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Quantum kinetic derivation of the nonequilibrium Gross-Pitaevskii equation for nonresonant
excitation of microcavity polaritons
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The space and time dependent nonequilibrium Keldysh-Green functions are employed to derive the scattering
rates between the condensed microcavity polaritons described by a Gross-Pitaevskii equation and an uncondensed
higher lying exciton reservoir. Slowly varying center coordinates and rapidly varying relative coordinates
are assumed. For particle-particle and particle-phonon interactions the scattering rates which provide gain to
the condensate are calculated explicitly. These processes result in scattering rates which are quadratic and
linear in the density of reservoir excitons, respectively. The resulting quantum Boltzmann equation for the
reservoir is simplified by assuming local thermal equilibrium to rate equations for the exciton density and their
temperature. Using the microscopically calculated (not phenomenologically chosen) transition amplitudes for
CdTe microcavity polaritons we demonstrate that our model is able to describe the spontaneous pattern formation
for a ring-shaped nonresonant excitation as seen in recent experiments
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I. INTRODUCTION

The Bose-Einstein condensation has been observed for
trapped atomic gases cooled to extremely low temperatures
[1–3]. In solid state physics transient bosonic condensations
of magnons [4] and of exciton polaritons in microcavi-
ties (MCs) have been observed [5,6]. For the latter two
examples a nonequilibrium description has to be used, because
both magnons and the polaritons have finite lifetimes and have
to be excited by laser pump pulses. The rich scenario of spatial
structures such as vortices, solitons, and spontaneous pattern
formation can be studied only in a real-space formulation,
i.e., with a space and time dependent field rather than a
single-mode description in momentum space. Assuming that
the MC polaritons can be described as bosons, we start
by considering the boson field operators ψ(�r,t) with the
equal-time commutators

[ψ(�r1,t),ψ
†(�r2,t)] = δ(�r1 − �r2). (1)

Characteristic for a condensed boson system is the finite
expectation value of the field operator

〈ψ(X)〉 = �(X). (2)

In the search to understand quantized vortices in quantum flu-
ids such as He4 and later condensed atomic gases Gross [7] and
Pitaevskii [8] suggested independently using a simple Hartree
approximation in order to derive the nonlinear Schrödinger
equation

i�
∂�

∂t
= −�

2∇2

2meff
� + g0�

†��, (3)

where a point contact potential is used, which can be seen as
the spatial integral over the real potential g0 = ∫

d2rW (r).
More generally g0 is determined by the scattering length.
An extension to spinor fields or wave functions describing
in addition the two circular polarizations of the photons and
the resonant excitons can be made straightforwardly [9].

Wouters and Carusotto [10] extended the Gross-Pitaevskii
(GP) equation applied for MC polaritons to depict also
nonequilibrium condensates by coupling the condensate to
a reservoir of uncondensed particles which in turn is pumped
by a laser. Seeing the success of the GP equation in con-
densed systems for understanding vortices, solitons, structure
formation, and the Josephson oscillations between weakly
coupled subsystems, we will also not attempt to go beyond
the Hartree approximation for the condensate. The specific
spectrum of microcavity (MC) exciton polaritons consists of
a deep sharp part due to the cavity photon mode and a rather
flat higher lying part of the spectrum due to the exciton mode
as shown schematically in Fig. 1. The effective mass around
the photon minimum is about a factor 10−4 smaller than the
electron mass. As pointed out by Wouters and Savona [11]
one can thus separate the system into a condensed fraction
in the deep photon-like part and the uncondensed exciton
reservoir. Scattering processes feed the condensed polaritons
from the higher lying exciton reservoir which is replenished
by laser pumping. A derivation of the nonequilibrium GP
equation in terms of a density matrix formalism has already
been given [11]. Here we formulate an alternative derivation
in terms of nonequilibrium Green functions which we believe
is particularly concise.

