
PHYSICAL REVIEW B 89, 155415 (2014)

Enhancement of gaps in thin graphitic films for heterostructure formation
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There are a large number of atomically thin graphitic films with a structure similar to that of graphene. These
films have a spread of band gaps relating to their ionicity and, also, to the substrate on which they are grown.
Such films could have a range of applications in digital electronics, where graphene is difficult to use. I use the
dynamical cluster approximation to show how electron-phonon coupling between film and substrate can enhance
these gaps in a way that depends on the range and strength of the coupling. It is found that one of the driving
factors in this effect is a charge density wave instability for electrons on a honeycomb lattice that can open a
gap in monolayer graphene. The enhancement at intermediate coupling is sufficiently large that spatially varying
substrates and superstrates could be used to create heterostructures in thin graphitic films with position-dependent
electron-phonon coupling and gaps, leading to advanced electronic components.
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I. INTRODUCTION

The two-dimensional (2D) material graphene has made
headlines over the past decade for its remarkable properties.
Often overlooked is the availability of other 2D graphitic
materials. These graphitic (graphite-like) materials are not
formed from carbon atoms but have a structure and properties
similar to those of graphene, but with a direct band gap that
is lacking in suspended graphene. These gapped compounds
have the potential to make graphene-compatible digital tran-
sistors, semiconductor lasers, and solar cells, and it would be
impossible to make such devices without a band gap. The hope
is that 2D graphitic compounds with a band gap have both the
exotic properties of materials such as graphene and the major
technological importance of 3D semiconductors.

Atomically thick graphitic materials with honeycomb lat-
tices and an inherent direct band gap formed because of strong
ionicity include boron nitride (BN) [1] (band gap, ∼5.6 eV [2]),
and other materials can be grown in very similar hexagonal
Wurtzite layers, such as InN (band gap, 0.7–0.8 eV) [3], InSb
(0.2 eV [4]; possibly down to 45 meV on certain substrates
[5]), GaN (2.15 eV [6]), and AlN (6.28 eV [7]), again due
to inherent ionicity. It has also been reported that small gaps
due to local ionicity can be formed with a similar mechanism
in graphene-gold-ruthenium systems [8] and graphene-SiC
systems (there is some debate about the latter [9,10]). Finally,
the 2D layered materials MoSe2 [11] and MoS2 [1] also have
useful gaps and properties, although they are not considered
here, as the honeycomb-like structure has three atoms per unit
cell: two Se or S atoms for each Mo atom.

Recently, I used a self-consistent mean-field theory to show
that gaps in atomically thin materials with a honeycomb
structure may be modified by introducing strong electron-
phonon coupling through a highly polarizable superstrate
[12,13]. Similar interactions between graphitic monolayers
and substrates form polaronic states and affect the overall
electronic structure of the monolayers, as shown by quantum
Monte Carlo simulations for highly doped thin graphitic films
[14]. Strong effective electron-electron interactions can be
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induced via coupling between the electrons in an atomically
thick monolayer and phonons in a highly polarizable substrate
because of limited out-of-plane screening, similar to that
seen for quasi-2D materials such as cuprates, where the
dimensionless electron-phonon coupling can be of order
unity [15]. Dimensionless electron-phonon couplings of up
to λ = 1 have been reported in systems of graphene on various
substrates from angle-resolved photoemission spectroscopy
studies (see Fig. 3 in Ref. [16] and references therein
[17]), and large couplings are found in intercalated graphite
compounds, including a measured λ = 0.45 in KC8 [18].
Since the experimental trend in graphene has been to keep the
electron-phonon coupling as small as possible so that record
mobilities can be obtained in graphene sheets, a coordinated
effort in the other direction could, in principle, lead to very
large couplings that cause novel features in the band structure.

Previous theoretical work on the electron-phonon interac-
tion in graphene has focused on monolayer graphene without
ionicity. Signatures of electron-phonon coupling with sub-
strates can be found in ARPES spectra [19,20]. In suspended or
decoupled graphene monolayers, properties such as the Fermi
velocity are not significantly renormalized by electron-phonon
coupling [20,21] (there is insufficient space to review all
studies of electron-phonon interaction in the various forms
of graphene, but a review of the earlier work in this area,
including the effects on transport, can be found in Ref. [22]).
The work here differs because it studies graphitic materials
such as thin films of III–V semiconductors where ionicity is
present (represented as a static potential that differs for A and
B sites). I make calculations beyond the mean-field theory by
using the dynamical cluster approximation (DCA) formalism
to compute the effects of electron-phonon interaction on
electrons in atomically thick graphitic materials, where a gap
has been opened because of ionicity. I present results computed
with a high-order iterated perturbation theory consistent with
Migdal’s theorem (which allows neglect of vertex corrections
for low phonon frequency and weak coupling) and discuss the
effect of long-range interactions.

Besides the use of electron-phonon interactions with sub-
strates, the possibility of tunable gaps has mainly focused on
graphene. Following a theoretical proposal [23,24], bilayer
graphene has been observed to have a gap that can be
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tuned by applying an external electric field [25,26]. Electron
confinement in graphene nanoribbons leads to gaps [27], and
high-quality nanoribbons can be made by unzipping nanotubes
[28] or using patterned SiC steps [29]. Very wide band gaps
can be formed by functionalizing graphene with hydrogen
(graphane) [30–32] and fluorine (fluorographene) [33,34].

