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Impurity entanglement through electron scattering in a magnetic field
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We study the entanglement of magnetic impurities in an environment of electrons through successive scattering
while an external magnetic field is applied. We show that the dynamics of the problem can be approximately
described by a reduced model of three interacting spins, which reveals an intuitive view on how spins can be
entangled by controlled electron scattering. The role of the magnetic field is rather crucial. Depending on the
initial state configuration, the magnetic field can either increase or decrease the resulting entanglement but more
importantly it can allow the impurities to be maximally entangled.
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The past few years have seen a large explosion of interest in
the studies of the interfaces between quantum information and
many-body systems. The controlled production and detection
of entangled particles is the first step on the road towards
quantum information processing [1]. A variety of methods
to entangle electrons or localized spins have been proposed,
based on quite different physical mechanisms [2–17]. One
particular straight-forward application is the generation of
entanglement between magnetic impurities or localized spins
in mesoscopic structures mediated by electron scattering
[14–19]. For the purpose of studying controlled entanglement
between localized qubits one can imagine an experimental
realization with the help of coupled quantum dots [20] which
contain electrons that have relatively long relaxation times
[21] and where coherent manipulations are possible [22].
Moving quantum dots generated by surface acoustic waves
[23] have also been observed experimentally [24] and proposed
as candidates for quantum computation [25]. The controlled
insertion of single-impurity atoms with two hyperfine states
(qubits) in a bath of ultracold atoms is also a strong field
of research [26]. The basic idea of an indirect coupling
between localized spins is not new and was first considered
many years ago in the context of localized nuclear or
electron spins that can couple to conduction electrons, leading
to the so-called Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction [27]. However, to study entanglement, an ef-
fective RKKY coupling alone is not enough as we will
show.

In the present work, we consider a minimal model of two
localized spins (qubits) that are coupled to a mesoscopic
structure with periodic boundary conditions (ring), where
individual electron states can be excited as depicted in
Fig. 1(a). Experimentally such a structure can be created
as a gated ring [28,29] or with the help of coupled quantum
dots [15,20]. The periodic boundary conditions avoid edge
effects. In particular, we are interested in the dynamics of the
entanglement of the two qubits after an electron is injected
into the system with a given initial state. In addition, an
external magnetic field is applied as a control mechanism
over the generated entanglement. Even though an effective
RKKY interaction alone is not sufficient to explain the
entanglement dynamics, it is sometimes possible to use a
simplified model of only three interacting spins, Fig. 1(b),
exemplifying the entanglement mechanism as well as the

important role of the magnetic field maximizing or destroying
entanglement.

The Hamiltonian describing this mechanism consists of
electrons with kinetic energy H0, the interaction with localized
spins V , and the coupling to a magnetic field HB [14,15]

H = H0 + V + HB

=
∑
k,σ

εka
†
k,σ ak,σ + J (s0 · SA + sN · SB) + B

∑
l

sz
l . (1)

Here, 0,N are the positions of localized spins SA and SB,
which we will call impurities in a system of total length
L with periodic boundary conditions—note that there is no
direct interaction between the impurities. The electron spin is
expressed in terms of creation a†, annihilation a operators sl =
1
2

∑
α,β a

†
l,ασ αβal,β , with σ the Pauli matrices. Furthermore, we

work in units of J by setting the lattice constant a = 1, Planck’s
constant � = 1 and the Bohr magneton μB = 1. The hopping
amplitude of the one-dimensional tight binding Hamiltonian
is given by t̃ , viz. εk = −2t̃ cos k, k = (2π/L)n with n =
−L/2, . . . ,L/2 − 1. In general the magnetic field component
perpendicular to the ring affects the scattering states via the
Aharonov-Bohm effect, which also gives interesting effects
[28,29]. This does not change the essential mechanism of the
entanglement formation, however, so we assume for simplicity
that the ring is parallel to the field.

