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We investigate the interplay of ferroelectricity and quantum electron transport at the nanoscale in the regime
of Coulomb blockade. Ferroelectric polarization in this case is no longer the external parameter but should be
self-consistently calculated along with electron hopping probabilities leading to physical transport phenomena
studied in this paper. These phenomena appear mostly due to effective screening of a grain electric field by
ferroelectric environment rather than due to polarization dependent tunneling probabilities. At small bias voltages
polarization can be switched by a single excess electron in the grain. In this case transport properties of a single
electron transistor exhibit the instability (memory effect).
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Systems with ferroelectric (FE) elements attract much of
the attention due to their interesting fundamental properties at
the nanoscale as well as due to their possible applications in
microelectronics, especially in nonvolatile memory devices, in
emerging technologies of Terahertz-detecting, and in building
of advanced (nano)capacitors [1–14]. In quantum junctions
the ferroelectricity influences electron transport: Tunneling
through the FE barriers shows giant electroresistance effect
caused by the strong dependence of electron tunneling prob-
ability on the FE polarization and external bias orientations
[7,15]. Here we focus on the inverse process—the influence
of electron transport on ferroelectricity [2,10]. The naive
guess would be that a single electron, small quantum object,
can slightly influence the macroscopic effect—ferroelectricity.
However, we show that this is not quite true and discuss the
interplay of ferroelectricity and quantum electron transport at
the nanoscale in the regime of Coulomb blockade. Polarization
in this case is no longer the external parameter but should
be self-consistently calculated along with electron hopping
probabilities leading to physical transport phenomena studied
in this paper. These phenomena appear mostly due to effective
screening of a grain electric field by ferroelectric environment
rather than due to polarization dependent tunneling probabili-
ties.

Ferroelectrics (FE) are characterized by the polarization P
whose direction and magnitude can be changed by applying an
external electric field E larger than the ferroelectric switching
field Es . The ground ferroelectric state of a bulk sample is
usually not uniformly polarized but divided into domains to
lower the electrostatic energy, like in ferromagnets [16].

At the nanoscale to influence the polarization of a
(nano)ferroelectric one can apply strong enough bias to
nanotips [2]: There is a well developed technique of imag-
ing and control of domain structures in ferroelectric thin
films by a tip of a scanning probe microscope, see, e.g.,
Refs. [2,7,10,17–19].

Here we show how ferroelectric polarization switching
can be produced by placing a single excess electron at
the nanograin. A charged metal particle creates a strong

enough electric field, E ≈ 1 MV/cm, around it. Numerous
ferroelectric (nano)materials have the same order of magnitude
switching field [2,10].

We study a single electron device with electric current
flowing from the source to the drain electrodes with voltages
V1 and V2, respectively, Fig. 1. A metallic nanoparticle is
placed in between these electrodes. The third gate electrode
controls the effective number of electrons on the grain through
the capacitive coupling. We assume that the charging energy
Ec of a single grain is the leading energy scale in the problem
Ec � T with T being the temperature. The device shown in
Fig. 1 is a standard single electron transistor (SET) [20–27]
with one important exception: electrons tunnel through ferro-
electric insulating layers.

The tunnel junctions between the nanograin and the elec-
trodes form the capacitors with ferroelectric filling (see equiv-
alent electric circuit Fig. 2). Typically, ferroelectric placed
into the capacitor chooses polarization direction perpendicular
to the electrodes. This configuration reduces electrostatic
energy due to FE polarization screening by the electrodes.
The direction of polarization can be switched applying the bias
voltage to the capacitor. In SET the potentials of the electrodes
and the gate potential are usually fixed. The grain potential φ

can fluctuate and can be found by solving simultaneously the
electrostatic and the electron transport problems. The potential
φ depends not only on the bias voltage and capacitances, but
also on the probability distribution p(n) to find n electrons on
the grain and on the polarization of ferroelectrics. Polarizations
of ferroelectric layers in turn depend on the grain potential and
p(n). Thus we need to consider the self-consistent problem.

The solution of the self-consistent problem strongly de-
pends on the relaxation parameters of the ferroelectric mate-
rial: How quickly the polarizations can change (flip) during
the characteristic time of charging (discharging) of SET by a
single electron. Below we focus on two limiting cases when
both ferroelectric layers have relaxation times much longer
than a one-electron charging-discharging time and vice versa.
These two cases correspond to qualitatively different behavior
of FE SET.
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FIG. 1. (Color online) Sketch of a single electron device with
ferroelectric tunnel junctions.