This paper is organized as follows: A model Hamiltonian
for the interactions between graphitic monolayers and sub-
strates is introduced in Sec. II. The perturbative expansion
and dynamical cluster formalism used to solve the model
are discussed in Sec. III. Section IV presents details of gap
enhancements and the spontaneous formation of a charge
density wave state. A summary and conclusions are presented
in Sec. V.

II. MODEL HAMILTONIAN

The Hamiltonian required to describe the motion of
electrons in thin films with honeycomb lattices has a basis
of two atoms. Typically, electron motion within the plane is
described using a tight-binding model, and ionicity is taken
into account with the potential ±� on the two sublattices. With
a highly polarizable substrate, there is additional electron-
phonon interaction between the electrons in the film and
phonons in the substrate, which may be long range (i.e.,
momentum dependent). A Hamiltonian with these properties
has the form

H = Htb + Hel-ph + Hph, (1)

where Htb is the tight-binding Hamiltonian representing the
kinetic energy of the electrons hopping in the monolayer (note
that there is no hopping perpendicular to the monolayer),
Hel-ph describes the electron-phonon interaction, and Hph is
the energy of the phonons in the substrate (treated as harmonic
oscillators and including both kinetic and potential energy of
the ions).

The tight-binding part of the Hamiltonian is written

Htb =
∑
kσ

(φka
†
kσ ckσ + φ∗

kc
†
kσ akσ

+ �(a†
kσ akσ − c

†
kσ ckσ )). (2)

The first part represents the kinetic energy, where φk =
−t

∑
i exp(ik.δi), t is the tight-binding parameter representing

hopping between sites, and δi are the nearest-neighbor vectors
from A to B sublattices, δ1 = ã(1,

√
3)/2, δ2 = ã(1, − √

3)/2,
and δ3 = (−ã,0), and ã is the spacing between carbon atoms in
the plane (the tilde is used to avoid confusion with the creation
and annihilation operators). Electrons with momentum k are
created at A sites with the operator a

†
k and at B sites with c

†
k.

The second part represents the interaction between electrons
in the monolayer and a static potential, induced either by
the substrate (in the case of graphene) or by ionicity (in
monolayers of III–V semiconductors). Here, A sites have a
higher potential; � and B sites are lower in energy by −�.
Breaking the symmetry between A and B sites in the bipartite
honeycomb lattice gives rise to a gap.

The phonon part of the Hamiltonian is

Hph =
∑
q,z

�q,z(b
†
q,zbq,z + d†

q,zdq,z), (3)

where phonons with momentum q are created in layer z at
A and B sites with b

†
q,z and d

†
q,z respectively. Typically, the

phonon dispersion �q is taken to be momentum independent
as a good approximation to optical phonons. Typical phonon
frequencies vary from tens to hundreds of meV. For example,
in BN phonon energies range from 110 meV for transverse
acoustic phonons at the K point of the Brillouin zone to
200 meV for optical phonons [35]. Due to ionicity, sites have a
net charge, so strong coupling between electrons and phonons
is expected.

Finally, the interaction between electrons in the monolayer
and phonons in the substrate (or superstrate, in the case of
graphene on a substrate) is

Hel-ph =
∑
kq,z

[
g(AA)

q,z a
†
k−qak(b†q,z + b−q,z)

+ g(BB)
q,z c

†
k−qck(d†

q,z + d−q,z)
]

+
∑
kq,z

[
g(AB)

q,z a
†
k−qak(d†

q,z + d−q,z)

+ g(BA)
q,z c

†
k−qck(b†q,z + b−q,z)

]
, (4)

where the momentum-space coupling constants g
(XY )
q,z repre-

sent interactions between electrons in the film on sublattice X

and phonons in the substrate on sublattice Y and are defined
as

g
(AA)
k,z = g

(BB)
k,z =

∑
i

eik·Ri g
(z)
0 (Ri), (5)

g
(AB)
k,z =

∑
i

eik·(Ri+i ã)g
(z)
0 (Ri + i ã), (6)

and

g
(BA)
k,z =

∑
i

eik·(Ri−i ã)g
(z)
0 (Ri − i ã). (7)

Here, the lattice vectors are Ri = ña1 + m̃a2, a1 = 3i/2 +√
3 j/2, and a2 = 3i/2 − √

3 j/2.
The lattice Fröhlich electron-phonon interaction used here

has a position space form,

g(z)
m (n) = κ exp(−|n − m|/Rsc)[(n − m)2 + (c̃ + zãsub)2]−3/2,

(8)

and has been proposed for layered quasi-2D systems [15],
where κ is a coupling constant. In Eq. (8), n is the position of
electrons and m is the position of vibrating ions. Experiment
has demonstrated that this form explains interactions between
electrons in carbon nanotubes placed on SiO2 [36]. The
screening radius Rsc controls the length scale of the interaction.
c̃ is the distance between the graphitic thin film and surface
atoms in the substrate. In the following, I take c̃2 = 2ã2,
since the distance between graphene and substrate (which are
typically bound by van der Walls interactions) is likely to
be slightly larger than that between the very strongly bound
carbon atoms in the graphene layer. Ionic, graphitic materials
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may bind more strongly to appropriate ionic substrates, leading
to shorter c̃, which in this work is represented (in combination
with screening effects) by a reduced Rsc. In practice, the
effects of changing c̃ and Rsc on the form of the effective
electron-electron coupling mediated by phonons are very
similar. Typically, this interaction is with the surface ions only.
The possibility of interactions with addional layers in the bulk
of the substrate can also be considered, by adding a distance
zãsub to c̃, where z is an integer, and then summing over all z

when calculating the effective electron-phonon interaction (see
Sec. III A). In this work, I set ãsub = ã for convenience. The
effect of adding interactions with additional layers will be seen
as a slight increase in the effective interaction length. I also
consider the possibility of having separate coupling constants
for electrons at A and B sites. Extensions to the formalism to
allow this are detailed in Sec. III B.

