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Thermal conductivity of Si nanowires: A first-principles analysis of the role of defects

By. Kang and S. K. Estreicher
Physics Department, Texas Tech University, Lubbock, Texas 79409-1051, USA

(Received 11 December 2013; revised manuscript received 24 January 2014; published 7 April 2014)

The theoretical laser-flash method is used to calculate the thermal conductivity of the Si200X32 (X = H, D, or
OH) and Si296X112 (X = H or D) nanowires. The main emphasis is on the role of defects, which are described
using first-principles methods. The defects considered are the surface of the nanowire, random distributions of
substitutional C or Ge impurities, and monoatomic δ layers of C or Ge. The localized vibrational modes of these
defects are explicitly included in the calculations and no empirical defect-related parameter is introduced. We
find that the surface Si–H wag modes couple resonantly to each other much faster than they decay into bulk
modes, which leads to distinct surface and bulk contributions to the thermal conductivity. The spatially-localized
vibrational modes associated with the Ge or C impurities as well as the δ layers trap thermal phonons thus
reducing the thermal conductivity.
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I. INTRODUCTION

It is well known [1,2] that the presence of defects reduces
the phonon contribution to the thermal conductivity of mate-
rials. Since the pioneering work of Peierls in the 1920s, this
reduction has been described in terms of the scattering of
(bulk) phonons by static defects. This empirical description
has been refined over the years by several authors [3–5].
Today, the concept of phonon scattering by a wide range of
defects (impurities, interfaces, boundaries, surfaces, etc.) is the
commonly accepted way to include defects in the calculation
of thermal conductivities (see, e.g., Refs. [6–10]).

But defects are dynamic. Light impurities introduce local
vibrational modes (LVMs). They are high-frequency vibra-
tional modes that give rise to infrared absorption or Raman
spectra [11]. Photoluminescence spectra of transition-metal
impurities in Si often show phonon sidebands characteristic
of low-frequency impurity-related pseudolocal modes [12,13]
implying that impurities also give rise to low-frequency
localized vibrational modes.

In a recent paper [14], we have shown that spatially local-
ized modes (SLMs) are associated with all types of defects.
These normal vibrational modes involve oscillations of only a
few atoms at (near) the defect. These modes are localized in
space, and LVMs are just a special type of high-frequency
SLMs. The localization of such modes can be quantified
using the eigenvectors of the dynamical matrix. Strongly
localized SLMs are associated with isolated impurities, native
defects, interfaces, surfaces, heterojunctions, and other defect
structures. Some low-frequency modes sometimes exhibit
surprisingly large spatial localization [14].

A SLM can trap a phonon following an optical (high-
frequency modes) or thermal (low-frequency modes) exci-
tation. The energy �ω remains localized at the defect for a
length of time called the vibrational lifetime. Thus defects
in semiconductors not only trap electric charge (e− or h+)
but also energy, a phenomenon called phonon trapping [15].
Vibrational lifetimes vary from a few ps to a few hundred
ps depending on the defect and sometimes its isotopic
composition [16–18].

When bulk phonons carrying heat through a material en-
counter a defect, they excite SLMs which trap phonons. After

some time, the excitations decay into combinations of bulk
phonons different from the ones that generated the excitation.
The net result is that the interaction of bulk phonons with
defects does indeed generate new bulk phonons. The shortcut
for this series of events is called “phonon scattering” but
this ignores phonon trapping, the nature of the SLMs, and—
more importantly perhaps—the vibrational lifetimes involved.
Indeed, the word scattering implies a quasi-instantaneous
event, while the lifetimes of the SLMs correspond to dozens or
hundreds of periods of oscillation [14]. The memory of where
the excitation originally came from is lost and the process is
more subtle that the word scattering implies.

The focus of this paper is on an atomistic description of the
role of defects on the thermal conductivity of Si nanowires.
We use nonequilibrium ab initio molecular-dynamics (MD)
simulations in 1-D periodic supercells prepared slightly away
from thermal equilibrium. The defects considered here are the
surface of the nanowire, a monoatomic δ layer of C or Ge
atoms, and a random distribution of C or Ge substitutional
impurities. The impact of the defects is not described using
empirical “defect scattering” parameters. Instead, all the
normal vibrational modes of the system, including the SLMs
associated with the defects, are explicitly included.

