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Spin injection via (110)-grown semiconductor barriers
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We study the tunneling of conduction electrons through a (110)-oriented single-barrier heterostructure grown
from III-V semiconductor compounds. It is shown that, due to low spatial symmetry of such a barrier, the
tunneling current through the barrier leads to an electron spin polarization. The inverse effect, generation of a
direct tunneling current by spin polarized electrons, is also predicted. We develop the microscopic theory of the
effects and show that the spin polarization emerges due to the combined action of the Dresselhaus spin-orbit
coupling within the barrier and the Rashba spin-orbit coupling at the barrier interfaces.
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I. INTRODUCTION

The tunnel barriers play an important role in solid state
physics. They determine the energy spectrum of coupled
quantum wells and quantum dots, stability of charged im-
purities and excitons in electric field, miniband transport
and Bloch oscillations in superlattices, etc., and underlie a
number of electronic devices such as tunnel and resonant
tunnel diodes [1,2]. The tunnel barrier is an essential ingredient
of a ferromagnet-semiconductor spin-injecting heterostructure
which enables one to overcome the problem of the conductivity
mismatch between the ferromagnet and semiconductor and
achieve a high efficiency of spin injection [3–12]. About
a decade ago, it was realized that the process of electron
tunneling is spin dependent itself due to spin-orbit interaction
which couples spin states with the orbital motion. It was
shown that the Rashba spin-orbit coupling at interfaces as
well as the Dresselhaus coupling in the bulk of the barrier
make the barrier tunnel transmission dependent on the spin
orientation and wave vector of incident electrons [13–16]. The
effect of spin-dependent tunneling was proposed to be applied
for the pure electric injection and detection of spin polarized
carriers [17–29]. In the case of Rashba and Dresselhaus
coupling in (001)-grown barriers in bulk semiconductors, the
spin polarization of transmitted electrons linearly scales with
the lateral component k‖ of the electron wave vector and is
of opposite sign for the wave vectors k‖ and −k‖ [13,15].
Therefore, the proposed methods of spin injection require the
application of an additional, lateral, electric field which causes
the electron drift in the interface plane and makes the electron
distribution in the k‖ space anisotropic.

In this paper, we show that the spin injection via tunnel
structures in bulk semiconductors can be achieved even for
isotropic in the interface plane electron distribution. Such an
effect occurs for barriers of sufficiently low spatial symmetry
only being not allowed, e.g., in (001)-grown structures.
Microscopically, it is caused by the combined action of the
Dresselhaus spin-orbit coupling in the barrier and the Rashba
spin-orbit coupling at the barrier interfaces. To be specific,
we consider single-barrier tunnel structures with the (110)
crystallographic orientation and present an analytical theory
of the spin injection.

II. MICROSCOPIC MODEL

Consider a zinc-blende-type semiconductor heterostructure
with the symmetric potential barrier grown along the z ‖ [110]

axis, see Fig. 1. Electrons with different incident wave vectors
k = (kx,ky,kz) tunnel through the barrier, where kx and ky are
projections of the wave vector onto the in-plane axes x ‖ [11̄0]
and y ‖ [001̄]. The effective Hamiltonian describing electron
states in the conduction band has the form

H = H0 + HR + HD, (1)

where H0 is the spin-independent contribution,

H0 = �
2
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k2
x + k2

y

)
2m(z)

− �
2

2

∂

∂z

1

m(z)

∂

∂z
+ V (z), (2)

m(z) is the effective mass, which may be different inside
and outside the barrier, V (z) is the heteropotential, V (z) =
V0 > 0 if 0 < z < a and V (z) = 0 elsewhere, a is the
barrier thickness, HR is the Rashba spin-orbit coupling at
interfaces

HR = α[δ(z − a) − δ(z)](σxky − σykx), (3)

α is the parameter determined by the band offsets, σj (j =
x,y,z) are the Pauli matrices, and HD is the Dresselhaus spin-
orbit coupling. In the chosen coordinate frame, HD can be
presented as the sum of four terms
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(
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2
− k2
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)
γ (z), (7)

where γ (z) is the bulk Dresselhaus parameter and the notation
{. . .}sym denotes the operator symmetrization. The terms HD1,
HD2,HD3, andHD4 contain the derivative of the third, second,
first, and zero order, respectively. We assume the kinetic
energy of electrons to be substantially smaller than the barrier
height V0 and, therefore, neglect the terms HD3 and HD4 in
comparison with HD1 and HD2, respectively.