The physical content of the electron-phonon interaction in
Eq. (4) can be seen in position space. Fourier transforms of
the electron-phonon interaction terms in the Hamiltonian have
the form, Hel-ph ∝ ∑

n,m gm(n)nnxm (since d
†
m + dm ∝ xm).

Therefore, it can be seen that the presence of electron density
in the graphene sheet leads to displacements in ion coordinates
in the substrate. By modifying the value of Rsc it is possible
to change the type of interaction: For Rsc → 0, the fully local
Holstein interaction HHolstein ∝ g

∑
i nixi is recovered [37]. In

the opposing limit, Rsc → ∞, the long-range lattice Fröhlich
interaction is recovered.

This section finishes with the note that the model used here
has some similarities to the ionic Hubbard model [38]. In the
ionic Hubbard model, the ionicity (introduced by an analogous
parameter �) acts against the Mott insulating state (which is
caused by the repulsive Hubbard U ). In contrast, in the model
here, the parameter � acts with the electron-phonon coupling
to form a charge density wave (CDW) insulating (gapped)
state.

III. METHOD

The electron-phonon Hamiltonian described above is ex-
tremely difficult to solve exactly using numerical methods. An
approximate solution can be made using iterated perturbation
theory within the DCA formalism. The DCA [39,40] is one
of the possible ways of extending the dynamical mean-field
theory (DMFT) [41,42] so that it can be applied accurately
to low-dimensional systems. The Mermin-Wagner-Hohenberg
theorem indicates that the significant nonlocal fluctuations
found in one and two dimensions could potentially lead to
qualitatively incorrect results from mean-field theories [43,44].
Moreover, the DMFT has trouble dealing with the spatial
variations involved with interactions that extend over more
than one lattice site. The DCA resolves this problem by
developing a mean-field theory around a cluster, rather than a
single site, therefore allowing the possibility of fluctuations or
static spatial variations up to the length scale of the cluster.

When applying the DCA, the Brillouin zone is divided up
into NC subzones centered about a momentum vector K i (see
Fig. 1) consistent with the symmetry of the whole system.
Within each subzone, the self-energy is approximated as a
momentum-independent function, so the Green function can

FIG. 1. (Color online) Dynamical cluster approximation (DCA)
subzones for cluster sizes of up to NC = 100. Axes show the x and
y components of the momentum, kx and ky . Within each subzone,
the self-energy is taken to be momentum independent. This allows
Green functions to be calculated in the thermodynamic limit, and
convergence properties are particularly good as NC is increased. Note
that the only symmetry taken into account is translation in k space.

be coarse grained by integrating over the subzone,

G(K i,z) =
∑
k∈K i

[I(z + μ) + �σ 3 − �k − �(K i,z)]−1 (9)

≡
[
GAA GAB

GBA GBB

]
, (10)

where A and B represent sublattices and

�k =
[

0 φk

φ∗
k 0

]
,σ 3 =

[
1 0
0 −1

]
. (11)

I discuss the procedure for introducing long-range electron-
phonon interactions in Sec. III A.

In finite-size techniques, the number of particles is related to
the number of momentum points used in the calculation of the
self-energy. In contrast, the DCA coarse-graining step involves
an infinite number of momentum points, so the thermodynamic
limit is satisfied for any cluster size. In the context of the
perturbation theory for the Migdal–Eliashberg theory used
here, the DCA has particularly good convergence properties
in cluster size NC , so in principle, smaller clusters can be
used, leading to a significant improvement in computational
efficiency [45,46]. I note that when the DCA cluster size
NC = 1, calculations correspond to the DMFT.

In several previous studies, NC = 4 and NC = 16 DCA
clusters have been used to understand Hubbard interactions on
hexagonal/triangular lattices (see, e.g., [47]). I briefly discuss
the subzone schemes for hexagonal lattices with larger NC

values. For the lattices used here, the simplest way of defining
the subzone vectors is k̃1 = k1/

√
NC , k̃2 = k2/

√
NC with

the vectors K i = nk̃1 + mk̃2 with n and m integers. Here,
the reciprocal lattice vectors are k1 = (2π/3ã,2π/

√
3ã) and
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k2 = (2π/3ã, − 2π/
√

3ã). There are likely to be other valid
lattices that can also be used, where the lattice and sublattice
are oriented at different angles. However, the lattices used there
are the simplest to implement.

Even for the simple cases considered here, the resultant
lattices can be ordered into groups. Clusters with NC = (3n)2

(NC = 9, NC = 36, NC = 81, etc.) have subzones centered on
the K and K′ points (here n � 1 is an integer). Those with Nc =
(3n − 1)2 (NC = 4, NC = 25, and Nc = 64) make a second
set, where three subzones share a corner at the K and K′ points,
and the third set of Nc = (3n + 1)2 (NC = 16, 64, 100, etc.),
where three subzones share a corner at the K and K′ points and
an edge with the full Brillouin zone. Since the self-energies
would be identical in the three zones around the K and K′
points in the latter two cases, they will poorly describe the
physics at the K and K′ points (which is especially important
for graphene). This is why I use only the (3n)2 series.