The thermal conductivities of Si nanowires have been
calculated by several groups, using the accepted “phonon
scattering” picture to describe defects. Some of these calcula-
tions involved solving the Boltzmann transport equation and
phonon dispersion relations [10,19–21]. The (bulk) phonon
lifetimes are obtained from Matthiessen’s rule, expressing the
inverse total lifetime as the sum of inverse lifetimes associated
with each scattering mechanism (such as normal, Umklapp,
impurity, surface, or defect scattering). These calculations
involved nanowires with much larger diameters than the ones
we are able to consider using our first-principles approach.

Other authors used nonequilibrium MD simulations. A
temperature gradient was maintained with the use of a ther-
mostat until a steady-state configuration was achieved [22,23].
The electronic problem was solved using the Stillinger-Weber
empirical potential. Such methods are powerful when dealing
with defect-free systems, but empirical potentials are not
easily transferable to situations where defects or impurities
are present [24].
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Section II describes the supercells and the theoretical laser-
flash approach. Section III focuses on the dynamics of defects
(surface, δ layers, and random distribution of impurities) and
their impact on the thermal conductivity. The key results are
discussed in Sec. IV.

II. METHODOLOGY

The theoretical laser-flash method [25,26] begins with the
preparation of supercells in (or slightly away from) thermal
equilibrium at moderate temperatures using the eigenvalues
and eigenvectors of the dynamical matrix. No thermalization
run is needed and no thermostat is used during the subsequent
MD simulations. The temperature fluctuations are very small,
especially after averaging over a range of initial normal-mode
phases and energies. Temperature increases of 10 K (from 115
to 125 K) can easily be monitored. Even smaller temperature
changes can be obtained in 3D-periodic supercells, which are
not as elongated as the 1D ones used here. The electronic
structure calculations are done within density-functional the-
ory (DFT).

A. Supercells

Two supercells were used in this study (Fig. 1): Si200X32

with X = H, D, or OH groups, and Si296X112 with X = H
or D. Periodic boundary conditions are applied only in the
x direction. The supercells are constructed from truncated
slices of crystalline Si aligned along the 〈100〉 direction and
the surface dangling bonds are terminated with H, D, or OH
groups. Although the H termination of Si nanowires can in
principle be achieved, e.g., with a brief HF dip, Si nanowires

FIG. 1. (Color online) Side and cross-section view of the three Si
nanowires used in the present study. The Si atoms are light blue, the
surface H (or D) atoms are white, and the O atoms are red.

exposed to air have a thin surface oxide, the atomistic nature of
which is not known. As discussed below, the OH termination
is not particularly stable.

The Si200H32 [or Si200(OH)32] supercell can be described
as eight alternating “slices” Si13H2 and Si12H2 [or Si13(OH)2

and Si12(OH)2] appended along the 〈100〉 direction. The
Si296H112 supercell consists of four alternating slices Si25H6

and Si49H22. The diameters of these nanowires are 13.18,
14.67, and 14.70 Å, respectively (including the surface atoms).
The sides (along the y and z directions) of the square box
containing the nanowires must be equal or greater than 22,
22, and 26 Å, respectively, in order to contain the optimized
orbitals (Sec. II C). Along the x direction, the optimized length
of the box is almost the same for these three nanowires, 43.18,
43.18, and 41.53 Å, respectively. As mentioned earlier, our
study focuses on the role of defects (for which first-principle
theoretical techniques must be used) and not on size effects
(which are best handled using semiempirical methods, as much
larger numbers of atoms can be calculated).

B. Geometry optimizations

In order to obtain accurate dynamical matrices (no negative
eigenvalues), the geometries must be carefully optimized. In
3D periodic supercells, this is done in two steps. First, the
lattice constant(s) of the defect-free cell is (are) optimized
in each charge state, for each basis set, and for each
exchange-correlation potential. This is best done with nuclear
coordinates expressed in units of the lattice constant: nuclear
coordinates such as (0.25, 0.25, 0.25) are exact and the lattice
constant can be optimized up to many significant figures. This
optimization of the dimensions of the box containing the atoms
is easily carried out until the maximum force component is of
the order of 10−6 eV/Å or less. Then, the defect is introduced
and its geometry is optimized (in a box of fixed dimensions)
using a conjugate-gradient algorithm until the maximum force
component is smaller than 0.003 eV/Å.