II. QUANTUM KINETIC DERIVATION OF
THE NONEQUILIBRIUM GP EQUATION

In order to describe in the above introduced real-space
formulation the scattering processes between the reservoir
and the condensate, we use the nonequilibrium contour-time-
ordered one-particle Green functions for the exciton-part of
the system

G1(X,X′) = −i〈Tcψ(X)ψ†(X′)〉, (4)

where the time is defined on the Keldysh contour.
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FIG. 1. Schematic plot of the lower branch polariton spectrum
ek . The two parabola are fits to the deep photon-like and the broad
exciton-like parts of the polariton spectrum.

We largely make use of the techniques of Kadanoff-
Baym [12] in order to derive the equations of motion for
�(X) and for G<

1 (X,X′), i.e., the kinetic one-particle Green
function for the uncondensed reservoir excitons. For contour-
time-ordered functions—as we use them here—the derivations
of the kinetic equations have been described in Ref. [13].

Note that here we employ the usual space, time, wave
number, and frequency representation, while in former inves-
tigations of one of the authors (H.H.) of the semiconductor
femtosecond spectroscopy [13] a separation into slow center
coordinates and fast relative coordinates was not possible.
There we started from the evolution equation for the equal-
time kinetic function G<

k (t,t) and used—where necessary—a
generalized Kadanoff-Baym relation to express approximately
G<

k (t,t ′) in terms of retarded and advanced Green functions
and G<

k (t,t). The used relation obeys causality. Because
in the present problem the time variation of the exciting
laser pulses is much slower—typically picoseconds instead
of femtoseconds—one can make use of the separation in
slow center and fast relative coordinates. A further important
difference from our former work is that we treat here explicitly
spatially inhomogeneous systems.

The analog to the Dyson equation for �(X) is given by

�(X)=G0(X,X′)[�n(X′)�(X′)+�a(X′)�∗(X′)], (5)

where G0(X,X′) is the free-particle propagator from X to X′;
an integration over the repeated coordinates X′ is assumed.
The coherent nonlinear interaction gives rise to the normal one-
point Hartree self-energy, which is �n(X) = 1

2go�(X)�∗(X),
while the corresponding anomalous self-energy is �a(X) =
1
2go�(X)�(X) as shown in Fig. 2. Multiplying Eq. (5) from

FIG. 2. Normal and anormal first-order self-energy. The vertices
represent the particle-particle interaction go. Particle conservation at
the vertex requires two incoming and two outgoing particle lines. An
incoming zigzag symbol represents a condensate line �(x).
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FIG. 3. Diagrammatic representation of the equation of motion
for the order parameter wave function. The full lines are reservoir
x Green’s functions. The self-energy � 1

2
= �C−R describes the

condensate-reservoir coupling.

the left by

G−1
0 (X,X′) =

(
i�

∂

∂t
+ �

2∇2

2mc

− U (X)

)
δ(X,X′),

we get the free Gross-Pitaevskii equation (3) for the cavity
polaritons with an external potential U (r,t):

(
i�

∂

∂t
+ �

2∇2

2mc

− U (X)

)
�(X) = g0|�(X)|2�(X). (6)

For MC polaritons the condensate has now to be coupled to
the reservoir which we assume—as discussed above—to be
noncondensed and to have the dispersion of the quantum well
excitons with an effective mass mx � mc. The corresponding
equation of motion for condensate wave function �(X) which
we consider as the lowest Green function G 1

2
in the hierarchy of

the n-particle Green functions is shown in Fig. 3 diagrammat-
ically. The last diagram shows the coupling to the x reservoir.
Note, in the last diagram one has to integrate over repeated
arguments, i.e., over X′ in � 1

2
(X,X′)�(X′), which remains

after the multiplication from the left-hand side with G−1
0 .