To establish which k point belongs to a subzone, it is
sufficient to find the closest K i point corresponding to the
center of the subzone (subject to shifts of reciprocal lattice
vectors). The edges of the shapes defined in this way are the
hexagons in Fig. 1.

A. Self-consistent equations for the Fröhlich interaction

I now describe how the perturbation theory for the long-
range electron-phonon interaction is used in conjunction with
the DCA. The perturbation theory used here can be seen
in Fig. 2. Figure 2(a) shows the Hartree diagram. For the
symmetry-broken states, this cannot be absorbed into the
chemical potential and is the main contributor to modification
of the gap. The Fock diagram [Fig. 2(b)] is responsible for the
frequency dependence of the self-energy. Phonon propagators
are modified using a Dyson equation [Fig. 2(c)] which modifies
the phonon frequency and can lead to further enhancement
of the band gap. Following the standard formulation of the
DCA, where momentum is not conserved at vertices within the

Q

= +(c)

(a) (b)

0

Q+K

K

Q

K−Q

Q

Q
Q

Q

FIG. 2. Feynman diagrams showing the perturbation theory used
in the work presented here. (a) Hartree diagram. For symmetry-broken
states, this cannot be absorbed into the chemical potential and is the
main contributor to modification of the gap. (b) The Fock potential
is responsible for the frequency dependence of the self-energy.
(c) Dyson equation for the phonon propagator. This renormalizes
the phonon frequency, which can lead to further enhancement of the
band gap.

subzones (see, e.g., Ref. [48] for a good review), momentum
sums in the perturbation theory are reduced to sums over the
average momenta of the sub-zones. Therefore,

	
(H )
XY = −2

T

NC

δXY

∑
lmK ′

DXl(0)Gll(K ′,ωm), (12)

	
(F )
XY (ωn K ) = T

NC

∑
ωs, Q

GXY (ωn − ωs,K − Q)DXY (ωs Q),

(13)

where Q represent the centers of the coarse-grained cells for
phonon momenta,

[D−1( Q)]XY = [d−1( Q)]XY − [�( Q)]XY , (14)

where

�XY ( Q,ωs) = −2
T

NC

∑
Kωn

GXY ( Q + K ,ωn + ωs)

×GYX(K ,ωn) (15)

and the noninteracting phonon propagator is

dXY ( Q,ωs) = λXY ( Q)�2
/(

�2 + ω2
s

)
, (16)

where λXY ( Q) is the dimensionless electron-phonon coupling
averaged to a single subzone centered around momentum Q.

It remains to define how to deal with the momentum-
dependent electron-phonon coupling within the DCA formal-
ism. Here the dimensionless, momentum-dependent electron-
phonon coupling, λ, is incorporated using the following
procedure. I first note that, in position space, the standard
dimensionless electron-phonon coupling is defined to be
λ = ∑

mz |g(z)
m (0)|2/t�� (this value is the ratio of the polaron

energy in the atomic limit to the hopping, t ; see, e.g.,
Ref. [49] for more details) and that the Fourier transform
of this definition to convert the sum to momentum space
gives λ = ∑

k,XYz |g(XY )
k,z |2/t��. Following this, I define the

coupling for a single k and z value to be

λ̃
(XY )
k,z = ∣∣g(XY )

k,z

∣∣2/
t��. (17)

The dimensionless electron-phonon coupling can then be
related to the value of λXY ( Q) used in Eq. (16) via

λXY (K i) = 2NCλ

∑z=NZ

k∈K i ,z=1 λ̃
(XY )
k,z∑z=NZ

k′∈BZ,αβ,z=1 λ̃
(αβ)
k′,z

, (18)

where NZ is the number of planes of vibrating ions in the
bulk substrate that electrons in the plane are coupled to (note
that the electrons do not hop into the substrate). The reason
for defining λXY in this way is that it is a convenient way of
canceling the nonstandard coupling constant, κ , and replacing
it with the standard dimensionless electron-phonon coupling,
λ. In this expression, the sum in the denominator leads to an
average value that is proportional to λ multiplied by the number
of lattice sites, 2NC (there are two sublattices for every cluster
site), so by multiplying the average value of λ̃k,z in each DCA
subzone by 2NCλ/

∑
k′∈BZ,nm,z λ̃

(nm)
k′,z , factors of κ cancel. To

give an idea about how λ varies for different DCA subzones,
λXY (K i) is plotted in Fig. 3 for zones that are centered on the
high-symmetry directions.
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FIG. 3. Values of λXY (K i) plotted for zones that are centered on the high-symmetry directions. The Fröhlich interaction used has an average
λ value of 1, so due to the inhomogeneity of the interaction across the Brillouin zone, the interaction is >1 in unit cells close to the � point and
<1 elsewhere. The peak is suppressed for small clusters due to averaging across DCA subzones but reaches the peak value for cluster sizes of
order 144. The difference between λAA(K ) and λAB (K ) at � is important for the effective interaction strength in the Hartree diagram.

Self-consistency is then carried out as follows:
(1) Initialize by calculating the coarse-grained electron-

phonon interaction from Eq. (18) and the Green function from
Eq. (9) with the electron self-energy set to 0.

