength, and for

FIG. 1. (Color online) Transverse spin-current–heat-current re-
sponse function Re L(sq)z

xy (ω) of a [001]-grown quantum well with
Rashba and Dresselhaus SO coupling. The parameters used are
m = 0.055m0, electron density n = 5 × 1011 cm−2, α = 160 mev Å,
and kBT = 0.1EF ; the Fermi energy is EF = 23.7 meV.
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interacting electrons [27,28]. In the following we derive these
connections, including the thermal coefficients L

(eq)
ij and L

(sq)
ij ,

and show through them that the thermospin current response
[Eq. (5)] vanishes for a 2DEG with intrinsic R + D[hkl] SOI
in the collisionless regime.

We start from the coefficient L
(eν)
ij (ω),

L
(eν)
ij (ω) = i

�ω̃2

∫ ∞

0
dt eiω̃t

〈[
dĴ

(e)
i (t)

dt
,Ĵ

(ν)
j (0)

]〉
, (10)

obtained from (9) after integration by parts. The electric current
operator Ĵ

(e)
i (t) has a complicated dynamics determined by the

SOI, i� dĴ
(e)
i /dt = e[v̂SO

i ,HSO], where v̂SO
i = ∂HSO/�∂ki =

σjμji/� is the anomalous velocity,

dĴ
(e)
i

dt
= 2e

�2
klσ · (μi × μl), (11)

where μj is the vector with components μij defined by the
j th column of the matrix of SO parameters (2). We can use
the expression Ĵ

(s)a
i = �

2kiσa/2m + μai/2 to rewrite (11) in
terms of the spin-current operator,

dĴ
(e)
i

dt
= 4em

�4
(μi × μl)aĴ

(s)a
l . (12)

The substitution in (10) implies the correlation function
〈[Ĵ (s)(t),Ĵ (ν)(0)]〉, leading to the desired connection

L
(eν)
ij (ω) = i

(
G0

�0

)[
m(μi × μl)a/�

2

�ω̃

]
L

(sν)a
lj (ω), (13)

which includes also the thermally driven case (ν = q). Given
that the term between square brackets is dimensionless, the
final expression is written in terms of the quantum of electrical
conductance G0 = e2/2π� and the unit �0 = e/8π of the
spin Hall conductivity L(se) [17,29]. We can then employ
Eqs. (13) and (3) to derive a corresponding relationship
between electrical current and spin current

J
(e)
i (ω) = i

(
G0

�0

)[
m(μi × μl)a/�

2

�ω̃

]
J

(s)a
l (ω). (14)

This formula suggests that under the usual zero charge current
condition it follows that the thermospin current (4) vanishes.
We shall verify this conclusion and check that the thermospin
conductivities (7) and (8) also vanish for each R + D[hkl]
Hamiltonian case, although the coefficients L(ξν)(ω) and Sij (ω)
do not.

For the pure Rashba coupling case, the characteristic
SO energy m(μi × μl)a/�

2 = (mα2/�
2)εilaδaz implies that

J (e)
x ∝ J (s)z

y and J (e)
y ∝ −J (s)z

x , and therefore J
(e)
i = 0 yields

J
(s)z
i = 0. Since the charge conductivity is diagonal and

isotropic, L
(eν)
ij (ω) = L(eν)

xx (ω)δij , and the spin conductivity

antisymmetric, L(sν)z
ij (ω) = L(sν)z

xy (ω)εijz, Eq. (13) implies that

L(eν)
xx (ω) = i

G0

�0

(
mα2/�

2

�ω̃

)
L(sν)z

yx (ω). (15)

The Seebeck coefficients are T Sxx(ω) = L
(eq)
xx (ω)/L(ee)

xx (ω)
and Syx(ω) = 0. Using these results in Eqs. (7) and (8) it is
obtained that �(s)z

xx (ω) = �(s)z
yx (ω) = 0. A similar conclusion

holds for the R + D[111] Hamiltonian case, with the SO

strength being α̃ instead of α. This absence of spin current
induced by a temperature gradient is in contrast to the
nonvanishing thermospin Hall effect predicted for the pure
Rashba case [10].