The case of slow FE is considered in Sec. I B. We study the
dependence of FE state on bias and gate voltages and show
that the Coulomb diamonds have the “fine structure” mediated
by ferroelectricity that depends on the gate voltage, Fig. 3
(at large enough ferroelectric polarizations this fine structure
can become comparable with the size of the diamonds). We
present the plot of FE “phase diagram,” Fig. 4. For large bias
voltages the polarization in both capacitors are co-directed and
does not affect the electron transport. At small bias voltages
the polarization can be switched by a single excess electron
in the grain. In this case transport properties of SET exhibit
the instability (hysteresis), Fig. 3. We emphasize that this
instability appears even without the hysteresis of polarization
P (E).

In Sec. I C we discuss the case of fast FE. Then the
instability is absent. However, we show that the Coulomb-
blockade peaks of zero-bias conductance as the function of the
gate voltage [20–23] become wider and finally disappear with
increasing of the FE polarizations. Such an effect appears due
to strong nonlinear screening of electron charge in the grain
by ferroelectrics leading to the suppression of the Coulomb
blockade. In Sec. II we discuss the relation of our theory to
real experimental situation.

I. SINGLE ELECTRON DEVICE WITH FERROELECTRIC
TUNNEL JUNCTIONS

Below we discuss the basic properties of SET sketched
in Fig. 1. The equivalent electric circuit is shown in Fig. 2.
The ferroelectricity influences the properties of SET through
two capacitors with FE insulating layers and results in the
redistribution of charge over the surface of the nanoparticle. In
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ϕ

FIG. 2. (Color online) Effective circuit equivalent to the setup
shown in Fig. 1. Ferroelectric insulators are highlighted by the orange
color.
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FIG. 3. (Color online) Coulomb diamonds—the conductance
density plot. Here V1,2 = ∓V/2. (a) and (b) differ by the change
of the evolution direction of parameter Q0 = −CgVg . (c) Forward-
backward evolution of parameter Q0. The dimensionless temperature
is T = 0.01 and all other parameters are similar to Fig. 5.

particular, ferroelectric with polarization P induces the local
charge on the nanoparticle surface with the surface density
P · n [16], where n is the normal to the surface. The excess
charge on the nanograin is given by the following expression:

ne =
∑

i

{
Ci [φ(n) − Vi] +

∫
i

dni · Pi

}
, (1)

where n is the number of excess charges, e is the electron
charge, φ(n) is the potential of the nanograin, and Ci with i =
1,2,g is the capacitance. The surface integration is performed
over the nanoparticle sides playing the role of the capacitor
plates in Fig. 2.

We study the SET with fixed electrodes and gate potentials
and find the grain potential φ(n) using Eq. (1). Following the
“orthodox model” [20–23] we obtain the probabilities p(n) to
find n electrons on the grain. In the stationary case they satisfy
the detailed balance equation

p(n)�n→n+1 = p(n + 1)�n+1→n, (2)

where the transition rate �n→n+1(〈φ〉) describes the change
of grain charge from n to n + 1 electrons, see Appendix.
Calculating transition rates � we neglect the dependence of
electron tunneling amplitudes on the FE orientation, however
this effect can be easily included in our consideration. Our
estimates show that consideration of polarization dependent
tunneling probabilities does not destroy the effect but it rather
enhances it.

The electric current can be written in terms of the transition
rates as follows:

I = e

∞∑
n=−∞

p(n)
[
�

(1)
n→n−1 − �

(1)
n→n+1

]

= e

∞∑
n=−∞

p(n)
[
�

(2)
n→n+1 − �

(2)
n→n−1

]
. (3)
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FIG. 4. (Color online) The density plot shows the “phase diagram” of the ferroelectric SET in (Q0,V ) space, where color gradients stand
for polarization. The arrows show the polarizations of the left and the right ferroelectrics. (a) and (b) Ferroelectric polarizations for increasing
parameter Q0, while (e) and (f) correspond to the decreasing Q0. (c) and (d) Arithmetical mean of the polarizations corresponding to the left
and the right ferroelectrics. All parameters are similar to Fig. 3 except the parameter q0

i : q0
1 = 0.03 and q0

2 = 0.06 in Eq. (7).

Here the upper index of � refers to the particular tunnel
junction, see Appendix. Solving Eqs. (1)–(3) self-consistently
we find the current I .

The polarization P of the FE is sensitive to the electric field
and can be flipped by a strong enough field. The characteristic
time scale for electron tunneling is τe = R�C� , with C� =∑

i Ci and R� = R1 + R2 being the total capacitance and the
total resistance, respectively. The characteristic time scale for
polarization change τP can be either larger or smaller than τe.
Both cases are relevant for experiment and will be discussed
below.