(2) Calculate the phonon self-energy (polarization bubble)
from Eq. (15).

(3) Calculate the renormalized phonon propagator from
Eq. (14).

(4) Use the renormalized phonon propagator to calculate
the Hartree and Fock contributions to the electron self-energy
following Eqs. (12) and (13).

(5) Recalculate the Green function from Eq. (9).
(6) Repeat steps 2–5 until converged.
The resulting formalism is quite robust for phonon energies

that are of the order of, or smaller than, kT , as is the case with
all calculations made here for room temperature and phonons
with energies in the range 10-100 meV, since the phonon
propagator acts like a δ function when �� < kBT . Since the
Hartree diagram does not have any frequency sums that include
the phonon propagator, the sum over Matsubara frequencies in
the next most important diagram (the Fock diagram) is severely
truncated, leading to a much reduced contribution (with the
caveat that the Green function must have small values for
low Matsubara frequencies, which is ensured by the V-shaped
form of the density of states in graphene). In practice, this
means that all other terms in the perturbation expansion for
the electron self-energy will be very much smaller and that, in
this case (because of the vanishing density of states at the Fermi
surface), Migdal’s theory holds. Similar considerations apply
for the phonon self-energy such that the single polarization
bubble formed from dressed electron propagators should be
the dominant term in the perturbation expansion. Therefore,
the approximation used here is expected to be highly accurate
for large cluster sizes.

B. Extensions for different interactions on A and B sublattices

Finally, I note that it is possible to have different electron-
phonon interactions on each of the A and B sublattices. This
may occur since atoms at the A and B sites are different,
so that the orbitals holding the electrons that cause the ion
displacements have a different form. In practice, I would expect
this effect to be quite small (�30%) if the A and B sites are

in the same period of the periodic table, but this effect may be
larger if the atoms come from different periods.

I start again from the expression

λ̃
(XY )
k,z = ∣∣g(XY )

k,z

∣∣2
/t��. (19)

Two dimensionless constants can now be introduced, λA ∝ κ2
A

and λB ∝ κ2
B . I note that the values of |g(XY )

k,z |2 are proportional
to λA if both sublattices are of type A, λB if both sublattices
are of type B, and

√
λAλB if the sublattices are different. It is

worth noting at this stage that the factor
√

λAλB for of-diagonal
terms means that the intersite interactions are reduced more
rapidly than the simple average of λA and λB , which makes
the interaction much more localized if the difference between
λA and λB is significant.

The dimensionless electron-phonon coupling can then be
related to the value of λXY ( Q) used in the self-consistent
equations via

λXY (K i) = NC

2
(
√

λA +
√

λB)2

∑
k∈K i ,z

λ̃
(XY )
k,z∑

k′∈BZ,αβ,z λ̃
(αβ)
k′,z

. (20)

The prefactor in this expression is different from the previous
one, since the sum in the denominator is proportional to λA +
λB + 2

√
λAλB = (

√
λA + √

λB)2.

IV. RESULTS

The aim of the work presented here is to use the DCA
to examine how CDW gaps in graphitic thin films vary
with electron-phonon coupling. I take T = 0.02t , � = 0.1t ,
and � = 0.01t . Noting that t is typically of the order of
an electron volt, these values correspond approximately to
room-temperature phonon frequencies, �, of tens of meV and
� of a few hundred meV, consistent with thin films of materials
such as InSb or reported gaps in some graphene on substrate
systems. In the following, all results are for half-filling.

I start by computing self-energies to show the relative con-
tributions of on- and off-site terms and the effects of varying the
interaction range. The computed self-energies, including the
relative contributions of Hartree and Fock diagrams for λ = 2
and NC = 9 resulting from a Holstein interaction, are shown
in Fig. 4. The top two rows show the real and imaginary parts
of the on-diagonal self-energy, and the bottom two rows show
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FIG. 4. (Color online) Comparison of the Hartree and Fock parts of the self-energy for the case of the Holstein interaction, 	 = 	′ + i	′′,
vs the Matsubara frequency in a nine-site cluster. The largest element in the self-energy matrix is the real part of the on-diagonal Hartree term,
which is momentum independent, and it is this value that defines the size of the gap. Left panels: Individual Hartree and Fock contributions to
the gap. Right panels: Momentum dependence of the total self-energy. 	AA is essentially momentum independent (so in the upper panel, curves
for points K and � lie directly under those for point M), and 	′

AB has a weak momentum dependence, so the points can only be differentiated
under a high magnification. 	′′

AB is very small. Primed points are related to unprimed ones by inversion around the origin. (N.B.: The Fock
term is still the most important contribution in some cases; for example, the inverse mass depends on derivatives of the self-energy, so this will
be given by the Fock term.) The points marked M and M′ represent zones that border on point M(but where the DCA subzone center in the
NC = 9 cluster is offset slightly from point M so that the values are distinct). T = 0.02t , � = 0.1t , � = 0.01t , and λ = 2.