The present situation is more complicated. The presence
of surface atoms makes it impractical to write the nuclear
coordinates in units of the lattice constants, as changing them
affects not just the Si-Si bond lengths but also the surface Si-H
bond lengths and angles. Along the y and z directions, the
dimensions of the box must be greater than the extent of the
orbitals of the surface atoms in order to simulate a vacuum
region. However, along the x direction, the geometry of the
nanowire is difficult to optimize to the needed level of accuracy
because the geometries of the Si and surface atoms are highly
sensitive to very small changes of the lattice constant. Our
most careful optimizations of the lattice constants produce
dynamical matrices with a few unwanted negative eigenvalues.
We had to displace the atoms by hand along the eigenvectors of
the dynamical matrix associated with each negative eigenvalue
until the absolute minimum of the potential energy surface was
reached and no negative eigenvalues occurred.

When a δ layer was introduced into the system, simple
conjugate gradient calculations produced excellent dynamical
matrices. When a random distribution of Ge substitutional
impurities was introduced, a simple conjugate gradient cal-
culation achieved the desired geometry optimization, because
substitutional Ge is a very small perturbation in Si. However,
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substitutional C impurities produce a substantial change
in the crystal (large inward displacement of the four Si
neighbors to C). In this case, we had to perform conjugate
gradient optimizations for each substitutional C successively
introduced into the nanowire. In the end, none of the calculated
dynamical matrices had negative eigenvalues.

C. Electronic structure

The core regions are removed from the calculations
using ab initio-type norm-conserving pseudopotentials with
the Troullier-Martins parametrization [27] in the Kleinman-
Bylander form [28]. The valence regions are described within
DFT with the exchange-correlation potential of Ceperley and
Alder [29] as parameterized by Perdew and Zunger [30]. We
use the SIESTA [31,32] method.

The basis set for the valence states are numerical pseu-
doatomic orbitals of the Sankey type [33,34]. We use a
double-ζ basis set for H, C, and O (two sets of s and p

orbitals), and add polarization functions (a set of d’s) to Si
and Ge. Each orbital is truncated beyond a cutoff radius rc

and then renormalized. In general, larger rc’s provide better
quality orbitals (i.e., lower energies), but also increase the
computational effort because the overlap matrix contains more
nonzero elements. In this work, the rc’s for the orbitals of
nonsurface atoms are those optimized by Anglada et al. [35].
For bulk Si atoms, they are of the order of 5aB . Thus Si
atoms farther than ∼10aB apart do not overlap. This works
very well in 3D-periodic supercells as the total energy varies
insignificantly for larger values of rc.

However, surface atoms have no neighbor in the direction of
free space, and their orbitals must be allowed to extend into the
vacuum region of the box. For computational reasons, setting
rc → ∞ is obviously impractical. A useful compromise was
proposed by Garcia et al. [36]. It involves minimizing a
fictitious enthalpy H = E + PV for each orbital i, where
Vi = (4π/3) r3

ci . By varying the pressure parameter P , one

FIG. 2. (Color online) Calculated orbital radii rc for the first-ζ
(3s and 3p) and the 3d valence orbitals of the surface Si atoms. The
second-ζ orbitals behave in a similar manner. The thin dashed lines
are exponential fits. The thick vertical dashed line shows the fictitious
pressure P = 0.2 (GPa) used in this work.

FIG. 3. Computer time vs the fictitious pressure parameter P .
The thin dashed line is a simple exponential fit. Low values of P
lead to large orbital radii rc, overlap matrices with a larger number of
nonzero elements, and longer CPU times.

can optimize rc without going to the limit rc → ∞. Figure 2
show typical examples of the calculated rc versus P for the
double-ζ polarized basis set of Si. In the present calculations,
the fictitious pressure P = 0.2 (GPa) was chosen. Figure 3
shows the computer time versus P .

D. Dynamical matrix and supercell preparation

The central ingredient of the theoretical laser-flash method
is the dynamical matrix, calculated at k = 0. Its eigenvalues
ωs are the normal-mode frequencies of the system. Its
orthonormal eigenvectors es

αi give the relative displacement
of atom α along the direction i = x,y,z for each normal
mode s.

A quantitative measure of the spatial localization of mode s

on one atom or a group of atoms is provided by a plot of
L2{α} = (es

αx)2 + (es
αy)2 + (es

αz)
2 versus ωs . If {α} includes

all the atoms in the system, the sum is of course equal to 1. If
{α} includes a single atom (e.g., H) or a group of atoms (e.g.,
all the H atoms on the surface of the nanowire), then the sum
is smaller than 1. In the case of a bulk mode, which involves
the motion of many (or all) the atoms in the system, L2{α}
calculated for just one atom is a very small number. However,
for a SLM, it can be quite large.