Here we consider the following model describing the
electric field dependence of polarization [5,28]:

P (E) = P 0 tanh

( E
Es

)
, (4)

where Es is a material dependent parameter. Similar de-
pendence of polarization P on the capacitor voltage has
the form P (V ) = P 0 tanh(V/Vs), where Vs = Esd and d

is the distance between the electrodes of the capacitor. Equa-
tion (4) describes the saturation of P for large electric fields
and it results in constant electric susceptibility χe = P 0/Es

for small electric fields E 	 Es . Equation (4) neglects the
spontaneous polarization and the hysteresis behavior of P (E).
This simplification is valid for FE with small switching field in
comparison with the field created by the charged grain, Sec. II.
Below we show that even in the absence of FE hysteresis the
SET conductance has history dependence. To highlight this
result we neglect the FE hysteresis in our consideration. The
presence of memory effect in the behavior of polarization P (E)
would add an additional hysteresis in the transport properties
of SET.

A. Units for numerical calculations

We use dimensionless units in our numerical calculations:
2Ec = e2/C� is the unit of energy and temperature (kB = 1).
All charges are measured in units of elementary charge e, in
this unit the electron has charge −1. The capacitance unit is
e2/2Ec, thus C� = 1. We choose the bare tunnel resistance of
the first tunnel junction R1 between the left electrode and the
nanograin for units of tunnel resistance, Figs. 1 and 2. Thus
the unit of conductance G is 1/R1.

B. Mean-field approximation: Fast charging (discharging)
and slow relaxation of polarization

Here we consider the limit of fast grain charging and slow
relaxation of polarization τP � τe. In this case the polarizations
of the FE layers are defined by the average biases across
the capacitors. The average grain potential is given by the
following expression:

〈φ〉 =
∞∑

n=−∞
p(n)φ(n). (5)

Below we show that 〈φ〉 and p(n) depend on the polarization
of the FE layers that in turn depends on the average potential
〈φ〉 leading to the self-consistent problem.

We choose V1 = −V/2 and V2 = V/2 for the biases
applied to electrodes, solve Eq. (1) for the grain potential
along with Eq. (4), and find

φ(n) = e

C�

{
ne −

[
Q0 + qfe + (C1 − C2)

V

2

]}
, (6)

qfe = q0
1 tanh

(
〈φ〉 + V

2

Vs

)
+ q0

2 tanh

(
〈φ〉 − V

2

Vs

)
, (7)
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where Q0 = −CgVg , q0
i = P 0

i Si with i = 1,2, and Si being
the effective capacitance area. We notice that parameter q0

i is
positive. Comparing Eq. (6) with the orthodox theory of SET
[22,23] we find that the presence of ferroelectricity shifts the
“gate charge” Q0 by the polarization-dependent constant qfe,
see Appendix.

We start our consideration with an approximate solution
of Eq. (5). When the current flows through the ferroelectric
SET the induced FE charge stays the same. Therefore, if we
assume that the sum of the effective charges induced by the
FE on the grain qfe is known we can calculate the probability
distribution of n electrons using the orthodox theory of SET.
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FIG. 5. (Color online) (a) Average grain potential 〈φ〉 for voltage
V → 0 vs parameter Q0. For negative potential 〈φ〉 < 0, polariza-
tions of both ferroelectrics are directed towards the nanoparticle,
while for positive potential 〈φ〉 > 0, they have the opposite direction.
Plots are shown for the following set of parameters: q0

1 = q0
2 =

0.03, T = 0.03, C1 = 0.3, C2 = 0.5, Cg = 0.2, and R2 = 2R1.
Dimensionless units are defined in Sec. I A. Almost linear branches
of potential 〈φ〉 with width 2(q0

1 + q0
2 ) correspond to the electric

fields of both capacitors smaller than the field E (1,2)
s in Eq. (4). The

solid gray curve shows potential 〈φ〉 for q0
1 = q0

2 = 0. (b) and (c)
Conductance of ferroelectric SET vs parameter Q0 = −CgVg . The
graphs show the hysteresis effect. (b) and (c) Differ by the direction of
Q0 evolution: shown by the arrows. The gray dashed lines correspond
to the conductance of SET without ferroelectricity. Insets: Black lines
with arrows show the evolution of potential 〈φ〉. The jump from one
branch of 〈φ〉 to the other corresponds to the corresponding vertical
lines in the conductance curves.

