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Symmetries in the collective excitations of an electron gas in core-shell nanowires
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We study the collective excitations and inelastic light-scattering cross section of an electron gas confined
in a GaAs/AlGaAs coaxial quantum well. These systems can be engineered in a core-multishell nanowire
and inherit the hexagonal symmetry of the underlying nanowire substrate. As a result, the electron gas forms
both quasi-one-dimensional channels and quasi-two-dimensional channels at the quantum-well bents and facets,
respectively. Calculations are performed within the random-phase approximation and time-dependent density
functional theory approaches. We derive symmetry arguments which allow one to enumerate and classify charge
and spin excitations and determine whether excitations may survive to Landau damping. We also derive inelastic
light-scattering selection rules for different scattering geometries. Computational issues stemming from the need
to use a symmetry-compliant grid are also investigated systematically.
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I. INTRODUCTION

Semiconductor nanowire (NW) lateral heterostructures—
such as coaxial heterojunctions or quantum wells—represent
an important new class of nanomaterials with promising
versatile properties for future applications in nanotechnol-
ogy [1]. Many of their advantages derive from the high
precision and reproducibility of “bottom-up” NW growing
techniques [2], which allows for near-ideal atomically sharp
interfaces to be engineered both in the axial and in the
radial direction. Therefore, heterostructured NWs provide
the possibility to tune quantum confinement properties by
band structure engineering in the radial direction, while using
the extended axis for facile transport and device integration,
including with Si substrates thanks to the strain release in
mismatched NW interfaces [3-7].

Coaxial heterostructures may also host a high-mobility
electron gas (EG) [8]. The remote doping technique has been
recently demonstrated in GaAs/Al, Ga;_, As core-shell NWs,
with the EG confined at the NW heterojunctions [9-11].
Hole gas in unintentionally doped structures can also be
realized [12]. This opens up the realization of a variety of
NW-based electronic devices [13—15]. On the other hand, this
allows the investigation of fundamental properties of the EG
in novel nanoscopic morphologies [10,11].

Traditional probes of the EG based on transport measure-
ments, such as the Hall mobility, are difficult in NWs due to the
difficulty of creating the required Ohmic contacts [16,17]. On
the other hand, optical spectroscopies are nondestructive and
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contactless probes. The dynamics of photoexcited electron-
hole plasmas was studied by photoluminescence in single
bare NWs [18] and core-shell NWs [19]. More recently,
pump-THz probe spectroscopy allowed the determination
of mobilities, lifetimes, and surface recombination rates of
photoexcited carriers in different III-V NWs [20] and core-
shell NWs [21]. Inelastic light scattering (ILS) has been
used to extract carrier density and mobility data from the
plasmon-phonon coupling modes of photoexcited NWs [22]
and multilayered NWs [23]. Recently, we have used mean-field
simulations combined with ILS experiments to demonstrate
that remote doping induces high-mobility EG, and to assign
ILS resonances to separate quasi-one-dimensional (q1D) and
quasi-two-dimensional (q2D) channels in the sample [8].
Indeed, ILS has been used for many years to study
the collective excitations of excess carriers in semiconduc-
tor heterostructures [24,25], as it enables the detection of
charge-density excitations (CDEs) and spin-density excita-
tions (SDEs) separately, and, under strong resonant conditions,
unscreened single-particle excitations (SPEs) [26-32]. The
comparison of ILS with theoretical models allows one to obtain
the subband structure, electron density, mobilities, many-body
interactions, etc. In fact, collective excitations are strongly
dependent on dimensionality, and different modeling applies
for, e.g., planar quantum wells (QWs) [26-30], quantum
wires [31-33], and quantum dots [34,35]. Collective excita-
tions of an axial EG have been investigated theoretically in
cylindrical geometries [36—38], which somehow interpolates
between 1D and 2D, but neglecting any discrete symmetry of
realistic devices. This is a particularly severe approximation,
as in core-shell NWs, be they doped heterojunctions or QWs,
the cylindrical symmetry is relaxed as a result of the prismatic
form of the substrate NW. As a consequence, q1D and q2D
channels are invariably formed in the sample [8,10,39].
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In this paper, we study the collective excitations of an EG
confined in a hexagonal coaxial QW (coQW), as engineered in
a core-multishell GaAs/Al, Ga;_,As NW. Channels showing
q1D and 2D character are subsequently populated by varying
the Fermi energy. We adapt the multisubband random-phase
approximation (RPA) and time-dependent local-density ap-
proximation (TDLDA) formalisms, well established from
studies in lower-dimensional systems, to perform a full
3D modeling of the NW electronic excitations, tracing the
calculated CDEs and SDEs to the hexagonal symmetry of the
system. Group theory is used to classify the complex set of
collective excitations and it is shown that Landau damping
into single-particle excitations takes place only for excitations
of matching symmetry. Finally, we obtain ILS cross sections
and predict ILS spectra under different scattering geometries,
showing that the anisotropy of the system may be clearly
exposed in ILS spectroscopy. The need for proper calculations
of single-particle states and Coulomb matrix elements in a
symmetry-compliant grid is emphasized.

The paper is organized as follows. In Sec. II, we sketch
the theoretical model. We use the time-dependent density
functional theory (TDDFT) formalism with one invariant
direction to describe the coQW system (Sec. I A) and we
formulate the nonresonant formalism employed to compute
the ILS spectra (Sec. I B). Finally, in Sec. I C, the details
of the computational procedure are summarized. In Sec. III,
we illustrate CDEs and SDEs at various carrier densities. In
Sec. Il A, we describe the single-particle states used as the
basis set to compute the excitations. In Sec. III B, we report our
RPA and TDDFT results and, finally, in Sec. III C, we report
ILS spectra computed for two relevant scattering geometries.
To conclude, in Sec. IV, we summarize and discuss our results.
In the Appendix, A we discus the calculation of Coulomb
integrals on a triangular grid.

