
PHYSICAL REVIEW B 89, 155402 (2014)

Derivation of effective spin-orbit Hamiltonians and spin lifetimes with application
to SrTiO3 heterostructures

Cüneyt Şahin,1,* Giovanni Vignale,2 and Michael E. Flatté1
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A general approach is derived for constructing an effective spin-orbit Hamiltonian for nonmagnetic materials,
which is useful for calculating spin-dependent properties near an arbitrary point in momentum space with
pseudospin degeneracy. The formalism is verified through comparisons with other approaches for III-V
semiconductors, and its general applicability is illustrated by deriving the spin-orbit interaction and predicting
spin lifetimes for strained SrTiO3 and a two-dimensional electron gas in SrTiO3 (such as at the LaAlO3/SrTiO3

interface). These results suggest robust spin coherence and spin transport properties in SrTiO3-based materials
at room temperature.
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I. INTRODUCTION

Spin dynamics in nonmagnetic wide-bandgap materials has
received renewed attention due to the exceptionally long spin
coherence times of spin centers in diamond [1] and silicon
carbide [2], interest in spin injection into bulk doped SrTiO3

(STO) [3] as well as Rashba coefficients [4] and spin injection
[5] in the strain-tunable and growth-tunable [6,7] high-density,
high-mobility two-dimensional electron gas (2DEG) at the
interface [8] between LaAlO3 and SrTiO3 (LAO/STO). For
well explored materials such as III-V semiconductors and
their heterostructures, effective pseudomagnetic fields [9,10]
arising from the inversion asymmetry of the crystal split most
degeneracies of the electronic states, and these fields dominate
spintronic properties of the material such as spin lifetimes
[11,12].

When materials have inversion symmetry, however, these
fields vanish and the subtle spin-orbit entanglement of the wave
functions controls spintronic properties [13] and dominates
spin lifetimes through the scattering-driven Elliot-Yafet pro-
cess [9]. The construction of effective spin-orbit Hamiltonians
for nonmagnetic scattering in semiconductors, that include
the spin-orbit entanglement of the wave functions [14,15],
usually proceeds from a simple effective model of the material
[9,13], especially when only a small number of invariants
are allowed by symmetry [16]. If such simple effective
models are not apparent, such as for indirect-gap, multivalley
semiconductors (e.g., diamond) or for single-valley bands with
orbital degeneracy (e.g., the d-character conduction band of
STO), then the process to construct a spin-orbit Hamiltonian is
not clear. Ad hoc and specialized approaches [14,15] can miss
properties apparent in a more complete tight-binding approach
[17] or other full-zone approaches [18]. A formal prescription
to construct an effective spin-orbit Hamiltonian is required,
built off a full-zone description of the electronic structure.

Here a rigorous prescription for the construction of such an
effective spin-orbit Hamiltonian near a point of pseudospin
degeneracy is provided and applied to materials that are
spatially inversion symmetric with doubly degenerate bands.

*cuneyt-sahin@uiowa.edu

We verify this prescription by testing it at the Brillouin zone
center of direct-gap III-V semiconductors (where there is
double degeneracy), comparing the Hamiltonian and spin
lifetimes from a tight-binding band structure to those from
a k · p model describing the single conduction valley. We then
extract from this formalism an effective spin-orbit Hamiltonian
for STO, and use it to predict spin lifetimes for conduction
electrons in strained STO and an LAO/STO 2DEG. We find
exceptionally long spin lifetimes in both, suggesting that
STO-based materials should have robust room-temperature
spintronic properties. This prescription to construct an ef-
fective spin-orbit Hamiltonian should also be of assistance
in calculating a broad assortment of spin-related properties,
including spin diffusion lengths, spin Hall conductivities, g

tensors, and spin precession lengths, relying on valid electronic
structure calculations from a range of approaches. Thus it
provides a complement to density-functional-theory based
calculations of spin lifetimes [18,19], which assume Kohn-
Sham wave functions and energies accurately represent the
material’s single-particle properties, and are also challenging
to implement for heterostructures.