One of the most important symmetries of Hamiltonian (1)
is the conservation of the total Sz = sz + Sz

A + Sz
B component,

which makes it possible to consider an effective field on the
electrons only in Eq. (1). In particular, a general magnetic field
B applied on all three spins results in a Zeeman interaction
of the form B[ges

z + gI(S
z
A + Sz

B)] = B(ge − gI)sz + gIBSz,
where ge and gI stand for the electron and impurity g factors
which in principle are not equal. Since [H,Sz] = 0 the field
on the total spin Sz does not influence the time evolution
and only the effective magnetic field B = B(ge − gI) on the
electrons has to be considered. If the two g factors were
equal ge = gI the magnetic field would have no effect on the
dynamics of the system.

We now want to focus on the time evolution of the gen-
erated entanglement between the impurities via the electron
spin starting from an initial state |ψ0〉. There are several
quantities that can extract information on entanglement, such
as concurrence [30,31], quantum discord [32,33], entropy
of entanglement [34], and negativity [35]. Concurrence and
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FIG. 1. (a) Two embedded impurities in a ring are entangled via successive electron scattering. In addition an external magnetic field is
applied. (b) A minimal model of three interacting spins.

quantum discord are pairwise measures of entanglement while
entropy of entanglement and negativity are bipartite measures.
We have chosen concurrence here, because it allows easy
access to pairwise entanglement. The concurrence between
the two impurity spins is related to the reduced density
matrix �(t) = Tre|ψ(t)〉〈ψ(t)|, where the electron’s degrees
of freedom are traced out. Taking into account the symmetries
of the Hamiltonian the concurrence of the two impurities in
the natural basis {|↑↑〉,|↓↑〉,|↑↓〉,|↑↑〉} reads [36,37]

C(t) = 2|�↓↑,↑↓(t)|. (2)

To gain a basic understanding of the entanglement mechanism,
it is useful to first analyze a reduced model of only three
coupled spins in a magnetic field, essentially obeying the same
symmetries as schematized in Fig. 1(b):

H3S = J s · (SA + SB) + Bsz. (3)

The evolution of the initial state |ψ0〉 = |σA,σB,σe〉, with
σe,A,B =↑ ,↓, under Hamiltonian (3) at time t is given by
|ψ(t)〉 = exp(iH3St)|ψ0〉 and spans the same Sz subsector
as |ψ0〉. In the fully polarized one-dimensional Sz = ±3/2
subsectors, the impurities are in a product state and therefore
nonentangled at all times t � 0. Hence, only the Sz = ± 1

2
subsectors are relevant for entanglement generation between
the impurities. We only consider the sector Sz = + 1

2 , since
the spin-flipped states have the same time evolution for
B → −B.

To evaluate the concurrence of the minimal three-spin
model we diagonalize analytically H3S within the Sz = + 1

2
subsector. Then, we find the time evolution of the initial state
|ψ0〉 and evaluate the reduced density matrix �(t) which gives
the time evolution of the concurrence using Eq. (2). In the
sector Sz = + 1

2 there are two initial states of interest |ψ0〉 =
|↑↑↓〉 and |ψ0〉 = |↑↓↑〉. The corresponding concurrences
C↑↑(t) and C↑↓(t) evolve according to

C↑↑(t) = A↑↑ sin2 ωt, (4a)

C↑↓(t) = A↑↓

√
C2

↑↑(t) + 4

(
C1(t) − 


ω
C2(t)

)2

, (4b)

where A↑↑ = J 2

2ω2 , A↑↓ = 1/2, 
 = J /4 + B/2,

ω =
√
J 2/2 + 
2, C1(t) = sin 
t cos ωt , and C2(t) =

sin ωt cos 
t . The time dependence of the concurrence
is controlled by the two frequencies ω and 
 which are
asymmetric under sign change of the magnetic field; hence
the amplitude of C↑↑ is also asymmetric. The competition of
two energy scales, namely, J and B, and the choice of initial
conditions makes the two directions of the magnetic field ±ẑ

not equivalent.
The concurrence C↑↑(t) is plotted in Fig. 2(a) for different

values of the applied magnetic field. For initially aligned
impurities, the concurrence C↑↑(t) simply oscillates with a
frequency ω. In the absence of magnetic field, concurrence is
bounded by 8/9 [marked with the dashed line in the inset of
Fig. 2(a)] while when the magnetic field is switched on the
amplitude takes on the maximum value of unity for 
 = 0,

(a)

(b)

FIG. 2. (Color online) Entanglement dynamics (concurrence) of
the two impurities within model (3) for (a) initially aligned C↑↑(t) and
(b) anti-aligned C↑↓(t) impurities and different values of the applied
magnetic field. Inset: Amplitude C↑↑ vs the magnetic field.
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i.e., B = −J /2. Furthermore, the applied magnetic field on
the electron enhances entanglement between the impurities
for −1 < B/J < 0 while it reduces entanglement outside this
range [see inset in Fig. 2(a)].