In the term

� 1
2
(X,X′)�(X′), (7)

we introduce slowly varying center coordinates R,T and the
relative coordinates r = x1 − x2,t = t1 − t2. The time t2 has
to be integrated over the Keldysh contour running from −∞
to t1 and back to −∞. The relative time t runs thus 0 to ∞ and
back to 0 which yields

� 1
2
(X,X′)�(X′)



∫

d2r

∫ ∞

0
dt

(
�>

1
2

(R,T ,r,t)−�<
1
2

(R,T ,r,t)
)
�(R,T ).

(8)

Note, by taking the condensate field only at the center
coordinates we neglect possible nonlocalities and memory
effects. Here the nonequilibrium self-energy is defined as,
e.g., � 1

2
(X1,X2) = �>

1
2

(X1,X2) for t1 > t2 on the Keldysh

contour. The difference �> − �< is the difference between
the scattering rates in and out of the condensate; i.e., these
terms determine the gain of the condensate due to the coupling
to the reservoir. From the scattering diagram with 3 inner
propagators in Fig. 3 we get, e.g., for the integrals over
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r and t of the function −�<
1
2

(R,T ,r,t),

− ia3

∫
d2r

∫ ∞

0
dtg

x-c,2
0 G<(X,X′)G<(X,X′)G>(X′,X)

= −ia3

∫
d2r

∫ ∞

0
dtg

x-c,2
0 (r)

×G<(R,T ,r,t)G<(R,T ,r,t)G>(R,T , − r, − t). (9)

In the evaluation of the self-energy � 1
2

we include a phase
factor a3 for the diagram containing 3 propagators. We will
determine this phase factor so that the particle conservation
between condensate and reservoir holds:

d|�(R,T )|2
dT

= −dNx(R,T )

dT
, (10)

where Nx(R,T ) is the density of reservoir excitons. Next
we insert Fourier transforms with respect to the rapidly
varying relative coordinates (for shortness we omit the central
coordinates)

− ia3

∑∫
d2r

∫ ∞

0
dtG<(k1,ω1)G<(k2,ω2)G>(k3,ω3)

× g
x-c,2
0 ei((k1+k2−k3)·r−(ω1+ω2−ω3)t)

= −ia3

∑∫ ∞

0
dtG<(k1,ω1)G<(k2,ω2)G>(k1 + k2,ω3)

× g
x-c,2
0 e−i(ω1+ω2−ω3)t , (11)

where gx-c
0 is the matrix element for the scattering of a

condensate polariton to a reservoir exciton. A dependence
on the transferred momentum has been disregarded in the
derivation, but can simply be inserted in the final result if
necessary. Next we use the Kadanoff-Baym ansatz to introduce
a distribution function f (R,T ,k) by writing the kinetic Green
function

G<(R,T ,k,ω) = −iA(R,T ,k,ω)f (R,T ,k),
(12)

G>(R,T ,k,ω) = −iA(R,T ,k,ω)[1 + f (R,T ,k)].

Here −iA(R,T ,k,ω) = Gr − Ga = G> − G< is the spectral
function, while the distribution function depends only on
R,T ,k in the spirit of the Boltzmann kinetics. In this spectral
function the collision broadening, e.g., can be integrated by
solving the Dyson equation for the retarded Green function. A
spectral function which contains collision broadening can be
chosen in the form

A(k,ω) = 2γ (Nx)

(ω − ek)2 + γ 2(Nx)
, (13)

where γ (Nx) = γx(1 + Nx

Ns
) with a phenomenologically intro-

duced x-saturation density Ns . In the simpler quasiparticle
approximation A(k,ω) = 2πδ(ω − ek) one gets from the time
and frequency integrations over the product of the spectral
functions

a3g
x-c,2
0 lim

γ→0

∑ ∫ ∞

0
dtfk1fk2 (1 + fk1+k2 )

× e−i(ω1+ω2−ω3)t−γ t δ(ω1−ek1 )δ(ω2−ek2 )δ(ω3−ek1+k2 )