We are interested in the total spin polarization proportional
to the tunneling current though the barrier jz. In (110)-
grown structures, such an effect is allowed by symmetry and
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FIG. 1. The sketch of a symmetric tunnel barrier with the (110)
crystallographic orientation. The point-group symmetry elements of
the structure includes the two-fold rotation axis C2 ‖ y and the mirror
planes σxy and σyz.

phenomenologically given by

sx(z) ∝ jz, (8)

where sx(z) is the steady-state spin density. Indeed, symmetric
(110)-grown barriers are described by the C2v point group
which consists of the two-fold rotation axis C2 ‖ y, two
mirror planes σxy ‖ (110) and σyz ‖ (11̄0), and the identity
element [30], as shown in Fig. 1. In this point group, the
vector component jz and pseudovector component sx belong
to the same irreducible representation, i.e., under all symmetry
operations of the group they transform in a similar way [31].
Therefore, the symmetry allows the linear coupling of sx

and jz and imposes the condition that the current-induced
spin density sx(z) is an even function with respect to the
barrier center. The latter suggests that the electrons transmitted
through the barrier and those reflected from the barrier have the
same spin polarization. Note that, in (001)-grown structures,
the spin injection is absent for the tunneling current along
the barrier normal and may occur only in the presence
of the lateral component of the current. Equation (8) also
shows the possibility of the inverse effect: A nonequilibrium
spin polarization of carriers along the x axis causes the direct
current through the barrier.

We assume that the electrons incident upon the barrier are
unpolarized and their distribution in the interface plane is
isotropic. Symmetry analysis of the spin-orbit terms shows
that, to second order in the spin-orbit coupling, the spin
injection given by Eq. (8) can be microscopically related
to (i) joint action of the Rashba HR and Dresselhaus HD2

terms or (ii) solely the HD1 term. All other combinations
are proportional to the odd power of the in-plane wave
vector and vanish for the isotropic distribution or proportional
to α2, γ 2. The latter contributions also do not give rise
to the spin injection, because the effect implies the bulk
inversion asymmetry and therefore requires the odd power
of the Dresselhaus constant. The calculation based on the
perturbation theory demonstrates that the term HD1 does
not lead to a spin injection in the first order, see the
Appendix and Ref. [25]. Therefore, we focus below on the
mechanism caused by the joint action of the Rashba spin-orbit
coupling at interfaces and Dresselhaus coupling in the barrier
bulk.

FIG. 2. (Color online) The model of spin injection via (110)-
grown barrier. The spin component Sx > 0 of electrons transmitted
through the barrier with different in-plane wave vectors emerges due
to (i) anisotropic spin filtering caused by the Dresselhaus spin-orbit
coupling in the barrier interior followed by (ii) spin rotation in the
interface-induced Rashba effective magnetic field �R .

The mechanism of the spin injection can be viewed as
a two-step process illustrated in Fig. 2. At the first stage,
unpolarized electrons with different in-plane wave vectors
kx are incident upon the barrier and tunnel through it being
affected by the Dresselhaus spin-orbit coupling. The term
HD2 can be considered as the spin-dependent correction to the
effective mass along z which is proportional to kx , compare
Eqs. (2) and (5). Due to the fact that the barrier transmission
probability depends on the effective mass, the electrons at
the exit from the barrier gain the spin polarization Sz ∝ kx .
Similar mechanism of anisotropic spin filtering caused by
the Dresselhaus coupling for (001)-grown structures was
considered in Refs. [15,20]. Note that, for the equal population
of the kx and −kx states, the net spin polarization of electrons
is absent at this step. The net spin polarization emerges at
the second stage due to the action of the Rashba spin-orbit
coupling at the interface, see Eq. (3). The Rashba coupling
can be considered as an effective magnetic field �R lying
in the interface plane which causes the spin rotation. The y

component of the effective field �R is proportional to kx ,
therefore, the rotation axes are opposite for the electrons with
positive and negative kx . As a result, the rotation leads to
the spin component Sx > 0 for all the electrons transmitted
though the barrier. The value of the net spin polarization is
determined by the efficiency of anisotropic spin filtering in the
barrier bulk and the spin rotation angle at the interface. We
note that a similar mechanism leads to the spin polarization of
electrons reflected from the barrier.