the off-diagonal self-energy. The real part of the on-diagonal
Hartree diagram is momentum and energy independent. It
is the largest magnitude element of the self-energy matrix
(contribution of about 2t), and as it is frequency independent it
directly contributes to the enhancement to the gap by changing
the effective local potential on each sublattice, and it is also the
main contributor to spontaneous CDW order. The imaginary
part of the Hartree diagram and the of-diagonal contributions

are necessarily 0 for the Holstein interaction. The imaginary
part of the Fock term (contribution, ∼0.1t) is still the most
important contribution for some properties. For example, the
inverse mass (not considered here) depends on derivatives of
the self-energy, so this property will be given by the Fock
term. The Fock term is also the largest contribution to the
off-diagonal self-energy, with a contribution of around 0.01t .
Note that when λA = λB , the self-energies have the following
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FIG. 5. (Color online) Comparison of the Hartree and Fock parts of the self-energy for a Fröhlich interaction, 	 = 	′ + i	′′, vs Matsubara
frequency. On-diagonal contributions can be seen at the top, and off-diagonal ones at the bottom. Again, the largest contribution to the self-energy
matrix is the real part of the on-diagonal Hartree term, which defines the gap and is momentum independent. As in the Holstein case, the
Hartree contibution to the off-diagonal self-energy is necessarily 0, and the Fock diagram is the largest off-diagonal contribution, although it
is still about one-fourth the magnitude of the on-diagonal Hartree term. The Fock term has a significantly bigger momentum dependence than
in the Holstein case. (N.B.: The contributions to 	′′

AB for points K, K′, and � are all 0 so cannot be distinguished from each other.) Here,
T = 0.02t , � = 0.1t , � = 0.01t , λ = 2, and NC = 9. The Fock contributions become relatively smaller compared to the Hartree term as the
cluster size increases.

symmetries: 	BA = 	∗
AB and 	BB = −	∗

AA, so 	BA and 	BB

are not shown.
Figure 5 is as Fig. 4 for the longer-ranged Fröhlich

interaction (for NC = 9, the Hartree contribution is 0.15t). The
real parts of the on-site self-energies are significantly smaller
for the long-range Fröhlich interaction than for the Holstein
model. Other differences are that the Fock contribution to the
off-site self-energy is very small for the Holstein interaction
(N.B.: It is not 0 because of effective off-site interactions

mediated through the phonon self-energy.), whereas the off-
site Fock self-energy is of a similar magnitude to (but smaller
than) the on-site Fock self-energy for the Fröhlich interaction
(∼0.04t). The relative size of the on-site Fock contribution
drops off significantly relative to the Hartree diagram as the
cluster size is increased, only contributing ∼4% of the total
self-energy at zero Matsubara frequency for NC = 144.

The main aim of this paper is to understand the role
of the electron-phonon coupling range in the enhancement
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FIG. 6. (Color online) (a) Gap enhancement �′/� vs electron-
phonon coupling λ for a Holstein interaction with �/t = 0.1,
comparing results from the dynamical mean-field theory (correspond-
ing to NC = 1) and the DCA. There are only small corrections
due to momentum dependence. The inclusion of the phonon self
energy (polarization bubble, PB) is responsible for a significant
increase in the gap. (b) Gap enhancement for the long-range Fröhlich
interaction, Rsc = 2a. (c) Gap enhancement for the long-range
Fröhlich interaction. Here T = 0.02t and � = 0.01t . The initial
increase in the gap as NC increases arises because the long-range
interaction is not homogeneous across the Brillouin zone, so the
effective value of λ( Q = 0) (which is relevant to the Hartree diagram)
is larger than the average λ in all cluster sizes except NC = 1. The
enhancement is essentially converged for cluster sizes of Nc = 144.
(N.B.: Since � = 0.1t , the gap enhancement is 10 times larger than
the gap, �′, which can be read from the real part of the self-energy at
a high Matsubara frequency.)

of gaps. Figure 6 shows how the enhancement varies with
interaction range and with cluster size. The gap size is
calculated directly from the value of the Hartree diagram,
which causes a local on-site potential energy shift, such that the
gap �′ ≈ � + 	(H ), whereas the Fock term, which contributes
the imaginary on-site self-energy, changes the quasiparticle
lifetime. I have used Padé approximants [50] to test for
any further gap contribution from the Fock term, which is
very small for the Holstein interaction and, for the Fröhlich
interaction, reduces from around 15% for a cluster of NC = 9

to around 2% for cluster size NC = 144. Figure 6(a) shows gap
enhancement for a Holstein interaction with �/t = 0.1, for a
range of cluster sizes. (N.B. The enhancements will be smaller
for systems with a larger ionicity (�/t) [12,13].) There are
very small corrections due to momentum dependence. As the
screening radius Rsc increases, the enhancement decreases.
The increase in cluster size has no effect on the gap in this
set of diagrams for the Holstein interaction. Figure 6(b) shows
results when Rsc = 2a. Essentially, the effective λ [that goes
like λAA(0) − λAB(0) in the Hartree diagram] decreases with
Rsc. The initial increase in the gap as NC is increased is a
result of the inhomogeneity in the effective electron-phonon
coupling across the Brillouin zone, which means that the value
of coupling is largest at the � point, where it contributes
most to the Hartree diagram. For small clusters, averaging the
coupling across the Brillouin zone means that the coupling is
underestimated at the zone center and overestimated at the
K point (see Fig. 3). Figure 6(c) shows gap enhancement
for the long-range Fröhlich interaction (Rsc → ∞). Even
for the long-range interaction, the enhancement effects are
significant. I note that the DMFT results (NC = 1) consistently
underestimate the gap enhancement.