II. FORMALISM

In systems with time-reversal invariance and spatial in-
version symmetry, the electronic states are (at least) doubly
degenerate at each crystal momentum k, and the spintronic
properties will be governed by spin-orbit entanglement in
the wave functions of the electronic states. We further focus
on systems with exactly twofold state degeneracy at each k.
The Bloch states are denoted by ψk,α(r) = eik·ruk,α(r), where
α = ±1 is a pseudospin index that labels the two degenerate
states at each k, u is a periodic function of r, and ψ and u are
two-component spinors. The corresponding energies are Enk,
independent of α. The two degenerate states are connected
by the combination of a time-reversal and a spatial inversion
operation:

uk,−α(r) = iσyu
∗
k,α(−r) , (1)

where σy is the y Pauli matrix. This model describes
germanium, silicon, and diamond, as well as STO where the
orbital degeneracy at the conduction band minimum has been
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lifted due to strain or quantum confinement. For materials
in which the spin and orbital degrees of freedom are strongly
mixed, the pseudospin doublet described by the uk=0,α remains
stable; hence here we focus on the lifetime of nonequilibrium
populations of pseudospin and for simplicity of language drop
the prefix “pseudo”.

Consider a spin-orbit Hamiltonian (e.g., a tight-binding
Hamiltonian with spin-orbit interaction) describing a material,
and determining the wave functions and their corresponding
energies in the immediate vicinity of a valley minimum kμ.
The conduction band (labeled “c”) has equivalent minima at
symmetry-related points k1,k2, . . . ,kN (e.g., N = 4 for Ge,
N = 6 for Si and diamond, N = 1 for STO with strain or
quantum confinement). Describing each valley (at kμ) inde-
pendently, we set k = kμ + k̃ and call ψn,α(r) = eikμ·run,α(r)
the wave functions at kμ (here n denotes a generic band index).
These unα(r)—a complete set of periodic functions—form a
basis to expand the periodic part of the wave function at small,
finite k̃,

uck̃α(r,σ ) � ucα(r,σ ) − i
∑
β,n

k̃ · Acα,nβunβ(r,σ ), (2)

where

Acα,nβ ≡ i〈unβ |∂uck̃α/∂k̃〉k̃=0 = A∗
nβ,cα. (3)

The value of the coefficients Acα,nα depends on an arbitrary
choice of k-dependent phase factors eiφn,α (k̃), by which the
Bloch wave functions at k̃ �= 0 can be multiplied. This
arbitrariness is reduced by insisting that the periodic parts of
the wave functions uk̃,α and uk̃,−α be related to each other by
Eq. (1). When this condition is satisfied, Anα,nβ = −An−β,n−α ,
which implies Anα,nα = −An−α,n−α(real) and Anα,n−α = 0
(see Appendix A). For Anα,mβ with n �= m, a standard
calculation leads to

−iAnα,mβ = 〈umk̃β |∇k̃Hk̃|unk̃α〉
Enk̃ − Emk̃

. (4)

Here Hk̃ is the Hamiltonian of the periodically translationally
invariant system, so k̃, the crystal momentum difference from
kμ, is a good quantum number, and the operator ∇k̃Hk̃ is
straightforward to evaluate.