II. THEORETICAL MODEL

A. The linear-response TDDFT approach for q1D systems

In linear-response theory, the excitation energies of an
interacting electron system can be obtained from the poles
of the density-density response function [40]. In the Lehman
representation, this so-called irreducible response function is
written as

. [ (W |AR)| W, ) (W, |A(R) |,
H(R’R/"")ZZ{< olfa( (jl_ s)2< +|Z§ )Wo)

n=1

(Wl AR W) (W [A(R)| Wo) )
w4+ 2, +in '

Here, ¥y and W, are the many-electron ground- and excited-
state wave functions, respectively, 2, = E,, — E( are the
excitations energies, 71(R) is the density operator expressed in
the spatial coordinate R, and 7 is a positive small damping
parameter. In the TDDFT formalism [41], [T(R,R’,w) is
obtained from the response function of the noninteracting
Kohn-Sham (KS) system T1°(R,R’,). The latter is formally
obtained from Eq. (1) evaluating the matrix elements in the
numerator assuming single Slater determinants built from the
KS orbitals. For a NW that is translationally invariant along
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the z direction, the latter can be factorized as

Oni.(R) = ¢, (r)e’™=, 2)

where ¢,(r) is an envelope function over the NW in-plane
directions r = (x,y), and k, is the momentum along the in-
wire direction z. Correspondingly, the energy of the KS states
en(k;) is parabolic in k.. Likewise, the density operator is
conveniently Fourier transformed along the invariant direction,
which yields, Ai(r,q,) = Y, 8(r — r/)e""%%, with N being
the total number of electrons. Altogether, the KS response
function reads

Mo ge0) = Y 19 (g:.0)¢F (060G )g5), (3)
ij

with
dk (k) — fi(k, .
IM7(qz.0) = g/ e S - ik ra)
21 w — [Sj(kz +q;) —¢eik)]+in
where g = 2 accounts for electron-spin degeneracy, f,(k;) is
the Fermi occupation function, and ¢, is the change in the
in-wire momentum.
To obtain the response function of the interacting system,
we expand it in terms of the KS orbitals as follows:

(', g:,0) = Y Tijin(qz,@)¢] (0 (O (K )5 (). (5)

ijlm

The matrix elements I1; jim(qz,w) are then related to the
elements of the KS response function (4) through the following
Dyson equation:

D Tijim(qen0) = Y T1(q20) 81 8jm + Y T10;(q2.0)

ijlm ijim i
XC 17
X Z [vijkn(q2) + uijkn] Mnim (g, ).
knlm

(6)

Here, vj 1, (g,) and ”5151 are the direct Coulomb and exchange-
correlation matrix elements, respectively, which describe the
dynamic interaction of two electrons, one of which gets
scattered from state i to j and the other from k to n, with
an exchange of momentum g, .

The direct Coulomb matrix elements read

Vijkn(qz) = /dr/dr/ $i(r) ¢ V(r —r',q) ¢7(r') du(r),
(N

where V(r — r’,q.) is the Fourier transform of the Coulomb
operator in the z direction.
The exchange-correlation matrix elements read

uXC, = — / dr / dr' (1) §3(r) Fxc(rr) 1) ().
®)

with fxc(r,r’) being the dynamic exchange-correlation kernel
defined in the adiabatic local-density approximation as the
derivative of the static exchange-correlation potential with re-

. N xc
spect to the ground-state density, fxc(r,r’) = W(S(r —

r’). In particular, using the LDA functional conceived by
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Gunnarsson and Lundqvist [42], the exchange-correlation
kernel reads [43]

Fre(rr) = —1.704 a5 (r)*r,(r)?
| 0.6213 r,(r)
11.4 + re(r)

Here, aj(r) and Ry*(r) are the material-dependent effective
Bohr radius and Rydberg energy, respectively, and r(r) is the
Wigner-Seitz radius.

The imaginary part of the irreducible response function (5)
is proportional to the dynamic structure factor according
to the fluctuation-dissipation theorem. As such, it gives a
direct measure of the spectral strength of various elementary
excitations of the electron system. In the long-wavelength
limit (g, — 0), collective charge-density excitations (CDEs)
or plasmons carry all the spectral weight and show up as
narrow spectral peaks. However, as ¢, increases, electron-hole
single-particle excitations (SPEs) start gaining spectral weight
and show up as weak broad bands.

The TDDFT formalism also describes spin-density excita-
tions (SDEs). The latter are only coupled through indirect-
exchange interactions. Consequently, they always appear
redshifted with respect to their plasmonic counterparts. The
SDEs are obtained from the poles of the so-called reducible
response function, II(R,R’,w). The latter is calculated within
a procedure similar to the above one, setting to zero the direct
Coulomb integrals in Eq. (6). Furthermore, by deactivating
the exchange-correlation integrals in Eq. (6), one recovers the
CDEs within the random-phase approximation (RPA).

i| Ry*(r)8(r — r'). 9)

B. ILS cross section

In a nonresonant formalism, the ILS cross section is
estimated from the imaginary part of the appropriate complete
momentum-dependent response functions [30]. For CDEs, we
Fourier transform the irreducible response function to obtain

Q) =Y Mijin(gz,o) / / drdr'e” 1" TgE(r) ¢ (r)

ijlm
x ¢u(r') g, (r'). (10

Here, q is the in-plane component of the total momentum Q =
(q,9z) exchanged in the scattering process, i.e., Q = Q; — Qj,
with Q; and Q; being the momenta of the incident and scattered
photons, respectively.