In addition to providing a quantitative measure of the
spatial localization of normal modes, the eigenvectors
of the dynamical matrix es

αi can be used to prepare (parts of) the
supercell in thermal equilibrium at the temperature T . Indeed,
the Cartesian coordinates rs

αi are related to these eigenvectors
rs
αi(T ,t) = qs(T ,t) es

αi , where qs(T ,t) are the normal-mode
coordinates.

The simplest way to prepare the supercell in thermal
equilibrium at t = 0 is to assume that the modes are har-
monic, that is qs(T ,t) = As(T ) cos(ωst + ϕs). This introduces
a random distribution of phases ϕs for each mode. Note
that the subsequent nonequilibrium MD simulations do not
assume harmonicity at all since the atomic displacements are
calculated using forces derived from total energies at every
time step. The unknown amplitudes As(T ) are obtained by
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requiring that, in thermal equilibrium, the average energy
of each mode is kBT . In our calculations [16,26], this
requirement introduces the Maxwell-Boltzmann distribution
ζs = ∫ Es

0 (e−E/kBT /kBT )dE. Selecting a random value of ζs

(in the range [0,1]) and ϕs (in the range [0,2π ]) determines
the distribution of mode energies and phases and thus the
position and velocity of all the atoms in the supercell at the
time t = 0 approximating (quite well) thermal equilibrium at
the temperature T .

E. Nonequilibrium MD

The nuclei obey classical laws of motion with forces
obtained from total energies via the Hellmann-Feynman
theorem [37,38]. The Verlet algorithm is used to calculate the
position and velocity of the nuclei at the time t + �t , where
the time step �t is chosen to be a small fraction of the fastest
oscillation period in the system. In our case, this would be the
Si-H (or O-H) stretch mode, which has period of about 15 (or
10) fs, respectively. We used �t in the range 0.2 to 1.0 fs. The
temperature in each slice of the supercell is obtained from the
kinetic energy of the nuclei.

MD simulations in supercells prepared slightly away from
thermal equilibrium produce small temperature fluctuations
starting with the first MD step. No thermostat can be used
since it would artificially force the system back into thermal
equilibrium much faster than the various vibrational modes
actually couple. One must repeat the MD runs with many
random distributions of initial mode phases and energies and
then average the results. The averaging further reduces the
temperature fluctuations (Fig. 4). In this study, we typically
averaged the results over 100 runs, but tested individual
results with up to 200 runs. Note that our microcanonical runs
strictly conserve energy. The total temperature of the supercell

FIG. 4. (Color online) Temperature vs time in the central slice of
the Si200H32 nanowire after a single run (top), and after averaging
over 50 (middle) and 100 (bottom) runs. At the time t = 0, the first
slice of the supercell was prepared Thot = 270 K and the rest of the
supercell at Tcold = 115 K. Thus the temperature in the central slice
increased from Tcold = 115 K to Tavg = 125 K. No thermostat was
used. The solid (red) line shows the fit to the analytic solution to the
heat-diffusion equation (see text). Finer details of the temperature
increase, not visible on this scale, are discussed in a further section.

remains constant for tens of thousands of time steps, be it for
equilibrium or nonequilibrium, single or averaged runs.

F. Thermal conductivity

The evolution of the temperature T (t) in the central slice can
be used to obtain the thermal diffusivity α and then the thermal
conductivity κ at the temperature Tavg. This is achieved by
fitting the same analytic solution to the heat diffusion equation
that is used in the experimental laser-flash method [39]:

T (t) = Tcold + (Tavg − Tcold)
∑

n

(−1)n exp(−n2π2αt/x2),

where x is the distance between the hot slice and the central
slice. The fit (Fig. 4) gives the thermal diffusivity α, and the
thermal conductivity is given by κ = αρC, where ρ is the
density of the material and C is the specific heat calculated at
Tavg using the phonon density of states of the system. Our sum
runs up to n = 10.