III. THEORY

The theory of spin injection can be conveniently developed
by using the spin-dependent transfer matrix technique. The
4 × 4 transfer matrix P through the whole tunnel structure
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relates the spinor wave function � and its derivative � ′ =
d�/dz at z = −0 to those at z = a + 0,(

�(a + 0)
� ′(a + 0)

)
= P

(
�(−0)
� ′(−0)

)
,

(9)

P =
(

Pψψ Pψψ ′

Pψ ′ψ Pψ ′ψ ′

)
,

where Pψψ , Pψψ ′ , Pψ ′ψ , and Pψ ′ψ ′ are 2 × 2 matrices. Higher-
order derivatives of the wave function are expressed via � and
� ′ because the Schrödinger equation with the Hamiltonian
H0 + HD2 + HR is a differential equation of the second order
in z. By definition, the matrixP can be presented as the ordered
product of the transfer matrices through individual parts of the
structure,

P = P (r)P (b)P (l), (10)

where P (l/r) is the transfer matrix through the left/right
interface and P (b) is the transfer matrix through the barrier
interior.

Solution of the Schrödinger equation at the left interface
with the standard boundary conditions, which follow from the
Hamiltonian H0 + HD2 + HR and require the continuity of �

and (1/m − γ σzkx/�
2)� ′, shows that the transfer matrix P (l)

has the components

P
(l)
ψψ = I, P

(l)
ψψ ′ = 0, (11a)

P
(l)
ψ ′ψ = −2m2α

�2

(
I − m2γ2

�2
σzkx

)−1

(σxky − σykx), (11b)

P
(l)
ψ ′ψ ′ = m2

m1

(
I − m2γ2

�2
σzkx

)−1(
I − m1γ1

�2
σzkx

)
, (11c)

where m2 and γ2 are the effective mass and Dresselhaus
constant inside the barrier, m1 and γ1 are those outside the
barrier, and I is the 2 × 2 unit matrix. The transfer matrix
through the right interface P (r) is equal to the inverse transfer
matrix through the left interface, P (l)−1, and readily obtained
from Eqs. (11) by the replacement α → −α, m1(2) → m2(1),
and γ1(2) → γ2(1). The transfer matrix through the barrier
interior with the term HD2 included in the Hamiltonian is
given by

P
(b)
ψψ = P

(b)
ψ ′ψ ′ =

(
cosh q+a 0

0 cosh q−a

)
, (12a)

P
(b)
ψψ ′ =

(
q−1

+ sinh q+a 0

0 q−1
− sinh q−a

)
, (12b)

P
(b)
ψ ′ψ =

(
q+ sinh q+a 0

0 q− sinh q−a

)
, (12c)

where

q± = q
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1 ± γ2m2kx
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)−1/2

(13)
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√

2m2V0
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− k2

z
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− k2
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(
m2
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)
(14)

with k‖ =
√
k2
x + k2

y being the in-plane wave vector. The inverse

matrix P (b)−1 is obtained from P (b) by the replacement
a → −a.

The knowledge of the transfer matrix P allows one to
calculate the spin-dependent coefficient of electron transmis-
sion and reflection from the tunnel structure. Assuming that
the spin-orbit interaction is negligible outside the barrier and
electrons are incident upon the structure from the left, we
present the wave function describing the incident, reflected,
and transmitted waves in the form

ψk(r) =
{

χ eik‖·ρ + ikzz + Rkχ eik‖·ρ − ikzz, z < 0,

Tkχ eik‖·ρ + ikz(z−a), z > a,
(15)

where χ is the incident electron spinor,Rk andTk and are 2 × 2
matrices of amplitude reflection and transmission coefficients.
It follows from Eqs. (9) and (15) that the matrices Rk and Tk

satisfy the equation(
Tk

ikzTk

)
= P

(
I + Rk

ikz(I − Rk)

)
, (16)

which yields

Rk = −(Pψψ + Pψ ′ψ ′ − ikzPψψ ′ + ik−1
z Pψ ′ψ )−1

× (Pψψ − Pψ ′ψ ′ + ikzPψψ ′ + ik−1
z Pψ ′ψ ), (17)

Tk = 2(P̄ψψ + P̄ψ ′ψ ′ + ikzP̄ψψ ′ − ik−1
z P̄ψ ′ψ )−1, (18)

where P̄ = P−1, i.e., P̄ψψ , P̄ψψ ′ , P̄ψ ′ψ , and P̄ψ ′ψ ′ are the 2 × 2
blocks of the inverse transfer matrix. Since P = P (r)P (b)P (l),
P (l)−1 = P (r), P (r)−1 = P (l), and P (b)−1(a) = P (b)(−a), the
inverse transfer matrix through the structures is given by
P−1(a) = P(−a). It follows that the amplitude coefficients
of transmission and reflection for the electrons incident upon
the barrier from the right (with kz < 0) are obtained from Tk

and Rk, respectively, by the replacement a → −a.