For initially anti-aligned impurity spins, the behavior of
C↑↓(t) becomes much more interesting as shown in Fig. 2(b).
Due to the two oscillating factors in Eq. (4b) the magnetic field
allows the impurities now to be almost maximally entangled
C↑↓ → 1. For times ωtn = πn when C↑↑ and C2 vanish, C↑↓(tn)
has a local maximum with amplitude

C↑↓(tn) =
∣∣∣∣sin




ω
πn

∣∣∣∣ , n = 1,2, . . . . (5)

For increasing n (larger times), one of those local maxima
will become a global maximum with a value very close to
unity; see, for example, in Fig. 2, the case for B = +0.5J and
t = 6π/ω ≈ 21.8/J . Note that a necessary condition for this
to happen is the irrational value of the ratio 
/ω. Moreover, for
an irrational value of 
/ω the concurrence C↑↓(t > 0) remains
strictly larger than zero, so the impurities are entangled for any
t > 0.

So far we have seen that C↑↑(t), C↑↓(t) show a funda-
mentally different time evolution for any value of B. It is
instructive to consider the origin of these asymmetries as
a consequence of statistical considerations. At small times,
transition rates are given in terms wα→β = 〈α|(1 − iH�t)|β〉.
It is then straightforward to see that for B 	= 0 the probabilities
Pα→β = |wα→β |2 differ depending on the initial state and the
direction of the magnetic field. For example, P↑↑→↓↑ will
be larger than P↓↑→↑↑ for B > 0. Furthermore, for a given
initial state, one can see that the concurrence will exhibit
an asymmetric behavior with respect to the direction of the
magnetic field.

Let us now consider the more realistic model depicted in
Fig. 1(a), obeying essentially the same symmetries as model
(3). Here, the magnetic impurities SA and SB are embedded in
a ring at sites 0,N , respectively [14,15]. An electron is injected
into the lattice, with a given initial state, and scatters off the
impurities. The initial state will be of the form |↑↑↓k〉 where
the index k is introduced to describe the electron’s momentum,
and the evolution of the initial state occurs under Hamiltonian
(1). Note that the electron is considered to initially occupy an
eigenstate of H0 with momentum k.

We now focus on the time evolution of the states |↑↑↓k〉,
|↓↑↑k〉, and |↑↓↑k〉 (spanning the subsector Sz

total = 1/2)
under Hamiltonian (1). To implement the time evolution of
the states we consider the time evolution of the spinor

�̃
†
k = (�†

↑↑,↓k
,�

†
↓↑,↑k

,�
†
↑↓,↑k

), �
†
αβ,τ k

= f
†
0,αf

†
N,βa

†
τ,k,

where the fermionic operator f
†
m,α creates the impurity on

site m with spin α. Application of the spinor �
†
αβ,τ k

onto
the vacuum generates an initial state with the corresponding
parameters. After Laplace transforming the time evolution, we
obtain

(z − H0)�̃†
k(z) = �̃

†
k(0) +

∑
q

(Vk,q + Hb,k,q )�̃†
q(z), (6)

where z stands for the Laplace frequencies and the 3 × 3
matrices H0, Vk,q , and Hb,k,q are derived from the application
of H0, V , and HB on the spinor �̃

†
k , respectively.