Note that such nonequilibrium MD simulations and cal-
culations of the thermal conductivity can be done with any
electronic structure method provided that the geometries are
optimized accurately (the dynamical matrix has no negative
eigenvalues). Since we focus on the role of defects on the
thermal conductivity, we use a first-principles electronic struc-
ture method. The computational cost (geometry optimizations,
dynamical matrices, and especially averaging over many
random distributions of initial mode phases and energies) can
be substantial but the method is characterized by very small T

fluctuations starting with the first MD step. This allows the use
of much smaller temperature gradients than with conventional
methods, and very small temperature changes in the central
slice can be monitored (Fig. 2 in Ref. [25] and Fig. 2 in
Ref. [26]).

III. THERMAL CONDUCTIVITY: THE ROLE OF DEFECTS

The theoretical laser-flash method is ideally suited to
study the impact of defects on the thermal conductivity
without reference to empirical phonon scattering parameters.
All the normal vibrational modes are explicitly included in
the calculations, the electronic structure is obtained from
density-functional theory, and the nonequilibrium MD runs
are performed at the ab initio level without thermostat and
with excellent temperature control. On the other hand, the
method is computationally demanding, especially because the
results must be averaged over many runs, each with randomly
generated initial mode phases and relative energies. Thus the
method is not appropriate to calculate size effects related to
the length or diameter of the nanowire.

However, we can compare the calculated thermal con-
ductivities at a fixed temperature to an extrapolation of the
experimental data [40] obtained at the same temperature
in nanowires of various diameters (Fig. 5). Our values are
consistent with the measured ones.

We can also compare our calculated κ(T ) to that measured
in larger nanowires as a function of their diameter [40]
(Fig. 6). The comparison is qualitative because our nanowire
is perfectly H-terminated, while the experimental nanowires
have some ill-defined oxide on the surface. However, the

155409-4



THERMAL CONDUCTIVITY OF Si NANOWIRES: A . . . PHYSICAL REVIEW B 89, 155409 (2014)

FIG. 5. The experimental thermal conductivities at T = 125 K
(x’s) have been obtained from Fig. 3 in Ref. [40]. The theoretical
values are for nanowires with diameter (Å) 13.18 (Si200D32, square),
13.18 (Si200H32, triangle down), 14.67 (Si200(OH)32, cross), 14.70
(Si296D32, circle), and 14.70 (Si296H32, triangle up) diameter. The
dotted line shows the extrapolation of the measured data to the size
of our nanowires.

key features are well reproduced, such as the temperature at
which κ is maximum, the drop in thermal conductivity with
the diameter of the nanowire, and the general shape of the
curve. These comparisons suggest that our calculated thermal
conductivities are quite close to the experimental ones.

We consider next the role of the surface, and how it reduces
the thermal conductivity. And then, we look at the impact of
a monoatomic δ layer of Ge (heavier than Si) or C (lighter
than Si), and compare it to the impact of the same impurities
randomly distributed in the nanowire. The latter results are
interpreted in terms of phonon trapping at the SLMs associated
with the defects and their vibrational lifetimes. The spatial
localization of vibrational modes, phonon trapping at defects,
vibrational lifetimes, and decay channels are discussed in
detail in Ref. [14].

FIG. 6. Temperature dependence of the thermal conductivity
calculated in Si200H32 (a diameter is 13.18 Å, full squares) compared
to the measured values in Si nanowires with diameter (top to bottom)
1150 (full circle), 560 (open circle), 370 (full triangles), and 220 Å
(open triangles) respectively (Fig. 3 in Ref. [40]). Note that the
temperature at which κ(T ) is maximum and the general shape of
the curve are generally consistent with the measured data.

FIG. 7. (Color online) Spatial localization L2{α} of the Si-H
(black solid lines) and Si-D (red dashed lines) stretch and wag modes
in Si200(H,D)32. The highest-frequency Si-Si stretch mode in this
nanowire is at 570 (cm−1), slightly higher than the optical phonon in
crystalline Si.

A. Surface of the nanowire and resonant coupling

We used two Si nanowires with very different concentra-
tions of H surface atoms. The ratio of surface-to-bulk atoms
is [H]/[Si] = 0.16 for Si200H32 and 0.39 for Si296H112. The
localization of the H- (or D-) related modes in the Si200H32

supercell is shown in Fig. 7. It consists of a narrow band
of high-frequency Si-H (or Si-D) stretch modes and broader
bands of Si-H (or Si-D) wag modes. All these modes are
strongly localized on the surface of the nanowire.