= a3g
x-c,2
0

∑
lim
γ→0

fk1fk2 (1 + fk1+k2 )

i(ek1 + ek2 − ek1+k2 ) + γ

= −ia3g
x-c,2
0 lim

γ→0

∑ (
γ

(ek1 + ek2 − ek1+k2 )2 + γ 2

− i
ek1 + ek2 − ek1+k2

(ek1 + ek2 − ek1+k2 )2 + γ 2

)
fk1fk2 (1 + fk1+k2 )

= a3g
x-c,2
0

∑ (
πδ(ek1 +ek2 −ek1+k2 )

− iP
1

ek1 +ek2 −ek1+k2

)
fk1fk2 (1 + fk1+k2 ); (14)

i.e., one gets next to the scattering rate also the dispersive
contribution due to these transitions. The self-energy term �>

1
2

yields a similar scattering rate from the condensate to the reser-
voir with the occupation function (1 + fk1 )(1 + fk2 )fk1+k2 .
Putting all terms together one finds finally the contribution
to the GP equation by the choice of the phase factor a3 = i,

�x-c
1
2 ,p-p

(R,T ) = i�

2
Rx-c

p-p�(R,T ), (15)

which we expressed in terms of a complex scattering amplitude
Rx-c

p-p for particle-particle scattering between the reservoir and
the condensate. This scattering amplitude has the dimension
of a frequency.

If one of the particles is scattered up into an unoccupied
state with fk+k′ 
 0, while the other one is scattered down
into the condensate, excitonic gain results, i.e., gain without
inversion,

fkf
′
k(1 + fk+k′) − (1 + fk)(1 + fk′)fk+k′ 
 fkfk′ . (16)

We use the short-hand notation fk = f (R,T ,k). The minimum
of the effective x spectrum is at E0 (see Fig. 1). Thus ek =
εk + E0, where εk = �

2k2/(2mx). This replacement changes
the energy conserving delta function in the scattering integral
into δ(εk + εk′ + E0 − εk+k′), where E0 as shown in Fig. 1
is the minimum energy of the parabola fitted to the exciton
reservoir. All levels shift to the blue with increasing density
but the shifts are approximately the same for the condensate
and the reservoir and thus drop out of the energy differences.
The resulting scattering amplitude for p-p scattering is the
scattering rate (in the final result � is restored where needed,
because it was put equal to 1 in the derivation)

ReRx-c
p-p = 2π

�

∑
k,k′

g
x-c,2
0 fk′fkδ(εk + εk′ + E0 − εk+k′), (17)

and the frequency shift

ImRx-c
p-p = −2

�
P

∑
k,k′

g
x-c,2
0

fk′fk

εk + εk′ + E0 − εk+k′
. (18)

This dispersive shift contained in (18) will add to the blueshift
contained in the nonlinear self-interaction term. The gain (17)
and the dispersive shift (18) agree with the corresponding
results Eqs. (15) and (16) of Ref. [14] derived by an equation
of motion technique combined with an adiabatic elimination
in a single-mode theory for the line shape calculation of a
spatially homogeneous condensate. The detailed evaluation
of the scattering amplitude will be postponed until we have
derived also the kinetic equation for the reservoir excitons in
which the scattering rate ReRx-c

p-p will appear again. Naturally,
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there is also a radiative loss term in the form −γc� which can
simply be derived by a coupling to a vacuum photon bath. With
the p-p scattering amplitude the resulting nonequilibrium GP
equation has the form(

i�
∂

∂T
+ �

2∇2

2mc

− U (R,T )

)
�(R,T )

= g0|�(R,T )|2�(R,T ) + i�

2

(
Rx-c

p-p − 2γc

)
�(R,T ), (19)

which has exactly the form postulated by Wouters and
Carusotto [10]; however the x-c scattering amplitude was
assumed to be linear in the x reservoir density. This equation
with its microscopically derived scattering amplitudes will
be discussed in Sec. V, after we have also included the
contributions of phonon-assisted transitions between the x
reservoir and the condensate.