From the response functions, we may also calculate the
density fluctuation induced by the electromagnetic field at a
given energy and momentum, the so-called induced density
distribution (IDD) from Kubo’s correlation formula [44],

sn(r,q.q.,0) = /dr/ fi(r,r g, 0) e T . (11)

The scattering cross section and IDD for SDEs are obtained
analogously from the reducible response function, IT(R,R’, w).

C. Computational methods

To evaluate the system response functions, we need the
static properties of the system, that is, the single-particle
energies and corresponding envelope functions of the ql1D
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subbands, as well as the total electron density. At the mean-
field level, these should be obtained from a self-consistent
density functional theory (DFT) calculation [8]. However,
since in this paper we aim at the dynamic properties of
the EG, we clear up the calculation of the static properties
by neglecting mean-field effects. In other words, the energy
subbands are only determined by the unscreened band-offset
modulation of the coQW. Since single-particle states would be
different within different screening schemes, using a common
unscreened confinement allows us to expose the difference in
the dynamic properties within different formalisms, namely,
TDLDA and RPA. On the other hand, mean-field effects
would be dominated by band-offset confinement in narrow
QWs as the present one. Mean-field calculations of static
properties would be obviously required to study doped
heterojunctions [10].

The envelope functions and subband energies are obtained
within a single-band effective-mass approximation. Assuming
in-wire spatial invariance along z and factorizing the envelope
functions as in Eq. (2), the 2D envelope functions ¢,(r) are
given by

n? 1
{_ \Z [ Vr:| + V(r)} ¢n(r) = 8n¢n(r) ’ (12)
2 m*(r)

where V(r) is the spatial confinement potential determined
by the core-shell band offset. Equation (12) is numerically
integrated in a hexagonal domain delimited by the NW
surface using a symmetry-compliant triangular grid with
27.55 points/nm?, and assuming Dirichlet boundary condi-
tions.

In the following section, we shall investigate the dynamical
properties of the EG at different densities and subband
occupations. This is performed by fixing the position of the
Fermi energy to our interest, and then calculating the Fermi
occupation of the subbands (we assume zero temperature
throughout this paper) and the electron density, which is used
in the dynamic exchange-correlation kernel, given by Eq. (9).

The computation of the Coulomb matrix elements entering
the Dyson equation (6) is the numerically most intensive part
of the procedure, as it requires the calculation of the 4D
integrals (7) in a dense grid. To speed up the calculation,
we have adapted the Fourier convolution theorem, which has
been widely used to calculate Coulomb integrals in rectangular
grids [45], to the case of a triangular grid. The method is
described in the Appendix. We also take advantage of the
system symmetries to reduce the number of Coulomb integrals
to be computed as follows:

(i) Since the electron wave functions ¢,(r) are real, the
following symmetries hold: v;jk, = Vijuk = Vjikn = Vjink =
Uknij = Vknji = Unkij = Unkji-

(ii)) As a consequence of the existence of a center of
inversion in the system, we can classify the wave functions
as gerade or ungerade, which allows us to discard a priori the
computation of integrals with odd integrand.

(iii) Coulomb elements, in which the first two indexes
(ij) correspond to empty subbands, vanish. This is because
such elements are multiplied in the Dyson equation (6) by the
KS response function I"I?j(qz,a)), which is zero for empty ij
subbands [see Eq. (4)].
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These very same considerations can be adopted to reduce
the calculation of the exchange-correlation terms. However, in
that case, the integrals are easier to compute due to the locality
of the LDA potential, which reduces the dimensionality to 2D,
and standard numerical integration methods can be used.

We do not consider effects from polarization charges
accumulated at the NW surface and interfaces due to di-
electric constant mismatch. In the present modeling, the only
contribution from the dielectric confinement in the ground-
state calculation would be the self-energy. This term has
been shown to produce a small and almost constant shift
of the energies, leaving unaffected the wave functions [46].
Dielectric confinement effects also enter the dynamic Coulomb
and exchange-correlation matrix elements. This might affect
the depolarization and excitonic shift of the collective modes,
as it has been shown for NWs embedded in low dielectric
constant matrices [37]. However, this quantitative effect does
not break the hexagonal symmetry of the present system and,
therefore, it will not alter the qualitative conclusions drawn
here.

To compute the interacting response functions, we rewrite
the Dyson equation (6) in tensor notation as

=101+ 0°v+ w1, (13)
or, equivalently,
e =N°L (14)

In the above equation, I is the identity matrix, and & =
I — I°(v + u¥©) is the dielectric tensor of the electron gas,
whose inverse yields the required solution, T = IT°Te~!.
Recovering the subband notation leads to

i jim(gz,0) = T17(q2, )€ 1, (4, ). (15)

Therefore, in order to calculate a single element of the
response function, we first build up the complete dielectric
tensor of the EG and then invert it by means of efficient
routines [47].

III. NUMERICAL RESULTS
A. Single-particle states

The reference system for the following sections is a core-
multishell NW (CSNW), as the one outlined in Fig. 1(a), witha
hexagonal Alj3Gag7As central core with 100 nm of diameter,
a 20-nm-wide shell of GaAs, and a 10 nm Aly3Gag;As
capping layer. The 20 nm GaAs shell is a coQW for the
conduction electrons. Note that this is somehow different from
the usual samples, particularly in that the core is typically
grown from GaAs. However, in doped samples, the core
is usually depopulated due to band bending [8,10]. As we
do not perform self-consistent calculations here, we use a
Aly3Gag 7As core to exclude the formation of low-energy core
states, which we are not interested in.