To further proceed with the solution of the system of self-
consistency equations (6) we may apply a resonant coupling
approximation as proposed in Ref. [15]. That is, due to
resonance, only terms with q = ±k (degenerate eigenstates
of H0) are relevant and we end up with a system of equations
coupling only the spinors with wave vectors k and −k. This
system can be reversed if we merge the spinors �̃

†
k(z) and

�̃
†
−k(z) to form a new spinor �̃

†
k (z) satisfying

�̃
†
k (z) =

(
Wk,k −Vk,−k

−V−k,k W−k,−k

)−1

�̃
†
k (0), (7)

with Wk,k = z − H0 − Vk,k − Hb,k,k . Lastly, as was shown in
Ref. [15], the system of equations (7) simplifies drastically if
one selects a commensurate value of the product kN , namely,
kN = π × integer. The time evolution of an initial state |ψ0〉
is obtained after the inverse Laplace transform of Eq. (7) and
the concurrence using Eq. (2) after tracing out the electron’s
degrees of freedom.

For |ψ0〉 = |↑↑↓k〉, we arrive at Eq. (4a) for C↑↑(t) with an
amplitude A↑↑ = (2J/L)2/4ω2 and the two frequencies 
 =
(2J/L)/4 + B/2 and ω =

√
(2J/L)2/2 + 
2. For |ψ0〉 =

|↑↓↑k〉, we arrive at Eq. (4b) for C↑↓(t) with A↑↓ = 1/4.
Thus, at resonance, the entanglement dynamics of the lattice
is the same with the one of the three-spin model with reduced
amplitudes A↑↑ and A↑↓ by a factor of 2 and an effective
coupling J = 2J/L between electron and impurities driving
the oscillations. The origin for the difference in the amplitude
of the concurrence between the three-spin model (3) and
the full model (1) arises from the scattering into different
momentum channels for the latter. Particularly in this case,
it is the backscattering that bounds the concurrence to 1/2,
prohibiting maximum entanglement C → 1. In fact, it is
possible to consider a symmetric or anti-symmetric linear
combination of degenerate plane waves with opposite momen-
tum k and −k. For the symmetric (cosine) initial condition
the amplitude of the concurrence is doubled, resulting in
maximum entanglement at times ωtm = π (m + 1/2), while
for the anti-symmetric linear combination no entanglement
takes place.

To test our analytical calculation, we study numerically
the time evolution of Hamiltonian (1) using exact diago-
nalization (ED). We consider initially entangled impurities
in a singlet |ψ0〉 = 1√

2
(|↓↑↑k〉 − |↑↓↑k〉) or triplet |ψ0〉 =

1√
2
(|↓↑↑k〉 + |↑↓↑k〉) combination. The corresponding Cs and

Ct concurrences for the singlet and the triplet configuration are
given by

Cs(t) = 1, Ct(t) = 1 − C↑↑(t). (8)

Remarkably, impurities in a singlet combination remain max-
imally entangled at all t � 0. This is easily understood within
the three-spin model where the singlet configuration is an
eigenstate of H3S leading to a time-independent concurrence.
On the other hand, the triplet initial state exhibits a sinusoidal
behavior, shown in Fig. 3. For the triplet initial state, deviation
from maximum entanglement occurs due to the oscillating
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FIG. 3. (Color online) Entanglement dynamics (concurrence)
Ct(t) of the full model (1) with t̃ = 5J and L = 16 for two values of
the magnetic field B = 0 and B = −0.5J starting from an initially
entangled triplet state. The dashed line indicates the minimum of
entanglement in the absence of magnetic field.

term, the amplitude of which reduces for magnetic fields
outside the range −1 < B/J < 0; see inset in Fig. 2(a).
Therefore, any positive or strong negative magnetic field
applied on the electron can significantly enhance entanglement
between impurities.

In addition in Fig. 3, we plot numerical results obtained
via ED for system size L = 16, impurity distance N = 4, and
an electron in the state k = π/2. Numerical and analytical
results are in very good agreement for Ct and consequently
for C↑↑ and C↑↓, as long as the scattering of the electron on
the impurities is relatively weak. For stronger J , namely, for
J/L comparable to the distance between the single-particle
energy levels, a wider range of scattering states participate.
In this regime, the kinetic degrees of freedom become
more important and interference of scattering into different
momenta leads to nontrivial entanglement dynamics. The res-
onance approximation breaks down and naturally the minimal
three-spin model fails to capture the entanglement process
too.