A. Spin injection

The spin of electrons with the wave vector k transmitted
through the barrier is given by

Sk = Tr(σgk)

2Tr(gk)
, (19)

where gk is the 2 × 2 spin matrix describing the charge and
spin fluxes of the transmitted particles. In the case when the
electrons incident upon the barrier are unpolarized, the matrix
gk has the form [18]

gk = TkT †
k fkvz
(vz), (20)

where fk is the distribution function of incident electrons,
vz = �kz/m1 is the velocity component along the barrier
normal, and 
(vz) is the Heaviside step function. Note that the
matrix describing the flux of reflected electrons (with kz < 0)
is obtained from Eq. (20) by the replacement Tk → Rk and
kz → −kz.

The equations presented above enable one to calculate
the spin polarization of transmitted and reflected electrons
for given parameters of the tunnel structure. To simplify the
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calculation, we assume that the effective masses inside and
outside the barrier are the same (m1 = m2 = m) and neglect
the spin-orbit coupling outside the barrier (γ2 = γ , γ1 = 0).
In this case, to first order in α, γ , and αγ , the matrix Tk has
the form

Tk =
[
I + γmc1

4�2
σzkx + αγm2c2

�4q
(σxkx + σyky)kx

]
tk, (21)

where c1 and c2 are the coefficients given by

c1 = [iqa(kz/q − q/kz) cosh qa

−(2qa + 3kz/q + 3q/kz) sinh qa]tk, (22a)

c2 = [(3i + q2a/kz) sinh qa − iqa cosh qa] tk, (22b)

and tk is the amplitude transmission coefficient in the absence
of spin-orbit coupling,

tk =
[

cosh qa + i

2

(
q

kz

− kz

q

)
sinh qa

]−1

. (23)

Then, the symmetric part of the spin distribution of transmitted
electrons assumes the form

S
(sym)
k,x = 2

αγm2k2
xkz

�4

× 3
(
q2 − k2

z

)
sinh2 qa + qa

(
k2
z + q2

)
cosh qa sinh qa(

k2
z + q2

)2
cosh2 qa − (

k2
z − q2

)2 .

(24)

In the particular case of high and thick enough barrier, qa � 1
and q � kz, Eq. (24) is simplified to

S
(sym)
k,x = 2

αγm2k2
xkza

�4q
. (25)

The spin distribution (24) is an even function of the in-plane
wave vector, therefore the spin injection via (110)-grown
tunnel barriers occur even for isotropic in the interface plane
distribution of incident electrons.

Finally, we estimate the efficiency of spin injection. We
consider the potential barrier of the width a = 100 Å and
height V0 = 200 meV based on the GaSb/Al0.17Ga0.83Sb
heterostructure and take the bulk GaSb parameters [32]:
m = 0.041m0, with m0 being the free electron mass, and
γ = 186 eV Å3. The interface Rashba coefficient is esti-
mated as [34,35] α ≈ (P 2/3){�1/[(E − E

(1)
�8

)(E − E
(1)
�7

)] −
�2/[(E − E

(2)
�8

)(E − E
(2)
�7

)]}, where P is the Kane matrix

element, E is the electron energy, �j = E
(j )
�8

− E
(j )
�7

, E
(j )
�8

and E
(j )
�7

are the energies of the �8 and �7 valence bands
at k = 0 outside (j = 1) and inside (j = 2) the barrier. This
yields α ≈ 2.5 eV Å2 for the Kane matrix element in GaSb
P = 9.7 eV, the band gap 0.81 eV, the valence band offset
≈ 70 meV and �1 = �2 ≈ 0.76 eV, the above parameters
are from Refs. [32,33]. Then, for the wave vectors kx = kz =
2 × 106 cm−1, the spin polarization Ps = 2|Sx | of electrons
transmitted through the barrier can be estimated as 0.1%. This
value is not high, however, well above the spin polarization
detectable in experiments. The efficiency of spin injection
can be enhanced in multiple-barrier structures provided spin
relaxation processes are slow enough.