The phonon self-energy plays an important role in the gap
enhancement. Figure 6(a) also shows the enhancement effect
for the Holstein interaction when NC = 1 if the polarization
bubble (PB) is neglected and the curve can be compared
with the full theory with NC = 1. The phonon self-energy
augments the enhancement by increasing the value of the
phonon propagator at the Brillouin-zone center, thus increasing
the electron self-energy, which is proportional to the phonon
propagator.

To show how the phonon self-energy varies within the
Brillouin zone, it is plotted in Fig. 7. The variation is relatively
small, which indicates that the position space variation occurs
over a very small number of lattice sites, i.e., that only small
clusters are needed to capture the spatial variation of �. To
show how the effective coupling is renormalized and depends
on the cluster size, D( Q,0) is plotted in Figs. 8 and 9. The
momentum dependence of the effective coupling when the
Holstein interaction is used is very weak (Fig. 8). On the other
hand, the effective coupling is strongly momentum dependent
for the Fröhlich interaction. This demonstrates that it is the
effective coupling that causes the spatial variations that require
large clusters for representation.

All results shown up to this point are calculated with
electrons in the monolayer coupling to phonons in the surface
layer of ions in the substrate only. Figure 10 shows corrections
taking into account the finite depth of the bulk of the
substrate rather than just surface ions. The plot shows the
effect of including interaction with vibrations of surface ions
only (Nz = 1) and interaction with vibrations in three layers
(Nz = 3) and six layers (Nz = 6) of the bulk of the substrate,
respectively (note that electrons still hop in the monolayer and
do not hop into the substrate). The effect of the bulk is to
reduce the enhanced gap by around 20%.

Since the atoms at A and B sites may be different, their
electron-phonon interactions may also be different. I test the
effect of taking λA �= λB , which is shown in Fig. 11. In the
figure, λA is kept fixed, while λB is varied. The asymmetry
induced between A and B sites by the interaction means that
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FIG. 7. (Color online) Comparisons of the phonon self-energy for Holstein and Fröhlich interactions with various λ values. As the interaction
strength increases, the phonon self-energy decreases due to the gap at the Fermi energy, which reduces the value of the Green function at low
Matsubara frequencies. The self-energy is only weakly momentum dependent, but it is possible to discern the variation across the Brillouin
zone.
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FIG. 8. Effective coupling in the Holstein model for a range of couplings, DXY (Q,0). The effective interaction becomes larger more rapidly
than λ, and the form changes from momentum independent to weakly momentum dependent.

155415-9



J. P. HAGUE PHYSICAL REVIEW B 89, 155415 (2014)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

M Γ K

D
A

A
(K

,0
)

k

Frohlich

Dressed, λ=0.4
Bare, λ=0.4

-0.5
 0

 0.5
 1

 1.5
 2

 2.5
 3

 3.5

M Γ K

D
A

B
(K

,0
)

k

Frohlich

Dressed, λ=0.4
Bare, λ=0.4

 0
 2
 4
 6
 8

 10
 12
 14
 16

M Γ K

D
A

A
(K

,0
)

k

Frohlich

Dressed, λ=1.2
Bare, λ=1.2

-2
 0
 2
 4
 6
 8

 10
 12
 14
 16

M Γ K

D
A

B
(K

,0
)

k

Frohlich

Dressed, λ=1.2
Bare, λ=1.2
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self-energies are not symmetric between A and B sites as
before, so the chemical potential is varied iteratively during
self-consistency to maintain half-filling. Curves computed for
these parameters are compared with the enhancement when
λA = λB , and the average value of λ is plotted on the x axis to
make the comparison meaningful. As λB is decreased, there
is initially a small reduction in the enhancement, around 20%,
followed by an increase as λB approaches 0. For a comparable
average λ, the enhancement is generally bigger than for the
case when the two couplings are the same. The reason why the
enhancement remains high is that large differences between
the two couplings significantly reduce the coupling between
A and B sites (which goes as

√
λAλB), and it is this coupling

that acts to reduce the enhancement in the Hartree term.
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FIG. 10. (Color online) Corrections taking account of the finite
depth of the bulk substrate. The traces show the effect of interactions
between electrons in the monolayer and vibrations in the surface
atoms only (Nz = 1) and interactions with vibrations in three and six
layers of bulk substrate, respectively. (N.B.: Electrons only hop in the
monolayer, and there is no hopping into the bulk of the substrate. The
effect of the bulk of the substrate is to reduce the enhanced gap by
around 20%.)

While this paper is primarily concerned with the modi-
fication of gaps in graphene-like (graphitic) materials with
inherent ionicity, such as thin films of III–V semiconductors,
it is also interesting to determine if gaps can spontaneously
form from the electron-phonon interaction. This is explored in
Fig. 12, which shows spontaneous CDW symmetry breaking.
Figure 12(a) shows DMFT results. For sufficient λ, a CDW
state can be found for all values of Rsc (this is not visible in the
figure for large values of Rsc because λ values are too small).
The result shows that the full system with � �= 0 is on the cusp
of a CDW state, and this is why the gap is strongly sensitive to
the electron-phonon coupling. Figure 12(b) shows results for
Rsc = 1 as the cluster size is increased. It may initially be a
surprise that a CDW state can be supported at finite tempera-
ture, since Mermin-Wagner-Hohenberg (MWH) theorem does
not allow for 2D antiferromagnetism in Heisenberg models
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FIG. 11. (Color online) Effect of taking λA �= λB when Rsc = 2a

and NC = 36. Since electrons on different sublattices are contained
in orbitals of different atoms, the interaction between electrons and
phonons may depend on the sublattice. The enhancement is mainly
determined by the largest of λA or λB , with small changes to the
overall enhancement as the other coupling is varied.
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FIG. 12. (Color online) (a) Spontaneous symmetry breaking (gap generation) in a graphene monolayer. The y axis shows the spontaneously
formed gap �′; the x axis, the electron-phonon coupling λ. Here T = 0.02t , � = 0.01t , NC = 1, and � = 0. (b) Effect of cluster size on the
CDW state formed from a Fröhlich interaction with Rsc = a. (N.B.: A single point is calculated for a cluster size of NC = 225 to confirm
convergence.)