So far, we have focused on the generated entanglement
between the impurities considering different spin configura-
tions and the influence of the magnetic field. Let us now
work on a different scenario where the entanglement is tuned
by other parameters such as the impurity distance N or the
initial spatial part of the electron’s wave function. To realize
this, we work in the Sz = 1/2 subsector for initially aligned
impurities in a system of L = 16 sites and a fixed magnetic
field B = −J/L which corresponds to 
 = 0, where maximal
amplitudes are possible. In Fig. 4, we plot four characteristic
examples. First, we plot the case where the electron is injected
in the state k = π/2 and the impurities are N = 4 sites
apart. As discussed above, the entanglement dynamics is
well described by Eq. (4a) in this case, exhibiting a simple
sinusoidal form with half of the maximum amplitude. If an
electron is injected in a symmetric (cosine) superpositions
of states k = ±π/2 (second case) a maximum amplitude

FIG. 4. (Color online) Entanglement dynamics of the full model
(1) with L = 16 for two initially aligned impurities obtained via
numerical diagonalization for different electron initial states (see text)
and impurity distances N . The magnetic field is chosen B = −J/L,
so that 
 = 0.

and maximal entanglement can indeed be obtained, as also
discussed above. More interesting is a more generic case
where an electron is injected into the state k = π/

√
3, which

is not an eigenstate of H0. In this third case, we observe a
suppression of the overall amplitude and very fast oscillations
on top of the dominant sinusoidal form. This pattern results
from the fact that states with different energies contribute to
the entanglement now, but nonetheless it is remarkable that the
dominant sinusoidal form remains in agreement with a simple
three-spin model. The same is also true for an incommen-
surate distance N = 5 between the impurities (fourth case).
The signal is now a suppressed superposition of oscillations
with a different dominant frequency. Nonetheless, an inter-
pretation of such generic cases with the help of three-spin
models is in principle possible by taking the frequencies and
amplitudes as fitting parameters.

Finally, let us discuss the possibility of an RKKY de-
scription of Hamiltonian (1). The RKKY interaction between
spins is mediated by scattering of electrons in a partially
occupied conduction band, where the states near the Fermi
surface give the leading contribution [27]. The coupling to
a single electron with a given wave vector considered here
may be expected to give a similar effect, but to describe the
entanglement formation such an effective RKKY interaction
is not sufficient. In particular, we have shown that the three-
spin model in Eq. (3) contains essential features for the
entanglement dynamics of the impurities. This contradicts
the possibility of an RKKY description of Hamiltonian (1)
due to the different geometries of an RKKY Hamiltonian and
Hamiltonian (3). Specifically, the RKKY Hamiltonian will
be given by H = JRKKYSA · SB with JRKKY some effective
coupling depending on the distance between the impurities.
The failure of such a description becomes apparent if one
considers the initial impurity configuration |↑↑〉 which is a
separable state and an eigenstate of the RKKY interaction,
resulting in zero entanglement at all times, C↑↑(t) = 0. On
the other hand, the configuration |↑↓〉, which has an overlap
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with two eigenstates of the RKKY Hamiltonian, gives an
oscillating behavior for the entanglement of the form C↑↓(t) =
| sin tJRKKY|, which is qualitatively different from the one we
found for model (1).

In conclusion, we have studied the entanglement of two
magnetic spin- 1

2 impurities embedded in a tight binding ring
in the presence of a magnetic field. We have shown that the
main aspects of the time evolution of the entanglement between
the impurities is revealed by a simplified model of three spins,
Eq. (3), valid for small coupling J and magnetic field B,
disproving the possibility of an effective RKKY description.

Moreover, we solved analytically the full model, Eq. (1), using
a resonance approximation and obtained analytical formulas
for various initial spin configurations. As far as the role of
the magnetic field is concerned, we have shown that it can be
used as a control mechanism over the generated entanglement.
Finally, the generated entanglement is largely affected by the
spatial part of the electron’s wave function as well as the
position of the impurities in the lattice.

This work was supported by the DFG via the Research
Center Transregio 49.
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