In the calculation, the GaAs/Aly3Gag7As band offset is
taken as 0.284 eV [48] and the origin of energies is placed at the
GaAs conduction-band edge. The position-dependent effective
mass m*(r) is 0.067 in GaAs and 0.092 in Aly3Gag7As
regions [49].

In Figs. 1(b) and 1(c), we show the normalized DOS and the
in-plane envelope functions ¢, (r), respectively, for the lowest
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FIG. 1. (Color online) (a) Schematics of the studied core-
multishell NW, (b) normalized single-particle DOS in arbitrary units,
and (c) envelope functions of the 12 lowest-lying subbands. The
principal quantum number 7 and the irrep of the Dg;, group of each
state is indicated.

single-particle states. Two types of states can be identified,
i.e., those preferentially localized in the corners and those
which are delocalized over the coQW. The former tend to have
lower energy [8]. The envelope functions show an increasing
number of nodal planes normal to the coQW plane, which
can be interpreted as the discretized momentum of a QW
which is wrapped around the axis. States with nodal surfaces
parallel to the coQW plane, analogous to excited subbands
in planar QWs, lie at higher energies and are not shown
here.

For the discussion of collective excitations and their ILS
cross section, it will be useful to classify the single-particle
states on the basis of their symmetry. Due to the overall
hexagonal symmetry of the system, the eigenstates form a
basis of the irreducible representations of the D¢, group. In
Fig. 1(c), we label the symmetry irreducible representation
(irrep) of each state, with the E type being doubly degenerate
representations. The symmetry-induced degeneracies show up
in the DOS as the higher peaks [see Fig. 1(b)].

B. Elementary excitation dispersion

We now look into the collective excitations of the EG in
the coQW system at different density regimes, corresponding
to the occupation of an increasing number of subbands. Here
we are interested in classifying the lowest-energy excitations
of the system, which correspond to CDE and SDE along the
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NW and around the NW section. Accordingly, to calculate
the response functions (5), we use a basis set of single-
particle states restricted to the 12 states shown in Fig. 1(c)
to simplify our analysis. This clearly neglects higher-energy
excitations in the radial direction, since the QW higher states
are not included. While we are not interested in quantitative
predictions here, the excitations discussed in the following
results are well converged with respect to the number of
single-particle states except for the highest transitions.

The imaginary part of the response functions, given by
Eq. (5), have poles at energies corresponding to electronic
excitations in which the ground state is coupled with excited
states through the density operator. We recall that within the
mean-field formalism employed here, the wave functions of the
effective noninteracting system are single Slater determinants.
Hence, since the density operator is a one-body operator, the
only accessible excited states are described by Slater deter-
minants differing in a single excitation from the determinant
describing the ground state. All excitations are coupled by
the dynamic Coulomb and exchange-correlation matrix in the
response function. In the following, we will adopt a widely
used notation which labels the collective excitations with the
single-particle transition of the final state with the largest
contribution in the response function. We will also indicate
the irrep of such final state as evaluated by multiplying the
irreps of the two subbands participating in the single-particle
transition.

1. One occupied subband

We first consider the case of the Fermi energy midway
between subbands n = 1 and n = 2,3, which corresponds to
a linear electron density of ~0.007 x 10’ cm™!. In such a
low-density regime, the linear-response formalism has been
shown to fail to calculate the interaction of a q1D electron gas
with an impurity [50]; however, its use to study elementary
excitations of qlD electron systems is well grounded [51].
The dispersion of CDEs calculated within the RPA is shown
in Fig. 2 as a function of g,/ kr, with kr being the Fermi wave
vector. One may recognize

(i) one intrasubband CDE with vanishing energy at g, = 0;

(ii) seven intersubband CDEs associated with transitions
from n = 1 to each set of higher subbands, as indicated.

Since n = 1 has irrep A, the symmetry of the excitation,
which is the product of the irreps of the involved states,
coincides with the irrep of the final state. Therefore, excitations
to final states which are twofold degenerate are degenerate as
well, and have, in general, larger spectral weight.

The dispersion of the intersubband excitations in ¢, is
characteristic of 1D electron systems [32]. At small g, the
CDE:s are blueshifted by the depolarization field from their
analogous single-particle excitation, and approach the upper
bound of single-particle continuum as ¢, increases, without
entering it, and are not Landau damped. The intrasubband CDE
shows a typical dispersion for q1D systems [36-38,52,53]
proportional to g,+/|In(g;)| in the long-wavelength limit.

2. Three occupied subbands

Next we consider a case with the Fermi energy midway
between n = 2,3 and n = 4,5, with a linear electron density
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0 0.5 1 1.5 2
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FIG. 2. (Color online) CDE dispersion in g,/ kr for a NW with
one occupied subband calculated within the RPA. The color map
is plotted with a logarithmic scale to emphasize the electron-hole
single-particle excitation continua. The bounds of the latter are also
delimited by blue solid lines that are analytically calculated. The
lateral labels show the subbands involved in the excitation and the
symmetry of the excited state.