B. Spin-galvanic effect

Besides the spin polarization induced by tunneling current
through the barrier, one can consider the inverse effect, namely,
the emergence of a direct electric current through the barrier
in the presence of spin polarization, which is also possible
in (110)-grown structures. Now we assume that the tunnel
structure is initially unbiased but electrons at both sides of the
barrier are spin polarized along the x axis. Due to spin-orbit
coupling, the barrier transparency for the electrons incident on
the barrier from the left with the initial spin polarization Sx is
different from that for the electrons incident of the barrier from
the right. As a result, the oppositely directed electron fluxes
do not compensate each other which leads to a direct electric
current thought the barrier.

Taking into account that the transmission coefficients for
the electrons incident upon the barrier from the left and the
right are connected to each other by the formal replacement
a → −a [see discussion after Eqs. (17) and (18)], one can
write for the tunneling current density

jz = e
∑

k

Tr[Tk(a)ρlT †
k (a)]vz
(vz)

+ e
∑

k

Tr[Tk(−a)ρrT †
k (−a)]vz
(−vz), (26)

where ρl and ρr are the electron spin-density matrices on
the left-hand and right-hand sides of the structure [18]. For
the same electron distribution at both sides of the structure
described by the distribution function f (ε), where ε is the
electron energy, and small degree of spin polarization ps along
the x axis, the density matrices are given by

ρl = ρr = f (ε)I − df (ε)

dε

2psσx

〈1/ε〉 , (27)

where 〈1/ε〉 is the mean value of the reciprocal kinetic energy,
which is equal to 3/EF for three-dimensional degenerate
electron gas with the Fermi energy EF and 2/(kBT ) for
nondegenerate gas at the temperature T . The calculation
of the tunneling current Eq. (26) with the transmission
coefficient (21) and the density matrices (27) yields

jz = −8
eαγm2ps

〈1/ε〉�4

∑
k

df (ε)

dε

k2
x vz

q
|tk|2 Re(c2) . (28)

Finally, for the degenerate electron gas at both sides of the
barrier, the high and thick barrier, q � kF , qa � 1, and
k2
F a/q 
 1, we derive

jz = 64eps

105π2

αγm ak9
F

�3κ3
exp (−2κa), (29)

where kF is the Fermi wave vector and κ =
√

2mV0/�2.
The estimation following Eq. (29) gives jz ∼ 2 mA/cm2

for the single barrier of the width a = 100 Å and height
V0 = 200 meV based on GaSb/Al0.17Ga0.83Sb, the Fermi
wave vector kF = 2 × 106 cm−1, and the spin polarization
ps = 10%. Electric currents of such a density are reliably
detectable in experiments.
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IV. SUMMARY

We have developed the analytical theory of electron spin
injection through nonmagnetic semiconductor barriers with
the (110) crystallographic orientation. The calculations are
carried out by using the spin-dependent transfer matrix
technique. It is shown that the tunneling of electrons through
the barrier, which are described by an isotropic momentum
distribution in the interface plane, results in their partial spin
polarization along the [11̄0] axis. The microscopic mechanism
of the spin polarization is a two-step process comprising spin
filtering due to Dresselhaus spin-orbit coupling in the barrier
interior and the spin rotation in the Rashba effective magnetic
field at the interfaces. The inverse effect, emergence of a direct
tunneling current through the barrier due to spin polarization
of carriers, is also described. The spin-dependent tunneling
phenomenon could by employed for designing pure electric
spin injectors and detectors.

ACKNOWLEDGMENTS

Financial support by the Russian Foundation for Basic
Research, RF President grants NSh-1085.2014.2 and MD-
3098.2014.2, EU projects POLAPHEN and SPANGL4Q, and
the “Dynasty” Foundation is gratefully acknowledged.