The only difference between the orthodox theory and our case
is the presence of an additional shift in the parameter Q0.

We assume the following: (a) The induced FE charges are
much smaller than the electron charge |qfe| 	 |e| and (b) the
bias voltage V between the first and the second electrodes
of the transistor is much smaller than the charging energy
eV 	 Ec. For (Q0/e − 1/2) 	 1 and (Q0 + qfe)/e − 1/2 	
1 only zero or one excess electron can be found on the grain
with appreciable probability which can be obtained using the
orthodox theory, Appendix A 2:

e〈φ〉
Ec

= tanh

(
Ec

T

[δQ0 + qfe(〈φ〉)]
e

)
− 2

δQ0 + qfe(〈φ〉)
e

.

(8)

For simplicity we consider the case δQ = 0, V = 0, and
Vs = 0, where Eq. (8) has a trivial solution 〈φ〉 = 0 and two
nontrivial solutions

〈φ〉 = ±Ec

e

{
tanh

(
Ec

T

q0
1 + q0

2

e

)
− 2

q0
1 + q0

2

e

}
. (9)

Equation (9) agrees well with numerical results in Fig. 5 for
evolution of average grain potential vs parameter Q0. The
graph is periodic in Q0 similar to the behavior of average
grain potential of SET in the absence of FE. However, there are
regions in Fig. 5 where parameter Q0 corresponds to multiple
values of average potential 〈φ〉. This behavior appears due to
the reorientation of FE polarization by the average electric
field inside the capacitors. Both FE orientations correspond to
the same parameter Q0. This ambiguity results in hysteresis
behavior of the current.

The number of solutions in Eq. (8) depends on the system
parameters Vs , Ec, and q0. The hysteresis loop shown in Fig. 5
corresponds to the case of three solutions in Eq. (8). The
criterion for hysteresis is the following, see Appendix A 3:

q0

Vs

� e2

Ec

(
Ec

T
− 2

)−1

. (10)

The width of the hysteresis loop is given by the following
expression:

�Q0/2 ≈ q0

Vs

Ec

e
− eT

Ec

. (11)

Figure 6 shows the change of conductance hysteresis
with voltage Vs . It follows that conductance discontinuity
generating the hysteresis decreases with increasing voltage
Vs and completely disappears above a certain critical value of
Vs , see, e.g., Eq. (10). This result is natural since increasing
voltage Vs produces larger FE polarizations leading to a more
difficult repolarization by the external field.

The hysteresis loop is still present even if the steplike
dependence of qfe in Eq. (8) is substituted by the linear relation
qfe = αq〈φ〉.

Equation (10) can be written using the dielectric suscepti-
bility of the proper dielectric χD ≈ αqd/a2 as follows: χD >

e2T a2/dE2
c . Thus, any dielectric with static susceptibility

χD satisfying the above criterion and with the characteristic
reaction time exceeding time τe will produce the hysteresis
behavior in the conductivity of SET. The hysteresis in this
model appears due to slow FE (or dielectric). Then the FE
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FIG. 6. (Color online) Average grain potential (a) and conduc-
tance (b) vs parameter Q0 for different voltages Vs . All parameters
(except Vs) are the same as in Fig. 5. The conductance discontinuity
responsible for hysteresis becomes smaller with increasing voltage
Vs and completely disappears for voltages exceeding a certain critical
value of Vs .

feels only the average grain potential. We estimate parameters
q0, Vs , and the right hand side of Eq. (10) in Sec. II.

The zero voltage conductance of ferroelectric SET vs Q0

is shown in Figs. 5(b) and 5(c). It is periodic in parameter
Q0 similar to the SET without ferroelectricity. However, the
presence of ferroelectricity breaks the reflection symmetry
of conductance peaks and the peaks shape depends on the
direction of Q0 change, see arrows in Figs. 5(b) and 5(c).
Therefore, there is a hysteresis in the conductance behavior
similar to the branching theory [29], where the points with
d〈φ〉
dQ0

→ ∞ trigger the jumps between the different branches of
the hysteresis loop.

Similar hysteresis behavior shows the conductance density
plot in Fig. 3 with Coulomb diamonds, where Figs. 3(a)
and 3(b) were obtained with forward and backward change
of parameter Q0, while Fig. 3(c) was obtained for forward-
backward evolution of parameter Q0. Ferroelectricity deforms
the Coulomb diamonds: Near the half integer Q0/e the
Coulomb diamonds acquire the fine structure. However, at
large enough ferroelectric polarizations this fine structure
can become comparable with the size of the diamonds: The
fine-structure characteristic size in the direction of Q0 is
≈2[q0

1 + q0
2 ], for q0

1 + q0
2 < 1/2.