~0.039 x 107 cm~!. The RPA result is plotted in Fig. 3(a) and
in an enlarged scale in Fig. 3(c). The low-energy CDEs consist
of

(1) two intrasubband CDEs corresponding to the occupied
subbands;

(ii) the same intersubband CDEs from subband n = 1 as
in the single occupied subband case with an additional CDE
for the (1—2,3) transition, with a negative dispersion in the
long-wavelength limit, lying between the two branches of the
(1—2,3) single-particle continuum;

(iii) multiple intersubband transitions from n = 2,3 to
higher empty states.

Several additional issues may be discussed in this case.

CDE degeneracies. Since n = 2,3 belong to the degenerate
E, set, intersubband excitations to higher subbands lead to
different number of CDEs, depending on the symmetry of the
final state. Based on the product of the irreps of the involved
subbands, we can identify the following cases:

(1) If the final subband is nondegenerate, then the CDE
is twofold degenerate. For instance, (2,3—7) yields the
following degenerate irrep: Ej, ® Bi, = Ea,.
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FIG. 3. (Color online) CDE dispersion with three occupied subbands calculated within the (a) RPA and (b) TDLDA approaches. The
bounds of the single-particle excitation continua for excitations from n = 1 (n = 2,3) to higher subbands are delimited by blue solid (dashed)
lines, which can be calculated analytically from energy and momentum conservation. Dark blue rectangles highlight selected CDEs which
are Landau damped. Panels (c) and (d) show low-energy CDEs between the occupied subbands calculated within the RPA and TDLDA,
respectively. Black dots: CDEs; gray (red) area: single-particle continuum for transitions from n = 1 (n = 2,3). The labels show the subbands

involved in the excitation and the symmetry of the excited state.

(ii) If the final subband is twofold degenerate and of
the same symmetry as n = 2,3, then two CDEs appear,
one being doubly degenerate; for instance, (2,3—10,11)
Eiy Q@ Ey = Ay ® [Asg] @ Eo,, where Ay, is the basis of
the antisymmetric representation of the permutation group.
CDEs to such type of excited states are forbidden in the
present spin-independent calculation since we always deal
with singlet, and hence antisymmetric, spin wave functions
which require symmetric orbital parts.

(iii) If the final subband is twofold degenerate and it is
not of the same symmetry as n = 2,3, then three CDEs arise,
one being doubly degenerate; for instance, for the excitation
(2,3—8,9), we have £, ® Ey; = B1, @ By @ Evu.

Depolarization shift. Intersubband CDEs couple through
off-diagonal elements of the dielectric tensor [see, e.g.,
Eqgs. (14) and (15)] only if they belong to the same symmetry.
This leads to assorted depolarization shifts for different
intersubband CDEs in Fig. 3(a). In general, however, these are
larger than in Fig. 2 due to the increase of electron density.

Landau damping. Due to the large density of states, in
this higher-density case, intersubband CDEs often merge into
single-particle continua and get Landau damped. However,
plasmons are Landau damped only when they enter the single-
particle continua associated with transitions of the same
symmetry. For example, plasmons (2,3—7)Ea,, (2,3—6) Ea,,
and (1—4,5)E;, are Landau damped when entering the
lower bound of the single-particle continua (1—8,9)E,,
(2,3—T7)Ey,, and (2,3—6)E,,, respectively, as shown in
Fig. 3(a).

Low-energy excitations. In Fig. 3(c), we observe two
intersubband CDEs associated with the transition (1—2,3).
The one with low energy shows an anomalous negative
dispersion in the long-wavelength limit. Such type of plasmon
is exclusive from q1D systems with more than one occupied
subband and is free of Landau damping for large ranges of ¢,
as it lies between the bounds of the (1—2,3) single-particle
continuum [37,54,55]. The two intrasubband plasmons (1—1)
and (2,3—2,3) are highlighted in Fig. 3(c). The (1—-1)A;,
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excitation is more dispersive than the corresponding excitation
in Fig. 2. This is due to the higher-density regime and
the coupling with the (2,3—2,3) intrasubband plasmon.
The two CDEs couple because (2,3—2,3) E;, ® Ey, =
Ay ®[A2] ® Ep, has a symmetry component in com-
mon with the (1—1)A;, plasmon. On the other hand,
the (2,3—2,3)E,, component appears as a slender acous-
tic plasmon [56] lying between the two intrasubband
single-particle continua [see Fig. 3(c)]. This type of plas-
mon, free of Landau damping, is exclusive of qlD sys-
tems with more than one occupied subband [37,38,54—
57]. The antisymmetric component (2,3—2,3)A,, is dark
in the charge-density channel for the same aforementioned
reasons.

Exchange and correlation effects. Figure 3(b) shows the
CDEs calculated within the TDLDA. These are in one-
to-one correspondence with the RPA CDEs, but redshifted
by the dynamic exchange-correlation matrix elements. The
exchange-correlation vertex correction may also overcome
the direct Hartree term, bringing the plasmon below the
corresponding single-particle excitations, as predicted by Das
Sarma et al. [58] and later observed by Ernst er al. [59]
in very dilute QWs. The symmetry-selective Landau damp-
ing phenomena observed in the RPA spectrum are also
present within the TDLDA, marked by dark blue squares
in Fig. 3(c), although they are not as well resolved as
in Fig. 3(a).