or 2D superconductivity. However, detailed quantum Monte
Carlo calculations have shown that CDW order can be formed
by the Holstein interaction at half-filling on square lattices at
finite temperature [51–53]. In this case, MWH theorem does
not apply because the symmetry is discrete (i.e., the local
charge density at a specific time is determined by the number
of electrons and may be 0, 1, or 2) [54].

To end this section, I note that as a minimum theory, it
may be sufficient to compute only the Hartree diagram (which
dominates the perturbation expansion) and the lowest order
contribution to the phonon self-energy, �, at Q = 0 and ωs =
0 only (since only the zero-momentum Matsubara frequency
and the phonon propagator contribute to the Hartree diagram).
However, there would still need to be iteration over these
diagrams to acheive self-consistency.

V. SUMMARY AND CONCLUSIONS

In summary, I have investigated gap formation and enhance-
ment in a model of atomically thin graphitic materials. The
electron-phonon coupling and range have been varied, and the
effects of higher order corrections to the phonon propagator
have been considered. The effect of reintroducing fluctuations
around the mean-field limit has also been investigated using
the DCA. Higher order corrections to the perturbation theory
increase the gap enhancement. It is found that gaps are
enhanced by electron-phonon interactions for all interaction
ranges, with the enhancement decreasing as the interaction
range increases.

One of the driving factors of this enhancement is the
proximity to a CDW state for a material without ionicity
(� = 0) such as graphene. I have shown that sufficiently
large coupling between electrons and phonons can lead to
spontaneous CDW order. This instability to order shows why
there are significant gap enhancements at large coupling
when ionicity is introduced. The existence of CDW order
at finite temperature in a 2D material such as graphene is
consistent with detailed quantum Monte Carlo results for a
square lattice [51–54] and this could be stabilized further
at room temperature with small interplane hopping, of order
50 meV (or around 1% of the in-plane hopping). Owing to
the spontaneous symmetry breaking, an appropriately layered
heterostructure of graphene and a wide gap insulating material
such as BN might generate small spontaneous gaps of useful
size due to CDW formation.

In experiments, the strength of the electron-phonon cou-
pling could be varied in two ways. The first, most obvious way
to modify the coupling between substrate and film is to change
the substrate. Highly ionic polarizable substrates would couple
most strongly with the film, leading to the strongest effects.
While the distance between graphene and substrate is of the
order of 3 Å, the force between free electrons and ions in a
substrate (leading directly to electron-phonon coupling) would
be large. In fact, dimensionless electron-phonon couplings
of up to λ = 1 have been reported in graphene on substrate
systems from angle-resolved photoemission spectroscopy
studies (see Fig. 3 in Ref. [16], and references therein;
note that much smaller interactions can be found with metal
substrates, where polarizability is low and coupling with
the substrate is weak). An alternative way to dynamically
decrease the electron-phonon interaction range and increase
the coupling strength would be to apply pressure to the film
to move it closer to the substrate, which could be simpler to
achieve experimentally than growing films on many different
substrates.

I briefly mention that interactions with the vibrations of
hydrogen (and other) atoms that are used to functionalize
graphene to make graphane (and related materials) would be

substrate Asubstrate B

single
graphitic 
thin film

heterostructure

gap A gap Binterface

FIG. 13. (Color online) Schematic showing the possible use of
two substrates with different electron-phonon coupling, λ, with thin
graphitic films to make a heterostructure in a single thin film of
a graphitic material. This could be manufactured by laying down
an interface between the two substrate materials before cleaving
perpendicular to the interface and then depositing the thin film. The
film above the substrate with the largest λ would have a bigger gap,
leading to a heterostructure within the interface region.
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Holstein-like, so part of the gap in those materials may be
phonon driven. This might be testable by changing the isotope
of the functionalizing atoms.

The results here suggest that an interesting possibility
would be to use the electron-phonon interaction to make
position-dependent changes to the band structure of the thin
film (for example, by adding a spatially dependent superstrate
with phonons that strongly couple to electrons in the thin
film), a method that is potentially easier to control than
trying to deposit neighboring thin films with interfaces in
the plane. Only tiny gap enhancements, of around 20%,
would be needed, so that proportional gap enhancements from
the predictions made here are similar to the proportional
difference between gaps in GaAs and AlGaAs [55], so it

is plausible that thin-film heterostructures or quantum dots
could be built up in this way (see Fig. 13). Another possibility
would be to tune inherent gaps in III–V semiconductors with
the electron-phonon interaction, so that they become optimal
for applications such as solar cells where the efficiency is
highly sensitive to the gap size. Clearly, graphitic thin films
warrant further study to assess their full capability for novel
electronics.
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