As discussed in Ref. [14], all defects (impurities, grain
boundaries, interfaces, surfaces, etc.) introduce SLMs into the
vibrational spectrum. These modes can trap phonons and the
vibrational energy remains trapped at the defect for lengths of
time (the vibrational lifetimes) substantially longer than bulk
vibrational modes of the same frequency. The phonons trapped
in SLMs ultimately decay into lower-frequency modes. Thus
defects always lower the thermal conductivity of the material
by trapping heat in SLMs.

In the present case, the SLMs are the surface Si-H stretch
and wag modes. The high-frequency stretch modes can only
be excited optically, but the lower-frequency wag modes can
be excited thermally in the hot slice of the supercell when the
temperature gradient is applied.

We calculated the thermal conductivity of the Si200H32 and
Si296H112 nanowires at 125 K. This was achieved by preparing
the nanowire in thermal equilibrium at 115 K, raising the
temperature of a thin slice (on the far left) to 270 K (for
Si200H32) or 247 K (for Si296H112), and then monitoring the
temperature increase in the central slice as a function of
time. Once thermal equilibrium is reached, the temperature
of the entire cell is 125 K. The results are shown in Fig. 8
for Si296H112, which has a surface-to-bulk ratio [H]/[Si] =
0.39. The figure shows that the central slice reaches thermal
equilibrium in two steps. The first step corresponds to the heat
carried by Si-related (bulk) phonons (increase in temperature
�Tb ≈ 5.9 K) and the second step to the heat propagating on
the surface (increase in temperature �Ts ≈ 3.1 K). Figure 9
shows the temperature of only the Si atoms and that of only
the H atoms in the central slice.
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FIG. 8. (Color online) A thin slice of the Si296H112 supercell is
prepared at 247 K and the temperature of the central slices is
monitored at its temperature increases from 115 to 125 K. The
temperature increases first when the bulk (Si-related) phonons reach
the central slice, and later when the heat propagating along the surface
arrives. The Si-H wag modes transport energy by resonant coupling,
with a lifetime of the order of 0.5 ps at 125 K.

The same calculations performed in Si200H32 (which has a
much smaller surface-to-bulk ratio, [H]/[Si] ≈ 0.19) shows a
comparatively smaller effect, with �Tb ≈ 9.3 K and �Ts ≈
1.5 K, as shown in Fig. 10. A very similar process happens in
D-terminated nanowires, even though the Si-D wag modes
(∼420 cm−1) are within the phonon density of states of
nanowire. Resonant coupling between adjacent Si-D wag
modes occurs at somewhat faster than in the case of Si-H wag
modes. Thus the heat trapped on the surface in the hot slice
propagates along the surface by resonant coupling rather than
decay into bulk modes. Surface and bulk modes do not mix.

The explanation for this behavior lies in the vibrational
lifetime of the surface wag mode. Once such a mode is

FIG. 9. (Color online) The temperature increases of only the Si
atoms in the central slice compared to the temperature increase of
only the H atoms in the same slice. The surface lowers the thermal
conductivity because the heat propagates slower along the surface
than in the bulk.

FIG. 10. (Color online) A thin slice of the Si200H32 supercell
is prepared at 270 K and the temperature of the central slices is
monitored at its temperature increases from 115 to 125 K. The
temperature increases first when the “bulk” (Si-related) phonons
reach the central slice, and later when the heat propagating along the
surface arrives. The Si-H wag modes transport energy by resonant
coupling, with a lifetime of the order of 1 ps at 125 K. The surface
contribution is smaller than in the case of Si296H112 because of the
smaller [H]/[Si] ratio.

thermally excited in the hot slice of the supercell, the excitation
can decay in two ways: it can resonantly couple to adjacent
surface wag modes (of the same frequency) or decay into bulk
phonons.

We have estimated the lifetime associated with the resonant
coupling of Si-H wag modes as follows. The Si200H32 supercell
was prepared at T = 0 K and one Si-H wag mode (583 cm−1)
was selected and given the initial amplitude

√
2kbT /2πωc,

with T = 400 K. We then initiated a MD simulation and
recorded the kinetic energy of this H atom as well as the
kinetic energies of its H nearest and second-nearest neighbors.
The first two ps of this run are shown in Fig. 11. Adjacent
wag modes couple on a time scale of the order of 0.5ps, and
the initial energy propagates back-and-forth among adjacent

FIG. 11. (Color online) Kinetic energy (KE) of adjacent surface
H atoms. One excited Si-H wag mode (black) couples resonantly to
one of its nearest neighbor (NN, red) on a time scale shorter than
1 ps, consistent with the lifetime associate with the frequency-gap
law [41]. The excitation of one second NN (green) can be seen in the
color figure as well.
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Si-H units. The coupling between adjacent Si-D wag modes is
slightly shorter than for Si-H.