The hysteresis can be better understood using the energy
balance consideration. The effective free energy of SET with

n excess charges on the grain for zero temperature and bias
voltage V has the form

F = Ec min
n

[n − (Q0 + qfe)/e]2. (12)

Below we use dimensionless units discussing Eq. (12). First,
we compare the energies of the system for Q0 = 1/2. In
this case for average grain potential 〈φ〉 according to Fig. 5
three choices are possible: 〈φ〉 = 0 and 〈φ〉 = ±φ0, where
φ0 ≈ 0.4 � Vs . The first choice corresponds to qfe = 0, while
two other choices to qfe ≈ ±2q0. The solution with 〈φ〉 = 0
corresponds to F/Ec = 1/4. [This value corresponds to the
crossing point Q0 = 1/2 of two parabolas, (n − Q0)2, n = 0,1
as functions of Q0.] For two other cases the free energy F/Ec

is smaller by 2q0[1 − 2q0]. Here we choose q0 < 1/2, thus
the minimum in Eq. (12) corresponds to n = 0 or n = 1. The
solution 〈φ〉 = 0 is physically unstable at Q0 = 1/2 since it
has the largest free energy. Similar consideration can be used
in explaining the jumps between different branches of 〈φ〉 in
Figs. 5(b) and 5(c).

Figure 5 shows that at zero voltage one can drive the
system between two states with FE layers polarized toward
or backward directions with respect to the grain by changing
parameter Q0. This behavior can be understood as follows:
At zero bias voltage there is no preferable direction in the
SET. Contrary, a finite bias voltage results in electric field
which breaks the symmetry of the problem leading to two FE
polarizations in parallel.

We confirm this presenting numerical calculations of FE
polarizations in the (Q0,V ) plane, Fig. 4, where the color
gradients and the arrows indicate the polarizations of the left
and the right ferroelectrics. Figures 4(a) and 4(b) show FE
polarizations for increasing parameter Q0 [similar to Figs. 3(a)
and 5(b)], while Figs. 4(e) and 4(f) show this polarization
for decreasing Q0 [similar to Figs. 3(b) and 5(c)]. In fact,
these graphs show the charges in the grain that screen the
FE polarization. Figures 4(c) and 4(d) show the arithmetical
mean of the polarizations corresponding to the left and to the
right ferroelectrics. To distinguish the nonzero total screening
charge in the parallel case we choose parameters in Fig. 4
slightly different from Figs. 3–5: q0

1 = 0.03 and q0
2 = 0.06.

Figure 7 shows the evolution of average grain potential 〈φ〉
for q0

1 = q0
2 = q0. There are several branches in the behavior

of 〈φ〉 depending on the ratio 〈φ〉/Vs . The peaks correspond
to the first branch. The nearly linear segments of 〈φ〉 with
the maximum much smaller than the peak height correspond
to the second branch. Figures 7(a)–7(c) shows that the peaks
of 〈φ〉 are periodic over q0 with the period of 0.5 (|e|). The
shift of 〈φ〉 peaks at q0 > 0 relative to the case q0 = 0 is q0

1 +
q0

2 = 2q0. The terms with q0
i , i = 1,2 enter the expression for

potential 〈φ〉 similar to the shift renormalization of parameter
Q0. Figures 7(a)–7(f) show that the second branch of potential
〈φ〉 is strongly nonperiodic.

C. Fast ferroelectric: Polarization follows
charging-discharging events

Now we consider the opposite case of fast polarization
following the charging-discharging process τP � τe. In this
limit the polarization P depends on the instant electric field
E(n) instead of the average electric field 〈E〉 as it was discussed
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FIG. 7. (Color online) Dependence of average grain potential 〈φ〉 on parameter q0
1 = q0
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parameter q0. The shift of potential 〈φ〉 peaks induced by the parameter q0 relative to the case q0 = 0 is q0
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2 = 2q0. There are two domains

of q0 (within the first period) that produce qualitatively different relative positions of 〈φ〉 peaks: (a)–(c) For 0 < q0 < 1/8 and 1/4 < q0 < 3/8;
and (b)–(d) for 1/8 < q0 < 1/4 and 3/8 < q0 < 1/2. As follows from (e) and (f) the small-scale branch of 〈φ〉 is nonperiodic in parameter q0,
but it is periodic in Q0.

before. Here we replace Q0 in the orthodox theory by Qs =
Q0 + q0

1 tanh(φ(n)+V/2
Vs

) + q0
2 tanh(φ(n)−V/2

Vs
), Appendix. With

this replacement Eqs. (6) and (7) remain valid with substitution
of potential φ(n) instead of average potential 〈φ〉 in Eq. (6).