III. THE EFFECTIVE EXTERNAL POTENTIAL

Construction of the effective spin-orbit Hamiltonian for a
spin-independent scalar potential V (r) (slowly varying on the
unit-cell scale) requires the evaluation of matrix elements of
V (r) between conduction band states ψck̃α = ei(kμ+k̃)·ruck̃α ,

Ṽk̃′α′,k̃α =
∫

dr ψck̃′α′ (r)V (r)ψck̃α(r) . (5)

Using Eq. (2) and assuming V (r) varies slowly, Eq. (6) can
be integrated over any unit cell. Summing over the unit cells
and using the orthogonality properties of unk,α(r) yields (see
Appendix B)

Ṽk̃′α′,k̃α =
∫

dr ei(k̃−k̃′)·r

⎡
⎣δα′αV (r) +

∑
ij

B
ij

αα′∇iV (r)∇j

⎤
⎦ ,

(6)

where i and j can be x, y, or z, and

B
ij

α′α ≡
〈
∂uck̃α′

∂k̃i

∣∣∣∣∂uck̃α

∂k̃j

〉
k̃=0

. (7)

The symmetries of B
ij

αα′ emerge when written as an operator
in spin space:

B
ij

αα′ = Bij0δαα′ +
∑

k

Bijk[σk]α′α (8)

where

Bijk = 1

2

∑
αα′

B
ij

αα′ [σk]αα′ (9)

Bij0 = 1

2

∑
α

Bij
αα, (10)

and the index k can be x, y, or z. As defined Bijk = B∗
jik , and

from time-reversal invariance Bij0 is real, thus Bij0 = λij =
λji . In contrast, Bijk is imaginary and antisymmetric:

Bijk = iλijk = −iλjik. (11)

In this notation the effective potential becomes

Ṽ (r̂,σ̂ ) =
⎡
⎣V (r̂) +

∑
ij

λij∇iV (r̂)∇j

⎤
⎦+ i

∑
ijk

λijk∇iV (r̂)∇j σ̂k.

(12)

The tensor λijk , which defines the effective spin-orbit interac-
tion in the conduction band, can be expressed exactly as

λijk = 1

2
Im

∑
αα′

[σk]αα′

×
∑

n�=c,β

〈uck̃α′ |∇k̃i
Ĥk̃|unk̃β〉〈unk̃β |∇k̃j

Ĥk̃|uck̃α〉
(Eck̃ − Enk̃)2

∣∣∣∣
k̃=0

,

(13)

where the sum runs over all the bands (n) other than the
conduction band (c); all intraband contributions vanish by
virtue of the identities above. Equation (13) is independent
of any arbitrary k-dependent phase factors by which the
periodic parts of the Bloch wave functions may be multiplied.
This formula, a principal result of this paper, is suitable for
numerical evaluation of the effective spin-orbit interaction,
provided a calculation of the periodic parts of the Bloch wave
functions unk,α is available.

IV. SCATTERING IN THE EFFECTIVE SPIN-DEPENDENT
POTENTIAL

Knowledge of the λ’s allows us to construct the effective
spin-orbit interaction between electrons in a specific band
and scattering from a scalar spin-independent potential V (r)
(e.g., impurity scattering or phonon scattering in a quasielastic
approximation [20]) using Eq. (12). For multiple conduction
bands located near a single minimum, such as for strontium
titanate based materials, the individual bands have Bloch
functions that are orthogonal to each other at the conduction
minimum, so scattering between bands is inefficient. In
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contrast the largest contribution to scattering will come from
scattering within specific bands. If there is interest in scattering
between widely separated (in k) multiple conduction minima,
then the applicability of these calculations will depend on
the importance of possible second-order corrections to the
expansion in Eq. (2). Consideration of these effects is beyond
the scope of this publication, although we note that the
expansion in Eq. (2) could in principle be extended to higher-
order polynomials in k to describe these effects.