3. Five occupied subbands

In Fig. 4, we show the CDEs for a case with the Fermi
energy midway between n = 4,5 and n = 6 with a linear
electron density ~0.089 x 107 cm~!. Calculations are shown
for TDDFT only. In this higher-density regime, all of the
intersubband plasmons appear blueshifted from their corre-
sponding single-particle excitations in spite of the exchange-
correlation corrections. The same symmetry arguments used
above to assign the excitation spectra apply also in this
case and in higher subband occupations. We do not include
labeling of all CDEs appearing in Fig. 4 for the sake of
conciseness. Landau damping of selected CDEs is marked with
dark blue rectangles for plasmons (2,3—7)Eyg, (2,3—6)Eog,
and (4,5—6)E},, which are clearly Landau damped in the
single-particle continua with the same symmetry, (1—8,9) E,,
(2,3—7T)E>,, and (4,5—7)E},, respectively.

4. Spin-density excitations

SDEs are computed from the imaginary part of the TDLDA
reducible response function. In Fig. 5, we show SDEs for three
occupied subbands. SDEs appear, in general, redshifted with
respect to their corresponding single-particle excitations. This
is due to the so-called excitonic shift caused by the exchange-
correlation matrix elements. SDEs are less dispersive than
CDEs (compare Figs. 5 and 3). This is originated from the fact
that the intersubband collective excitations become dispersive
as they approach their corresponding single-particle continua.
However, the bottom bound of the continua is less dispersive
than the top one. Hence, the SDEs merge in the single-particle
continua at larger g,. Once there, the slope of the dispersion is
also lower.

PHYSICAL REVIEW B 89, 155416 (2014)

E (meV)

FIG. 4. (Color online) CDE dispersion for a NW with five occu-
pied subbands calculated within the the TDLDA. The bounds of the
single-particle excitation continua from subband 1, (2,3), and (4,5)
are delimited by blue solid, dashed, and dotted lines, respectively,
and calculated analytically. The labels show the subbands involved
in three selected excitations and the symmetry of the excited states.
The dark blue rectangles illustrate selected Landau damping of these
CDEs.

Additional differences with respect to CDEs are observed
in the low-energy region:

(i) Less peaks are visible which, nevertheless, show higher
configuration mixing. For example, at ~0.38 and ~0.2 meV,
there are two SDEs which have contributions from transitions
(2,3—6) plus (1—+4,5)E,, and (2,3—4,5) plus (1—-2,3)E},,
respectively.

(i1) A single intrasubband SDE associated with transition
(2,3—2,3)Ey, is observed. It disperses almost linearly in g,
between the two intrasubband single-particle continua as the
slender acoustic plasmon observed in Fig. 3.

(iii) SDEs also show Landau damping of intersubband
excitations. The most obvious are marked with dark blue rect-
angles and correspond to the damping of SDEs (2,3—7)E,
and (2,3—6) plus (1—4,5)E;, in the single-particle continua
(2,3—>6)E,, and (1—4,5) E»g, respectively.

SDEs associated with transitions (2,3—10,11) and
(2,3—2,3) lead to excited states of symmetry A;,,E»,, and
E,,, respectively. Such excited states resulting from transitions
between degenerate states of the same FEj, symmetry are
a basis of the symmetric representation of the permutation
group. Notice that here these are not proper excited states
for SDEs, which implicate a triplet, and hence symmetric,
spin function requiring an antisymmetric orbital function.
Therefore, for the two mentioned SDEs, one would expect to
obtain the antisymmetric [ A, ] state. This physically incorrect
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FIG. 5. (Color online) (a) SDE dispersion in ¢q,/kr for a NW
with three occupied subbands calculated within the TDLDA. The
bounds of the single-particle excitation continua from subband 1,
(2,3) are delimited by blue solid (dashed) lines that are calculated
analytically. The labels show the subbands involved in the excitations
and the symmetry of the excited states. The dark blue rectangles
illustrate selected Landau damping of SDEs. (b) Low-energy SDE
spectrum for excitations between the occupied subbands calculated
within the TDLDA. The black dots show the SDE dispersion, whereas
the gray (red) area is the single-particle continuum for transitions from
subband 1 (2,3).

result is a shortcoming consequence of the widely used
spin-independent formalism employed here [27,43,60].

C. Inelastic light-scattering spectra

We now focus on the ILS spectra in the nonresonant
formalism discussed in Sec. I B, which has been widely
used in spectroscopy of 2D and q1D electron systems (see,
e.g., Refs. [24] and [25], and references therein). The authors
have recently used this formalism to successfully assign
ILS resonances of a high-mobility EG in modulation-doped
core-multishell NWs [8].

The ILS cross section of CDEs is obtained from the
imaginary part of the complete Fourier transform of the
density-density response function, given by Eq. (10), which
has a clear physical interpretation: the coefficients IT; jim(gz,w)

PHYSICAL REVIEW B 89, 155416 (2014)

Im[M(q,=0,w)]
8 8

-
o

o

N

o &
— @
rk
=
-
==

PR |

ILS Intensity (arb. units)

N
[9)]

2 3
E (meV)

FIG. 6. (Color online) (a) Imaginary part of the density-density
response function given by Eq. (5) for a system with three occupied
subbands and g, = 0. (b),(c) ILS spectra for the same system when
photons are applied perpendicular to the top facet and along the
maximal diameter, respectively, as illustrated in the left insets. The
2D color-map insets show the IDDs calculated at selected peaks and
labeled with the excitation irreps of the D,;, group. The vertical dashed
lines are guides to the eye showing the energy position of selected
excitations indicated by the top labels.

give the spectral intensity of the CDEs or SDEs, while the
matrix elements (¢; (r)|e™ 9| (1)) (g, (r')] ' T | (r")) repre-
sent the coupling of light with electron charge density, which
depend on the setup geometry. Therefore, the geometry of the
experiment, defined by Q = Q; — Qy, sets specific selection
rules. This is well known in 2D systems, where intrasubband
or intersubband excitations can be selectively excited by
choosing the exchanged momentum along or perpendicular to
the QW plane, respectively. In coQW, the situation is clearly
more complex. It is easy to realize that the photon momentum
always has both in-plane and vertical components with respect
to some of the facets, and one never recovers the ideal QW
geometry.