The conductance behavior is shown in Fig. 8. Ferroelec-
tricity preserves periodicity over the parameter Q0 similar
to the mean-field theory discussed in Sec. I B. However, in
this limit the hysteresis is absent while the broadening of the
conductance peaks, Figs. 8(a) and 8(b), and the reduction of
the peaks amplitude with increasing q0 are present, Figs. 8(c)
and 8(d).

In orthodox theory the conductance of SET in the absence
of ferroelectricity and at low temperatures T 	 Ec follows
the following relation:

G(δQ0) = 1

2

1

R1 + R2

e δQ0/C�T

sinh(e δQ0/C�T )
, (13)

where δQ0 = mink[Q0 − (2k + 1) e
2 ] 	 e is the deviation

from the degeneracy point. The width of conductance peaks
defines the temperature-parameter T/Ec.

For FE the degeneracy points do not follow exactly the
half integer Q0/e. Above it was shown that FE polarization
redefines Q0 → Qs where parameter Qs depends on the
polarization and the excess charge number n. Therefore, the
conductance peak in Figs. 8(a) and 8(b) has the width (q0

1 +
q0

2 )/2 and consists of many shifted conductance peaks (13).
Thus the width of the peak plato in Fig. 8(b) is approximately
(q0

1 + q0
2 )/2 = |e|/3. Similar arguments explain the reduction

of the conductance peaks amplitude with increasing parameter
q0 in Figs. 8(c) and 8(d).

The question about the average direction of polarizations
can be investigated similar to the previous section. The results
are similar, but in this case the hysteresis is absent.

At large Vs performing the linear expansion in elec-
tric field/voltage in Eqs. (4)–(6) we reproduce the result
of orthodox theory for potential φ(n) with renormalized
capacitances Ci → Ci + q0

i /V (i)
s . Therefore, for zero-field

differential dielectric susceptibility of the capacitor i we find
ε(i) = 1 + q0

i /CiV
(i)
s .

II. DISCUSSION

A. Ferroelectric model

Ferroelecric SET consists of nanosized charged metallic
grain embedded in a ferroelectric confined by the metallic
leads, Fig. 9(a). The thickness of FE layer between the
grain and the leads is a few nanometers. It is known that
even for such a thin FE film the continuum theories of
ferroelectricity are valid [2,30]. To determine the state of
FE under the influence of the charged grain one needs
to solve the inhomogeneous Landau-Ginzburg-Devonshire
(LGD) equation [31]. This question appears frequently in
problems dealing with local modification of FE properties by
the tip of the scanning probe microscope [10]. We assume
that domain wall thickness ld in FE is less than the grain
size ld 	 a [7,10]. The grain influences only the FE region
between its surface and the leads, Fig. 9(b). Inside this region
polarization is homogeneous and depends on the grain state.
Outside this region the FE state does not depend on the grain
charge. The side regions do not affect the electron transport
[32]. With these assumptions the homogeneous LGD theory is
valid for the description of FE behavior.

The FE material can be placed not only between the grain
and the leads but also between the grain and the gate electrode,
Figs. 9(c) and 9(d). In this case the FE layer does not have any
metallic inclusion and can be made as a rather thick film.
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FIG. 8. (Color online) (a) and (b) Broadening of conductance
peaks due to ferroelectricity: Red graph in (a) corresponds to
q0

1 = q0
2 = 0.1, while in (b) q0

1 = q0
2 = 0.3. The gray graphs show the

peaks for q0
1 = q0

2 = 0. (c) and (d) Reduction of the peaks amplitude
with increasing q0. The step of the q0 increase is 0.5 similar to
the “period” in Fig. 7. For plots (a)–(d) we use the following set of
parameters: T = 0.03, C1 = 0.3, C2 = 0.5, Cg = 0.2, and R2 = 2R1,
like in Fig. 5.

Such a geometry is relevant for experiment and allows us to
avoid problems with the influence of grain shape on the FE
polarization. The transport equations for such SET are similar
to the transport equation written above. For example, in Eq. (7)
one should use qfe = q0 tanh( 〈φ〉−Vg

Vs
), with q0 being related to

the FE between the gate and the grain.