The scattering amplitude between two states in a single con-
duction band, in the Born approximation, is the matrix element
of the effective potential between simple plane wave states,
the periodic parts of the wave functions having already been
incorporated in Ṽ . For the case of a k-independent potential,

Ṽk′α′,kα = V0δα′α + iV0

∑
ijk

λijkkik
′
j [σk]α′α . (14)

The transition rate between states kα and k′α′ is then

P (kα; k′α′) = 2π

�
|Ṽk′α′,kα|2δ(Eck′ − Eck). (15)

The scattering potential V0 mimics the scattering that pro-
duces the experimental carrier mobility μ = eτp/m∗, where
m∗ is the effective mass of the band near �,

τ−1
p =

∑
kα,k′α′

P (kα; k′α′)fk(1 − fk′)

/∑
k,k′

fk(1 − fk′) (16)

is the momentum relaxation rate and fk is the Fermi-Dirac
equilibrium distribution function. The expression for the spin
lifetime τs is like Eq. (16), but with the sum over α′ restricted
to α′ = −α,

τ−1
s =

∑
kα,k′

P (kα; k′ − α)fk(1 − fk′ )

/∑
k,k′

fk(1 − fk′ ).

(17)

Spin flips occur via mixing of different spin states into the
wave functions of eigenstates of different momenta, which
produces spin flips as the carriers scatter from interactions
with impurities and phonons.

Equations (12)–(17) are principal results of the formalism
presented here. Although formally τs is a pseudospin lifetime,
if the doubly degenerate states at kμ can be written as
unentangled product states of orbit and spin then τs can be
identified as the actual spin lifetime. This occurs for the
s-orbital conduction band of III-V semiconductors and the
dxy-orbital conduction band of strained STO or LAO/STO
even when the spin-orbit interaction is finite. We note this
is not the case for the higher conduction bands, which are
spin-orbit entangled combinations involving both the dxz and
dyz orbitals. When the spin-orbit interaction vanishes, then all
doubly degenerate states can be written as unentangled product
states of orbit and spin, and the spin lifetime obtained from
Eq. (17) is infinite. We now verify results obtained from these
equations for III-V semiconductors, and then apply the results
to STO-based materials.

V. III-V SEMICONDUCTORS

A simple k · p model of the electronic structure near zone
center kμ = 0 incorporating eight bands and spin-orbit inter-
action can be analytically evaluated for λijk . The Hamiltonian
is

Hk = Hk=0 + �k · P
m

(18)

where m is the electron’s free mass and P is the momentum
operator. The free kinetic energy of the electron is neglected.
In the eight-band model the eigenstates of Hk=0 correspond
to the conduction band spin up and down states as well as
heavy, light, and split-off holes with spin up and down. The
Hamiltonian for this set of basis states is

Hk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Eg 0 i�P√
2m

k+ 0 i
√

2�P√
3m

kz
i�P√

6m
k− i�P√

3m
kz − i�P√

3m
k−

0 Eg 0 i�P√
2m

k− − i�P√
6m

k+ i
√

2�P√
3m

kz
i�P√

3m
k+ i�P√

3m
kz

− i�P√
2m

k− 0 0 0 0 0 0 0

0 − i�P√
2m

k+ 0 0 0 0 0 0

− i
√

2�P√
3m

kz
i�P√

6m
k− 0 0 0 0 0 0

− i�P√
6m

k+ − i
√

2�P√
3m

kz 0 0 0 0 0 0

− i�P√
3m

kz − i�P√
3m

k− 0 0 0 0 − 0
i�P√

3m
k+ − i�P√

3m
kz 0 0 0 0 0 −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (19)

where k+ = kx + iky and k− = kx − iky , Eg is the band gap,
 the spin orbit splitting in the the valence bands, and P

the magnitude of the momentum matrix element between
conduction and valence bands [21]. Evaluation of Eq. (13)
for this Hamiltonian results in λijk = λεijk and the analytic
expression

λ = �
2P 2

3m∗2

[
1

E2
g

− 1

(Eg + )2

]
. (20)

Equation (13) can also be straightforwardly evaluated for
any tight-binding Hamiltonian, represented as a matrix with
a basis of Bloch sums labeled by orbital and atomic site
[20]. The k-dependent terms that appear in such Hamiltonians
originate from overlap matrix elements between neighbors,
and generally have the form

∑
dn

eik·dn (21)
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TABLE I. Spin-orbit interaction parameter λ in units of Å2.