Below, we will consider two backscattering configurations
(see left insets in Fig. 6), both with the incoming and scattered
photons perpendicular to the NW axis:

(i) photons are perpendicular to the top/bottom NW facets;

(ii) photons are parallel to the top/bottom NW facets.

Accordingly, we set g, = 0 and we assume a typical excita-
tion energy of 1.92 eV, which yields |Q;| = 6.9 x 10° cm™!,
and approximate |Q;| = |Q;].

In the presence of the photons, the symmetry of the system
is reduced from Dg;, to Dy;,. In configuration (i), the real and
imaginary parts of the kernel, e*' 9", have the irreps A;, and
By, of Dy, group, respectively: only those CDEs which have
a Ay, or By, component in D,;, will be observed. Similarly, in
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configuration (ii), the kernel has the irreps A, and Bs,. This
implies that some CDEs that are observed in one geometry are
dark in the other, and vice versa.

As an example, in Figs. 6(b) and 6(c), we show the
calculated ILS spectra for a NW with three occupied subbands
computed from the TDLDA density-density response function,
with a damping parameter n = 0.01 meV. In Fig. 6(a), we
also show for comparison the imaginary part of the response
function calculated at ¢, = 0, which has one peak for each
CDE of the system. Peaks appear in both configurations if the
corresponding excitations have irreps in Dgj;, which reduces
to Ay, or to By, ® B3, in Doy. This is the case, for instance,
of the peak labeled (2,3—10,11)A;,, which has a symmetric
representation also under the effect of the photons, as it can
also be observed in the IDDs shown in the insets. Some of
the resonances, however, can only be observed in one of
the scattering geometries. Peaks (1—6)B,, and (1—7)By,,
for example, are only observed in configurations (ii) and
(i) [Figs. 6(c) and 6(b)], respectively. Indeed, the irreps of
these transitions in Dy, are Bj, and B,,, respectively. The
corresponding IDD in the insets clearly shows the same
symmetries. Due to the same argument, CDEs associated
with the same transition involving degenerate subbands can
selectively be observed in the different geometries. For
instance, the peak (2,3— 8,9) By, which has a very low spectral
weight [see Fig. 6(a)], is strongly enhanced in configuration
(1) [Fig. 6(b)] and dark in configuration (ii) [Fig. 6(c)]. Peak
(2,3—8.,9) B, shows the opposite behavior.

IV. SUMMARY AND CONCLUSIONS

We have used TDLDA and RPA methodologies to study
electron collective excitations and ILS cross section of
GaAs/Aly3Gag7As core-multishell NWs. This is a complex
system from the electronic point of view, where q1D and q2D
channels coexist. The large dimensions of the target system
have required a 3D computational scheme. We have shown
how to make calculations manageable for such a complex
geometry by exploiting the symmetries of the system and,
particularly, we have developed a fast and accurate approach
to calculate Coulomb matrix elements in hexagonal grids. The
latter are shown to be necessary to obtain convergence and
correct degeneracies with a reasonable grid density (see details
in the Appendix).

We have studied CDEs and SDEs of the EG at different
density regimes, i.e., different number of occupied subbands
of different localization (bents or facets) and degeneracy. We
have identified a number of features ensuing from the discrete,
here Dgj,, symmetry of the system:

(i) We have observed intersubband collective excitations,
both CDEs and SDEs associated with transitions between
twofold degenerate subbands split in different peaks in the
spectra. The number of peaks is in agreement with the number
of accessible excited states predicted by the symmetry group
theory.

(i) We have observed symmetry-selective Landau damp-
ing, namely, collective excitations are only Landau damped
in single-particle continua associated with transitions of the
same symmetry as the collective mode.

PHYSICAL REVIEW B 89, 155416 (2014)

(iii) We have observed intrasubband slender acoustic
plasmons and intersubband plasmons with negative dispersion
exclusive of q1D systems with multiple subband occupation.

We have calculated the ILS spectra for two relevant
scattering geometries in a backscattering configuration. As
aresult of the discrete symmetry of the system, the spectra are
substantially anisotropic as the photon momentum is rotated
around the NW axis. Some of the collective modes can be
only observed in one of the geometries, being dark in the
other. Selection rules are shown which explain the observed
features. Although not included in the present study, ILS
experiments may access excitations at larger energies where
intersubband excitations between excited QW states, i.e., with
a radial nodal plane, are involved. Simulations in this higher-
energy range must also include coupling with GaAs phonon
resonances [8].
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APPENDIX: COULOMB MATRIX ELEMENTS
CALCULATION IN HEXAGONAL GRIDS

The Coulomb matrix elements that we have to calculate are

vijin(g:) = / dr f dr' §i(r) 3(r) Ve(r — r'q)

X g (r')gu(r"). (AD)

These, by taking gi,(r') = ¢ (r") ¢,(r') and rearranging
the integrals, can be written as

Vijkn(qz) = /drq&[(r)(b;'f(r)/dr’ Ve(r —r'.q2) gin ().
(A2)

In the above equation, h(r) = [ dr’ Ve(r —r',q;) gin(r') is the
convolution of Ve (r — r',q.) and g, (r'). Therefore, according
to the Fourier convolution theorem, the Fourier transform of
h(r) can be obtained as /1(q) = Vc(q,q.) 8 (q), where the tilde
means a Fourier transformed function in momentum space.
Since h(r) can be equivalently obtained by performing the
inverse Fourier transform of A(q), i.e., h(r) = F~'[h(q)], it is
possible to calculate the Coulomb matrix elements as