V1

V2

P1 P2

(a)
(b)

R1

V1 V2

Vg

C1

Cg

C2

R2

ϕ

gate

(c)
(d)

Vg

FIG. 9. (Color online) (a) Possible experimental setup with
nanograin placed in a bulk ferroelectric material. (b) Top view: In the
bottleneck between the electrodes and the grain, highlighted by the
orange color, the ferroelectric layer is thin (quasi-two-dimensional)
with polarization being unbind from the bulk ferroelectric. (c)
Different geometry: Ferroelectric placed between the grain and the
gate. In this case there is no restriction on the thickness of the layer:
For SET no tunneling is required between the gate and the grain. (d)
The equivalent electrical scheme of the SET device shown in (c).

The memory effect (hysteresis) in ferroelectric SET can be
used for computer memory cell with the measurement of the
zero-bias conductance being the reading operation while the
application of the gate voltage being the writing operation.
Such a memory cell will be discussed in the forthcoming
publication.

B. Evaluation of parameters

In this section we discuss important physical parameters of
FE SET such as FE and SET time scales, electric field due to
metallic grain, the FE switching field, and the FE saturation
polarization. These parameters define the physical behavior of
FE SET.

In the previous sections we discuss two limits: (i) slow
(τe < τP) and (ii) fast (τe > τP) ferroelectric. Estimates show
that the characteristic time τe = R�C� varies in a rather large
range from dozens of nanoseconds to picoseconds. This time is
controlled by the system geometry and materials. The distance
between the grain and the leads controls the resistivity of the
SET R� , the dielectric properties of the FE material, and the
capacitance of the SET C� . The FE switching time τP depends
on the material and can be in the range of 10−6 s [33] to
a few nanoseconds [34]. Therefore, both limits are relevant
for experiment. SET with changing energy Ec ∼ 300 K have
small capacitance �10−17 F leading to τe 	 τP.

Discussing two limits we neglect the hysteresis loop
of FE material (and thus the spontaneous polarization).
This assumption is valid for large electric field created by
a single electron in a grain in comparison with the FE
switching field Eel � Es . This is typical for a number of
FE including Li-doped ZnO [35], Pb(In1/2Nb1/2)1−xTixO3

[36], [PbMg1/3Nb2/3O3)x(PbTi)3]1−x [37], PZT [38], etc. The
presence of the hysteresis loop leads to a more complicated
picture of electron transport in FE SET with the interplay of
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FE hysteresis loop and the hysteresis appearing due to the
interaction of FE with the grain, Sec. I B. In the opposite limit,
Eel 	 Es , the polarization becomes an external parameter as
in the ordinary FE tunnel junctions.

The magnitude of FE saturation polarization strongly
affects the electron transport for fast ferroelectrics, τe > τP.
If induced charge due to FE exceeds one electron charge the
Coulomb blockade is suppressed leading to the conductivity
independent of the gate voltage. In this case the FE completely
screens the electric field of an electron on the grain. To
observe the conductivity peaks in Fig. 8 the FE environment
should generate the charge smaller than one electron (q0

1 +
q0

2 < |e|). Typical ferroelectrics, such as P(VDF-TrFE), PZT,
[PbMg1/3Nb2/3O3)x(PbTi)3]1−x , have bulk polarization about
P = 1 e/nm2 leading to q0

i � |e|, i = 1,2 for a few nanometer
size grain. However, decreasing the thickness of FE film
reduces its polarization [39]. For example, drastic polarization
reduction from 1.5 to 0 e/nm is predicted for BaTiO3 when the
thickness of the BaTiO3 film decreases from 15 to 3 nm [40].
Suppressing of polarization with decreasing of FE thickness
was observed in P(VDF-TrFE) films [41].

For slow FE, Eq. (10) separates two regimes of FE SET with
finite and zero hysteresis conductivity voltage dependencies.
For estimates we write voltage Vs using FE switching field
Vs = dEs and the charge q0 (we drop index i) using the FE
polarization q0 ≈ Pa2. For P ≈ 0.05 e/nm [35], d ≈ 2 nm,
a ≈ 3 nm, and temperature T ≈ 100 K we find the criterion for
the appearance of hysteresis Es < 10 MV/cm. This criterion
is valid for almost all ferroelectrics. In addition, we note
that in the case of slow FE the condition (q0

1 + q0
2 < |e|/2)

results in simple hysteresis behavior of the system, its violation
makes the behavior more complicated, but does not affect the
existence of hysteresis.