Resonant coupling is obviously a one-phonon process. The
lifetime we estimate is consistent with the time scale of one-
phonon processes predicted by the frequency-gap law [41].
This lifetime is still considerably longer than that associated
with the excitation of bulk phonons [14].

The decay of the Si-H wag mode at 531 cm−1 (or Si-D
at 368 cm−1) wag mode into bulk phonons can be calculated
using the techniques discussed in Refs. [16–18]. At 125 K,
this decay is of the order of 15 to 20 ps for Si-H and slightly
less than 10 ps for Si-D [42]. According the frequency-gap
law [41], the former decay is at the upper end of a two-phonon
decay or at the lower end of a three-phonon decay, while the
latter corresponds to a two-phonon decay.

For temperatures below ∼500 K, no Si-related mode has
enough energy to excite a surface Si-H wag mode. Thus bulk
modes do not couple with surface modes. As long as the surface
is out of equilibrium, the energy of the surface wag modes is
confined to just a few Si-H atoms. This energy propagates by
resonant coupling on the surface much faster than it can decay
into bulk modes. This holds until the surface reaches thermal
equilibrium, and then the surface wag modes decay into bulk
modes and the entire nanowire reaches thermal equilibrium.
The implication is that the surface does reduce the thermal
conductivity, but not by scattering bulk phonons. Instead, one
must wait for part of the heat to propagate through the bulk and
part along the surface before thermal equilibrium is reached.

A single fit to T (t) in the central slice of the various
nanowires leads to the following thermal conductivities κ(T =
125 K), in W/mK: 0.21 for Si200(OH)32, 0.22 for Si200H32;
0.27 for Si200D32; 0.14 for Si296H112; and 0.16 for Si296D112.
A larger number of surface atoms reduces the thermal
conductivity as the amount of heat carried by surface atoms
increases. The H, D isotope effect we obtain is associated with
the change of frequency of the wag mode. Replacing H by the
heavier D leads to lower-frequency surface wag modes, faster
resonant coupling between adjacent modes on the surface,
and an increase in the thermal conductivity relative to the
corresponding H-saturated nanowire.

The (OH)-terminated nanowire is a poor representation of
the surface oxide layer normally found on Si nanowires in a
laboratory setting. Indeed, the H atoms at the end of the long
Si−O−H surface bonds oscillate in vacuum with a very large
amplitudes. Such a termination is unlikely to survive at room
temperature.

B. δ layers, phonon trapping, and decay
of vibrational excitations

We also investigated the role of impurities, in particular that
of a monoatomic δ layer of C (lighter than Si) or Ge (heavier
than Si). Such δ layers can, in principle, be incorporated
during the growth of a nanowire more easily than a random
distribution of impurities. We prepare the supercell in thermal
equilibrium at 115 K and setup a temperature gradient by
preparing a thin slice at the left end of the supercell at 270 K
(the final equilibrium temperature is 125 K).

Since our supercells are periodic along the x direction, there
is an image hot slice just beyond the end of the nanowire and

FIG. 12. (Color online) The Si190X10H32 supercell with a
monoatomic δ layer (X = C or Ge) on either side of the central
slice where the temperature is recorded.

the change in temperature in the central slice is caused by
heat coming from these two hot slices. For this reason, we
incorporated two monoatomic C or Ge δ layers, as shown in
Fig. 12.

The monoatomic layers discussed here constitute a defect
that covers the entire cross-sectional area of the nanowire. The
SLMs associated with this defect are associated with the Si-C
or Si-Ge bonds. The localization of these SLMs is shown in
Fig. 13. In the case of the Ge δ layer, there are a number
of SLMs below 100 cm−1, while in the case of C, the highly
localized SLMs are all above 550 cm−1 and are therefore much
less likely to be populated. In both cases, however, there are
numerous more weakly localized modes with low frequencies,
corresponding the bending and twisting modes.