Method GaAs InP GaSb InSb

k · p 4.4 1.7 32.5 544.1
Tight-binding 4.6 1.8 34.6 583.8
From Eq. (24) 5.1 1.7 39.7 630.9

where the dn run over the distances between neighboring atoms
coupled by the overlap matrix elements. Derivatives of terms
such as those appearing in Eq. (21) with respect to k are
simple to evaluate. The k · p expression from Eq. (20) and the
λ computed from an spds∗ tight-binding Hamiltonian obtained
from Ref. [22] agree, as shown in Table I.

A check of our spin lifetime is provided by an analytical
expression derived from an eight-band k · p model for the
ratio of the spin lifetimes calculated for a k-independent
potential from the Elliott-Yafet mechanism and the momentum
relaxation time [9],

τp

τs

= 32

81

(
1

Eg

)2

η2

(
1 − η/2

1 − η/3

)2

E2
k , (22)

where Eg is the band gap, η = /(Eg + ), and Ek =
�

2k2/2m∗. The ratio from Eq. (16) is

τp

τs

= λ2 8m∗2

3�4
E2

k , (23)

which has the same functional form. If

λ = �
2

2m∗
4

3
√

3

1

Eg

η

(
1 − η/2

1 − η/3

)
, (24)

then the two expressions agree. We report in Table I the
implied value of λ from Eq. (24), indicating good agreement
between our formalism and previously-obtained results for
spin lifetimes in III-V semiconductors. Experimental spin
lifetimes in such materials are not useful for direct comparison,
as they are dominated by effects absent in STO and other
inversion-symmetric materials [9].

VI. STRONTIUM TITANATE BASED MATERIALS

For STO there exists only one momentum corresponding to
the conduction band minimum, and the electronic states near
this minimum at the Brillouin zone center mostly consist of
Ti d orbitals. The crystal potential splits these conduction
bands into sixfold t2g bands (dxy , dyz, dzx) and fourfold
(higher-energy) eg bands (dx2−y2 , d3z2−r2 ); spin-orbit coupling
results in a further splitting (≈30 meV) of the lower t2g bands
into fourfold and and twofold bands, as shown in Fig. 1(a).
We consider strained STO, in which the compressive strain
breaks the fourfold degeneracy at the � point and results
in well resolved, doubly degenerate subbands in the plane
perpendicular to the growth direction, as shown in Fig. 1(b) for
a splitting of ∼50 meV. The same energy splitting is produced
by an interface and leads to the electronic structure of the
LAO/STO 2DEG [23].

The electronic structure is calculated using a tight-binding
Hamiltonian with values from Ref. [24]; the parametrization
omits s-orbitals of strontium and includes nearest-neighbor
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FIG. 1. (Color online) Conduction bands of STO calculated by
the tight-binding method described in the text. (10% of the Brillouin
zone in each direction is shown.) (a) Unstrained: the lowest conduc-
tion band at � is fourfold degenerate. (b) Strained: a compressive
uniaxial stress induces a splitting (here 50 meV) that splits the
degeneracy and results in three doubly degenerate conduction bands.
(c) Magnitude of spin-orbit interaction λk as a function of the
conduction band splitting at � due to strain or confinement. This
formulation is not applicable to the case of zero strain due to the
fourfold degeneracy at the � point.

interactions between 2p orbitals of oxygen and full 3d orbitals
of titanium as opposed to simpler parametrizations with only
t2g bands, such as in Refs. [25,26]. The spin-orbit couplings,
absent in Ref. [24], are computed from atomic spectra tables
[27]. This results in a 30 meV spin-orbit splitting, in agreement
with first-principle calculations [28]. Here the Rashba spin
splittings induced by the effective confinement fields along the
growth direction at the interface are ignored; these splittings
further reduce the spin lifetimes, thus our results can be viewed
as the long spin lifetimes obtainable if the confinement field
that induces the Rashba spin splitting has been compensated
by another field, such as a gate field [29].