III. CONCLUSION

We investigated the electron transport in a single electron
device with ferroelectric active layers. We showed that
there is an interplay of ferroelectricity and single electron
tunneling. We distinguish two different cases of slow and
fast ferroelectric. In the first case the gate voltage dependent
conductance shows the instability related to the spontaneous
polarization inversion of ferroelectric polarizations. We show
that similar instability may also show SET with slow dielectric.
At small bias voltages the polarization can be switched by
a single excess electron in the grain. In the case of fast
ferroelectric instability is absent. However, we show that
the Coulomb-blockade peaks of zero-bias conductance as the
function of the gate voltage become wider and finally disappear
with increasing of the FE polarizations. Such an effect appears
due to strong nonlinear screening of an electron charge in
the grain by ferroelectrics leading to the suppression of the
Coulomb blockade. Finally, we show that our results could be
observed experimentally.
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APPENDIX: ORTHODOX THEORY OF FERROELECTRIC
SINGLE ELECTRON TRANSISTOR

1. Main equations

Below we outline the main steps that help us to understand
our results in the presence of ferroelectricity using the language
of orthodox theory.

In orthodox theory the rate describing the change of grain
charge from n to n + 1 electrons through the first tunnel barrier,
the left one in Fig. 2(a), is

�
(1)
n→n±1 = 1

e2R1
�F±

1 NB(�F±
1 ), (A1)

where NB(ω) = 1/[exp(ω/T ) − 1] is the Bose function and
R1 is the tunneling bare resistance. A similar expression can
be written for the discharge process through the second tunnel
barrier by changing the index “1” to “2.” Here �F±

1 is the
change of effective free energy between the initial and the
final states:

�F±
1 = e2

C�

{
1

2
±

(
n − Qs

e

)
± (C2 + Cg/2)V

e

}
, (A2a)

�F±
2 = e2

C�

{
1

2
±

(
n − Qs

e

)
∓ (C1 + Cg/2)V

e

}
, (A2b)

where

Qs = Q0 +
∑

i

∫
i

dni · Pi . (A3)

In the orthodox theory, Qs = Q0. For “slow” ferroelectric

we have
∫
i
dni · Pi = qfe = q0

1 tanh(
〈φ〉+ V

2
Vs

) + q0
2 tanh(

〈φ〉− V
2

Vs
),

while for “fast” we find
∫
i
dni · Pi = q0

1 tanh(
φ(n)+ V

2
Vs

) +
q0

2 tanh(
φ(n)− V

2
Vs

). The �n→n+1 rates in the detailed-balance
relations (2) are defined as follows:

�n→n+1 ≡ �
(1)
n→n+1 + �

(2)
n→n+1, (A4a)

�n→n−1 ≡ �
(1)
n→n−1 + �

(2)
n→n−1. (A4b)

2. Approximation near the “degeneracy point”

The probabilities near the degeneracy point Q0 = 1/2 can
be found using the orthodox theory

p(0) = �1→0

�0→1 + �1→0
, p(1) = �0→1

�0→1 + �1→0
. (A5)

Here Eq. (A2) reduces to

�F+
1 (0) = −2

Ec

e

[
δQs −

(
C2 + Cg

2

)
V

]
, (A6)

�F+
2 (0) = −2

Ec

e

[
δQs +

(
C1 + Cg

2

)
V

]
, (A7)

where δQs = δQ0 + ∑
i

∫
i
dni · Pi and δQ0 = Q0 − e/2.

Here �F+
1 (0) = −�F−

1 (1) and �F+
2 (0) = −�F−

2 (1).
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Using Eqs. (A4) and (A5) we find p(1)−1 =
1 + exp[2Ec(δQ0 + qfe)/eT ]. Finally, using Eq. (5) we
obtain Eq. (8).

3. Hysteresis width

The criterion for conductivity hysteresis in Eq. (10) can be
derived using Eq. (8) for an average potential. This equation
has three solutions if the slope, derivative of 〈φ〉, of the function
in the right-hand side is larger than the slope of the linear
dependence in the left-hand side.

The estimate of the hysteresis width �Q can be done using
the following assumptions: (1) the polarization is linearly
depend on the average potential qfe(〈φ〉) ≈ q0/Vs ; (2) we
replace the hyperbolic tangents by the piecewise straight
function Z(x) = 1 if |x| > 1 and Z(x) = x if |x| < 1; and
(3) we neglect the slow function 2qfe(〈φ〉)/e in the right-hand
side.

For Ec/T � 1 the criterion of the conductivity hysteresis,
Eq. (10), can be obtained using the formula for hysteresis width
considering �Q > 0.
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