The propagating bulk phonons interact with the δ layer
by displacing the Ge (or C) atoms, thus exciting some
SLMs. Phonons trap at the defect. The trapped phonons
then decay into bulk phonons of lower frequency. Since
there are equivalent Si atoms on both sides of the δ layer,
the probability of decay on either side would be the same
were it not for the presence of the temperature gradient.
Thus a monoatomic δ layer of Ge or C reduces the thermal
conductivity by comparable amounts, the difference being due
to slight differences in the lifetimes of the vibrational excitation
in the SLMs associated with Ge or C. Such low-frequency
modes have more than one decay channel. We calculated
[14] these lifetimes for a C-related SLM at 556 cm−1 (10.5
and 17.2 ps) and a Ge-related SLM at 426 cm−1 (3.5 and

FIG. 13. (Color online) Spatial localization L2{α} of the modes
associated with (solid red lines) or Ge (dashed black lines) δ layer in
Si190X10H32 (X = C or Ge).
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FIG. 14. (Color online) Temperature vs time in the central slice
of the perfect Si200H32 supercell compared to that in the presence of
two monoatomic δ layers of Ge or C atoms.

6.8 ps). For comparison bulk modes at 424 and 241 cm−1 have
vibrational lifetimes in the range 0.2 to 0.8 ps.

The temperature versus time for the perfect and delta-doped
nanowires are compared in Fig. 14. A thin slice on the left end
of the Si200H32 supercell was prepared at 270 K and the rest
of the supercell at 115 K. After reaching thermal equilibrium,
the final temperature of the central slices has increased from
115 to 125 K. The calculated thermal conductivities are 0.22
(perfect nanowire), 0.09 (with a Ge δ layer), and 0.07 W/mK
(with a C δ layer).

Note that the monoatomic δ layers considered here are
qualitatively different from those containing several layers of
C or Ge atoms). In the latter case, one deals with a Si-like
phonon density of states on one side of the interface and a
Ge- (or C-like) one on the other. The decay of the phonons
trapped in the interface SLMs involves very different receiving
modes on the two sides of the interface, leading the different
coefficients of reflection and transmission. This situation will
be discussed elsewhere [43].

The monoatomic δ layer is more efficient at reducing
the thermal conductivity than randomly distributed Ge or C
impurities in the nanowire. We have performed calculations
in Si188X12H32 with X = Ge (or C), and obtained κ(T =
125 K) = 0.16 (with twelve Ge substitutional impurities) and
0.17 W/mK (with twelve C substitutional impurities).

IV. KEY POINTS AND DISCUSSION

We used the theoretical laser-flash technique to calculate
the impact of defects on the thermal conductivity of Si
nanowires. The method involves density-functional theory

for the electronic states. The eigenvectors of the dynamical
matrix are used to prepare the nanowire slightly away from
equilibrium and then ab initio MD simulations are performed
(without thermostat) to monitor how the system returns to
equilibrium. The time dependence of the temperature in the
central cell, averaged over many initial random distributions
of mode phases and energies, is fitted to an analytic solution
of the heat diffusion equation. The fit determines the thermal
diffusivity, from which the thermal conductivity is obtained
at the desired temperature. The calculated temperature depen-
dence of the thermal conductivity as well as its dependence on
the diameter of the nanowire compare well with the measured
values extrapolated to the size of our nanowires.

The surface of the NW is saturated with H, D, or OH groups.
The surface (wag) modes excited in the hot region of the
nanowire do not couple to Si modes in the bulk and do not
decay into bulk modes. Instead, as long as the surface is away
from thermal equilibrium, the surface modes propagate by
resonant coupling along the surface, independently of the Si-
related modes in the bulk. Thermal equilibrium in the central
slice is achieved only after the (faster) contribution of the bulk
and the (slower) contribution of surface modes arrive.

A monoatomic δ layer of Ge or C across the nanowire
reduces the thermal conductivity more efficiently than a
random distribution of Ge or C impurities in the nanowire.
The heat flow generated by the hot slice propagates along the
nanowire. When it reaches the δ layer, some of the SLMs
associated with it trap phonons for lengths of time of the
order of 10 ps (typical of a two-phonon decay [41]). Such
vibrational lifetimes are much longer then those of bulk modes.
The trapped phonons ultimately decay into lower-frequency
modes on either side of the δ layer. It is phonon trapping that
reduces the thermal conductivity.

These and earlier calculations [14] show that the empirical
concept of defects being static scattering centers for (bulk)
phonons is incomplete. In situations where the concentration
of defects is large (or locally large), the description of bulk
phonon-defect interactions should include the dynamic prop-
erties of defects, in particular the SLMs associated with them.
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