There are only six nonzero elements of λijk from Eq. (13) at
the minimum of the conduction band (� point) for STO λijk =
−λjik = εijλk , where i, j , and k all differ. From our tight-
binding band structure of SrTiO3, and taking z the direction of
a uniaxial strain, λx = λy = 0.0047 Å2 and λz = 0.0021 Å2

for a strain resulting in 50 meV splitting in the conduction
band minimum. The dependence of λ on the strain is shown
in Fig. 1(c). Large strain destroys λx and λy and leaves λz

constant at 0.0028 Å2. The strain value where λx = λy = λz

is around 110 meV, and the lowest conduction band (dxy-like)
has isotropic dispersion in the xy plane.1 These values of λ are
approximately three orders of magnitude smaller than those
for III-V semiconductors, which will lead to correspondingly
longer spin coherence times (proportional to λ−2).

Spin lifetimes for bulk strained strontium titanate for spin
parallel to ẑ (τsz, Fig. 2) were evaluated from Eqs. (15) and
(16) using reported [30] carrier mobilities and densities. Spins
oriented along x̂ or ŷ exhibit the same lifetime dependence
on temperature and strain, but are shorter than τsz by ∼15%

1Below a temperature of 100 K STO undergoes a second-order phase
transition from cubic to tetragonal structure as oxygens in STO start
to rotate [25]. This rotation breaks the cubic symmetry and causes a
further shift in the higher conduction bands, which we neglect here.
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increasing strain
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FIG. 2. (Color online) Spin relaxation time of bulk strontium
titanate as a function of temperature and strain. The carrier con-
centration is 1.0 × 1018 cm−3 and the mobility varies from 5 to
7000 cm2V−1s−1 as reported in Ref. [30].

at low temperatures and by ∼10% at room temperature.
Strain splitting of the bands is increased uniformly from 50
to 110 meV which reduces the spin mixing of these bands,
resulting in a longer spin lifetime.

We now consider spin relaxation times in the two-
dimensional electron gas formed at the LAO/STO interface,
a system of great current interest [4–8]. In order to extract
the scattering potential from the mobility [via Eq. (16)] and
spin lifetime [via Eq. (17)], a two-dimensional sum over k
is performed with the crystal momentum perpendicular to the
interface set to zero (kz = 0). This corresponds to a wide region
of confinement perpendicular to the interface. The splitting
between the dxy orbital and the dxz, dyz orbitals is chosen to
be 50 meV, from the measurements of Ref. [23].

Our calculated spin relaxation times for a LAO/STO 2DEG
are shown in Fig. 3, for several experimentally achieved carrier
densities (corresponding to several oxygen partial pressures
during growth). The dominant source of the reduction of carrier
spin lifetime with temperature is an increase in the scattering
rate from phonons at higher temperatures. These spin lifetimes
greatly exceed those of bulk III-V semiconductors at room
temperature, and are one to two orders of magnitude longer
than room-temperature spin lifetimes in specially designed

1.0 x1013 cm 2

1.5 x1013 cm 2

2.0 x1013 cm 2

50 100 150 200 250 300

103

104

105

106

T K

τ s
z

ns

FIG. 3. (Color online) Spin relaxation time as a function of
temperature for three densities of carriers in the LAO/STO 2DEG.
The mobilities and densities correspond to those reported in Ref. [32].

GaAs quantum wells grown along the [110] direction [31].
The resulting spin lifetimes are of the same order as those
of the strained STO at low temperatures, but one order of
magnitude greater at room temperature.