We now consider the 2DEG with Hamiltonian R + D[001].
For this case m(μi × μl)a/�

2 = [m(α2 − β2
[001])/�

2]εilaδaz,

and again J (e)
x ∝ J (s)z

y and J (e)
y ∝ −J (s)z

x , implying that J (s)z
i =

0 follows from the condition J
(e)
i = 0, as before. Now Eq. (13)

reads(
L

(eν)
xj (ω)

L
(eν)
yj (ω)

)
= i

G0

�0

(
m

(
α2 − β2

[001]

)
/�

2

�ω̃

)(
L

(sν)z
yj (ω)

−L
(sν)z
xj (ω)

)
. (16)

Using these connections to rewrite the Seebeck coefficients
in terms of L(sν)z, and the results L(eν)

xx = L(eν)
yy , L(eν)

xy =
L(eν)

yx , L(sν)z
xx = −L(sν)z

yy , and L(sν)z
xy = −L(sν)z

yx , as obtained from
Eq. (9), it is straightforward to find that the longitudinal
and transverse components (7) and (8) vanish, �(s)z

xx (ω) =
�(s)z

yx (ω) = 0.
For a [110] direction of growth, the Hamilto-

nian R + D[110] yields m(μi × μl)a/�
2 = (mα2/�

2)εilaδaz +
(mαβ[110]/�

2)εilzδay , and Eq. (13) becomes

L
(eν)
ij (ω) = i

G0

�0

mα/�
2

�ω̃
εilz

(
αL

(sν)z
lj + β[110]L

(sν)y
lj

)
, (17)

where L
(eν)
ij (ω) is diagonal but anisotropic, while L

(sν)z
ij (ω)

is off-diagonal with L(sν)z
xy �= L(sν)z

yx . From Eq. (9) it is ver-

ified that β[110]L
(sν)z
ij = αL

(sν)y
ij , or equivalently β[110]J

(s)z
l =

αJ
(s)y
l . These results lead again to a connection of the form

J
(e)
i ∝ εilzJ

(s)z
l which implies the vanishing of the thermospin

current for a system without electrical current flowing through
it. As for the transport coefficients, Eq. (17) simplifies to(

L(eν)
xx (ω)

L(eν)
yy (ω)

)
= i

G0

�0

(
m

(
α2 + β2

[110]

)
/�

2

�ω̃

)(
L(sν)z

yx (ω)

−L(sν)z
xy (ω)

)
; (18)

similar relations have already been derived for ν = e

only [28]. Using this, and that in the present case T Sxx =
L

(eq)
xx /L(ee)

xx , Syx = 0, it can be verified straightforwardly
that the thermospin conductivities (7) and (8) also vanish,
�(s)z

xx (ω) = �(s)z
yx (ω) = 0.

We can condense these results through the simple ex-
pression Sij = S

(s)z
ij for each SO Hamiltonian case, yielding

�
(s)z
ij = 0. The spin current (4) arises from two contributions.

There is a spin current arising directly from the action of the
temperature gradient, characterized by the coefficient L(sq)z,
and a spin current generated by the thermoelectric field through
the spin Hall effect. We have shown explicitly that these
contributions cancel each other, implying the vanishing of
the thermospin current. This result ultimately arises from the
linear-in-momentum dependence of the SO Hamltonian (1)
and the corresponding nature of the spin states.

To our knowledge, no such connections like (13) are
known where the coupling is not simply linear in momentum.
However, it was recently reported [15] that the joint density of
states for the spin-split subbands acquires additional features
when cubic Dresselhaus terms are included, in contrast to the
purely linear SOI. As a consequence, the optical conductivity
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no longer vanishes at the condition of persistent spin helix
state, where α = β[001]. Based on this, one might expect a non-
null thermospin current response in the presence of cubic Dres-
selhaus terms, although explicit calculations need to be done.

In summary, we have shown that under the well-known
conditions of the Seebeck effect, there is no spin current
induced by a temperature gradient in an infinite homoge-
neous 2DEG with Rashba and Dresselhaus SOI. For each
Hamiltonian case R + D[hkl], we have checked that the
thermospin conductivity tensor is null for all frequencies and
values of the SO strength parameters, not only for the special
symmetry cases of fixed precession axis α = β[001] or sym-
metric (α = 0) [110]-grown quantum well. The transport and
Seebeck coefficients are non-null, however. As an example,
we calculate the transverse spin-current–heat-current response
L

(sq)z
xy (ω) as a function of frequency for the anisotropic SO

case R + D[001], which shows characteristic spectral features,
suggesting new possibilities of manipulation through thermal

gradients. Within the linear response formalism, we derived
connection formulas relating the electrically and thermally
driven spin and charge conductivities, characteristic of the
linear in k SO Hamiltonians, which lead to a connection
between the charge and spin currents. The derivation of the
absence of thermospin current response was based on this
connection, without the need for explicit evaluation of the
phenomenological transport coefficients L

(ξν)
ij (ω). Contrary to

the recently predicted intrinsic thermospin Hall effect in a
2DEG with Rashba SO coupling [10], we find that there is
no such effect. We hope that this work will stimulate further
investigations of this problem under more general conditions,
such as the presence of cubic Dresselhaus coupling, electron-
electron interaction, and extrinsic or finite-size effects.
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under Grants No. IN112012, No. IN111013, and No.
IN114210, and CONACyT-México.
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