Uijkn(Qz):/dr¢i(r)¢7(r)f_l[VC(quZ)gkn(q)]- (A3)

With this approach, the dimensionality of the Coulomb
integrals is reduced from 4D to 2D at the expense of performing
three discrete Fourier transforms (DFTs). The outcome in
terms of computation time is highly favorable thanks to the
existing fast Fourier transform (FFT) algorithms. Besides,
Ve(q,q.) needs to be only calculated once and it has a

155416-9



MIQUEL ROYO, ANDREA BERTONI, AND GUIDO GOLDONI

TABLE I. Diagonal Coulomb matrix elements between the
ground state and the twofold degenerate first excited states calculated
with DFT algorithms working in three different grids (see text).

Rect. grid Hex. grid—Rect. grid Hex. grid

Ulzlz(kp) (meV nm) 46.491 48.402 42.941
vi313(kF) (meV nm)  54.382 55.206 42.941
well-known analytical expression,

~ 82

Ve(q,92) = (A4)

Q) oo (X + g2 +q3)’

where e, is the high-frequency dielectric constant and ¢p is
the momentum derived from the Debye length Ap as gp =
,\ . For the calculations shown in the present study, we have
employed the GaAs dielectric constant, £,, = 10.86, and a
Debye length Ap = 1 um.

Available libraries with implemented FFT algorithms
exclusively work with numerical sampling on rectangular
grids. We have used this type of algorithm to calculate our
Coulomb matrix elements by extrapolating our functions onto
a rectangular grid beforehand. However, such a procedure
leads to qualitative errors in the Coulomb integrals. Such
errors, which do not vanish as the grid is made denser,
are due to the inefficacy of rectangular sampling to capture
the implicit hexagonal symmetry of the present system. For
instance, in the first column of Table I, we show two diagonal
Coulomb matrix elements between the ground and the first
twofold degenerated excited states calculated with a FFT
algorithm in a rectangular grid. They both should have the
same value since the degeneracy is induced by the Dg,
symmetry; however, we observe a discrepancy of ~8 meV nm.
There exist alternative algorithms [61] in which the input
data is sampled in a hexagonal grid but the output of the
Fourier transform is sampled on rectangular grids. Their use
does not overcome the discrepancy in the Coulomb integrals
calculation, though, as can be seen in the second column of
Table I. A proper calculation of the Coulomb integrals requires
the use of an algorithm that performs the DFT completely
in a hexagonal grid. Here we have adapted to our interest
the formalism reported by Mersereau [62] initially devoted to
signal processing.

The formulas appearing in Ref. [62] to perform the
hexagonal discrete Fourier transform (HDFT) of a 2D function
g(ny,ny) defined in a hexagonal domain are reported here for
completeness:

ghik) = Y gnm) exp{—i[%ml —n2)

ll],VleRH(N,N)

% (2k; — ky) + %nzkz]}, (AS)

g = Y.

Ir

8(ki,k2) exp{z [—(2111 —ny)
3N

ki,koeRy(N,N)

x (2k; — k) + %n2k2:| } (A6)
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FIG. 7. (Color online) (a) Schematic position space domain,
(b) periodic replication with hexagonal pattern of the domain used
for the HDFT, and (c) schematic momentum-space domain.

Here, n;» (k1) are integer coordinates denoting points of
the grid in the position (momentum) space, and the sum is
restricted to those points inside the domain limiting the grid
Ry (N,N). The choice of the latter is not trivial since a DFT
assumes that the input function is periodically replicated in
the space. Moreover, the replication pattern will determine
the sampling of the output function of the DFT. Thus, in
order to obtain g(k;,k;) sampled on a hexagonal grid, one
has to assume that g(n;,n,) is periodically replicated with a
hexagonal pattern. This implies that the following relations
have to be accomplished:

gni,ny) = gny —3N,ny) = g(ny —2N,np — N)

= g — N,ny — 2N), (A7)

with N being the replication period.

A regular hexagonal domain as the one shown in Fig. 7(a),
delimited by the solid line, which is equivalent to the one in
which our functions are sampled, is not a proper domain to
perform the HDFT. The reason is that its periodic replication
according to Egs. (A7) leads to empty gaps and overlapping
between the replicas, which is known to produce aliasing.
Instead, we use as Ry (N,N) the deformed hexagonal region
depicted by the gray area in Fig. 7(a), which can be exactly
hexagonally replicated, as illustrated in Fig. 7(b). Proceeding
in this way, we obtain an output function g(k;,k,) hexagonally
sampled on a equivalent domain as the one illustrated by the
gray area in Fig. 7(c). The dimensions of the domain in the
momentum space, shown as W, and W2 in Fig. 7(c) are fixed
by the sampling theorem as W) = 3T and W, = -, where T}
and 7T, are the sampling intervals in the posmon space [see
Fig. 7(a)].

As shown in the third column of Table I, the use of the
HDFT solves the symmetry-induced numerical discrepancies
in the calculation of the Coulomb matrix elements. Its formal
computation, though, is computationally more demanding
than in a rectangular sampling formalism, mainly due to the
impossibility to separate the Fourier kernel in 1D-like DFTs.
However, there exists a fast Fourier implementation of the
algorithm, fairly described in Ref. [62], that will allow one to
increase the efficiency of the computation.
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