VII. CONCLUSIONS

We have developed a systematic approach to the calculation
of the effective spin-orbit interaction and the Elliot-Yafet spin
relaxation rate in doubly degenerate bands. This approach is
broadly applicable to centrosymmetric nonmagnetic materials.
Starting from a calculated band structure we have derived a
compact, gauge invariant formula for the spin-orbit interaction
tensor, and applied it to spin lifetimes. These results reproduce
previous calculations via k · p theory of spin lifetimes in
III-V semiconductors. Our results also support the presence
of robust, room-temperature spin dynamics in oxide mate-
rials such as STO and the LAO/STO interfacial 2DEG. As
centrosymmetric materials have recently taken up a more
prominent role in spin-dependent phenomena (e.g., large spin
Hall effects in cubic metals, spin lifetimes in diamond-based
materials) it is expected that this approach will apply to a broad
range of materials and spin-dependent phenomena.
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APPENDIX A: STRUCTURE OF THE INTRABAND
CONNECTION MATRIX

In this section we prove that the intraband connection matrix

Anα,nβ ≡ i〈unβ |∂unk̃α/∂k̃〉k̃=0 , (A1)

where α and β are pseudospin indices with values ±1, has the
following properties:

Anα,nα = −An−α,n−α (A2)

and

Anα,n−α = 0 . (A3)

To see this we explicitly write down the matrix element

Anα,nβ = i
∑

τ,τ ′,τ ′′

∫
dr([iσy]ττ ′u∗

nk̃−β
(−r,τ ′))∗

× ∂

∂k̃
([iσy]ττ ′′u∗

nk̃−α
(−r,τ ′′)) , (A4)

where we have explicitly denoted the pseudospin components
of the spinor unk̃(r) as unk̃(r,τ ), with τ = ±1, and we have
used Eq. (1) of the main text to express unk̃α in terms of u∗

nk̃−α
.

Carrying out first the sum over τ with
∑

τ [σ ∗
y ]ττ ′[σy]ττ ′′ =∑

τ [σy]τ ′τ [σy]ττ ′′ = δτ ′τ ′′ we obtain

Anα,nβ = i
∑
τ ′

∫
dr unk̃−β(−r,τ ′)

∂

∂k̃
u∗

nk̃−α
(−r,τ ′) . (A5)

We change integration variable from r to −r and transfer the
operator ∂

∂k̃
from the right to the left wave function with a
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change of sign (this is allowed because ∂

∂k̃
〈unk̃−α|unk̃−β〉 =

∂

∂k̃
δαβ = 0). So we arrive at

Anα,nβ = −i
∑
τ ′

∫
dr u∗

nk̃−α
(r,τ ′)

∂

∂k̃
unk̃−β(r,τ ′) (A6)

= −An−β,n−α . (A7)

Setting β = α in the above equation yields Eq. (A2). Setting
β = −α yields Anα,n−α = −Anα,n−α , which implies Eq. (A3).

APPENDIX B: DERIVATION OF EQ. (6)

We begin by rewriting Eq. (6) explicitly as follows:

Vck̃′α′,ck̃α =
∑

σ

∫
dr ei(k̃−k̃′)·ru∗

ck̃′α′(r,σ )V (r)uck̃α(r,σ ) ,

(B1)

where the normalization volume has been set to 1. The periodic
wave functions uck̃α(r,σ ) are expanded to first order in k̃
according to Eq. (2). The integral over space is rewritten as

a sum of integrals over unit cells, �(R), centered at lattice
sites R: ∫

dr =
∑

R

∫
�(R)

dr . (B2)

Within each unit cell the potential and the exponential
factor are regarded as constants equal to V (R) and ei(k̃−k̃′)·R
respectively. The remaining integration over the periodic part
of the Bloch wave functions is done with the help of the
orthonormality relations

∑
σ

∫
�(R)

dr u∗
n′α′(r,σ )unα(r,σ ) = 1

N
δnn′δαα′ , (B3)

where N is the number of unit cells, each unit cell having a
volume 1

N
in units in which the total volume is 1. Lastly, the

sum over R of a slowly varying function f (R) is replaced by
an integral over the whole space:

1

N

∑
R

f (R) =
∫

dr f (r) . (B4)

By following this procedure Eq. (6) is easily obtained.
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