APPENDIX: EFFECT OF HD1 ON TUNNELING

The k-cubic spin-orbit splitting of the conduction band
is valid for small wave vectors and should be treated as a
perturbation only. In particular, the term HD1 contains the
operator ∂3/∂z3, therefore, the Schrödinger equation with the
Hamiltonian H0 + HD1 in the barrier would have the basic
solutions ∝ exp(qzz) with three different qz for a given electron
energy. One of the solutions is a rapidly oscillating function
with |qz| ∝ γ −1; it is unphysical and beyond the effective
Hamiltonian approximation. Besides, the operator HD1 is not
Hermitian for the class of wave functions of heterostructures
with abrupt interfaces. Therefore, the conventional procedure
of calculating the transmission and reflection coefficients by
constructing the basis solutions of the Schrödinger equation in
each layer of the structure and using boundary conditions at
interfaces become ambiguous. Instead, we analyze the effect
of spin-orbit coupling HD1 on tunneling in the framework of
perturbation theory. Since the term HD1 does not contain the
in-plane wave vector, we assume for simplicity that kx,ky = 0
and consider the one-dimensional case.

In the absence of spin-orbit coupling, the wave functions
used in the theory of electron tunneling through a rectangular
barrier are given by

ψ
(+)
k (z) =

⎧⎨
⎩

eikz + rke
−ikz, z < 0,

Ake
qz + Bke

−qz , 0 < z < a,

tke
ik(z−a) , z > a,

(A1)

where tk and rk are the amplitude transmission and reflection
coefficients [cf. Eq. (23)],

tk =
[

cosh qa + i

2

(
q

k
− k

q

)
sinh qa

]−1

,

rk = − i

2

[
q

k
+ k

q

]
sinh (qa) tk, (A2)

A and B are the function amplitudes in the barrier,

Ak = tk

2

(
1 + i

k

q

)
e−qa, Bk = tk

2

(
1 − i

k

q

)
eqa, (A3)

k =
√

2mE/�2 > 0 is the initial wave vector, q =√
2m(V0 − E)/�2, and we assume that the effective masses

inside and outside the barrier coincide. In terms of the scat-
tering problem, the wave function ψ

(+)
k at |z| > a represents

the sum of the incident wave and the wave diverging from the
barrier. Besides the functions ψ

(+)
k , one can formally consider

another type of the Schrödinger equation solutions which at
|z| > a describe the sum of the incident and converging waves.
The corresponding wave functions can be presented in the form

ψ
(−)
k (z) =

⎧⎪⎨
⎪⎩

t∗k eikz, z < 0,

B∗
k eq(z−a) + A∗

ke
−q(z−a) , 0 < z < a,

eik(z−a) + r∗
k e−ik(z−a), z > a .

(A4)

Exploiting the analogy between the theory of tunneling and
the theory of quantum scattering [36,37], we obtain the first-
order correction to the matrix of the amplitude transmission
coefficients caused by the Hermitian perturbation HD1,

δtk = − i m

�2k
〈ψ

(−)
k |HD1 | ψ (+)

k 〉 . (A5)

To calculate δtk we take into account that the functions ψ
(±)
k

satisfy the Schrödinger equation with the Hamiltonian H0

and the symmetrization in Eq. (4) can be done in one of two
possible ways:{

γ (z),
∂3

∂z3

}
sym

= 1

2

∂

∂z

[
γ (z)

∂

∂z
+ ∂

∂z
γ (z)

]
∂

∂z
(A6a)

or {
γ (z),

∂3

∂z3

}
sym

= 1

2

[
γ (z)

∂3

∂z3
+ ∂3

∂z3
γ (z)

]
. (A6b)

For both types of symmetrization, the calculation yields the
same result

δtk = σxm
2

2�4k

∫
γ (z)[V (z) − E][ψ (−)∗

k ψ
(+)′
k − ψ

(−)∗′
k ψ

(+)
k ]dz,

(A7)

where ψ
(±)′
k = dψ

(±)
k /dz. In the limiting case of rectangular

barrier with the spin-orbit splitting of electron states in
the barrier given by HD1, the correction to the amplitude
transmission coefficient assumes the form

δtk = iσx

2

γmq2a

�2
tk . (A8)

The probability for an electron with the spin projection
sx = ±1/2 to tunnel through the barrier is given by |〈sx |tk +
δtk|sx〉|2. To first order in γ , where the above consideration
is valid, the probability is independent of the spin orientation
since Re(tk δt∗k ) ≡ 0. Therefore, the HD1 spin-orbit coupling
does not lead to a spin polarization of electrons transmitted
through the barrier. However, the correction δtk results in the
spin-dependent phase shift of the wave function which can
be revealed in interference experiments. Similar conclusions
on the effect of the term HD1 on tunneling were made in
Refs. [25,38] by considering an imaginary correction to q.
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