III. KINETIC EQUATION FOR
THE RESERVOIR EXCITONS

Next we calculate the kinetic equation for the reser-
voir of uncondensed excitons. The propagator G<(X,X′) =
−i〈ψ†(X′)ψ(X)〉 is obtained from the general nonequilibrium
Green function, if the contour time tc is less than t ′c. G< governs
the kinetics of the excitons in the reservoir.

The second-order p-p scattering self-energy between the
reservoir and the condensate is shown in Fig. 4 and is given by

�c-x(X,X′) = ig
x-c,2
0

×�∗(X)G1(X,X′)G1(X′,X)�(X′). (20)

We briefly describe the quantum kinetic derivation of the
kinetic equation for the uncondensed reservoir excitons in
the form of a generalized Boltzmann equation [13]. The
starting point is the left and right hand Dyson equation for
the contour-time-ordered one-particle Green function G1:

G1 = G0 + G0�
c,xG1, G1 = G0 + G1�

c-xG0, (21)

where the self-energy is given by (20). Pumping will be
included later. The kinetics is governed by G<(X,X′) =
−i〈ψ†(X′)ψ(X)〉. By straightforward calculations [13] one
gets from these two equations the Kadanoff-Baym equation[

G−1
0 ,G<

] = {�>,G<} − {�<,G>}, (22)

where [ , ] and { , } are the commutator and anticommutator,
respectively. We used relations like Gr = G> − G< and
Ga = G< − G>. Because G< ∝ f and G> ∝ (1 + f ), the
scattering rates on the right-hand side in which a G< occurs
are scattering rates out of the considered state, while those
with a final state population factor G> are scattering rates into

FIG. 4. Second-order scattering self-energy �x-c
p-p for G1.

this state. Next we introduce center and relative coordinates
R = 1

2 (x1 + x2), T = 1
2 (t1 − t2) and r = x1 − r2, t = t1 − t2

and take Fourier transforms with respect to r,t which yields the
spectral variables k,ω. After this transformation the two-point
functions become B(X,X′) → B(R,T ,k,ω). Commutators
and anticommutators as they appear in (22) take in the lowest
gradient approximation the forms

[B,C]R,T ,k,ω

= −i

(
∂B

∂T

∂C

∂ω
− ∂B

∂ω

∂C

∂T
− ∂B

∂R
· ∂C

∂k
+ ∂B

∂k
· ∂C

∂R

)
,

(23)

{B,C}R,T ,k,ω = 2B(R,T ,k,ω)C(R,T ,k,ω). (24)

Inserting G−1
0 (R,T ,k,ω) = ω − �k2

2mx
− U (R,T )/� and inte-

grating over ω the Kadanoff-Baym equation becomes

(
∂f

∂T
+ �k

mx

· ∂f
∂R

− ∂U

∂R
· ∂f

∂�k

)

= P (R,T ,k) − 2γxfk + Re rx-c
k |�(R,T )|2 + rx-x

k + r
x-phon
k .

(25)

This quantum Boltzmann equation describes the spatial-
temporal variation of the x distribution fk(R,T ) in the
presents of an x-c coupling. The radiative loss term −2γxfk
in the reservoir equation and a corresponding loss term
in the order parameter equation −γc� have been included
without explicit derivation. These terms can easily be derived
quantum kinetically by coupling the considered particles to
a photon vacuum bath. A similar derivation can be given
for the incoherent pump process which has also be included
with the pump rate P (R,T ,k) in the reservoir equation. The
last two terms in (25) have been added without derivation
to remind the reader that there is naturally also inter-
reservoir scattering by x-x and x-phonon interactions, but
these processes do not change the number of excitons in
the reservoir. The inter-reservoir x-x scattering rate, e.g., is
given by

rx-x
k = −2π

�

∑
gx-x,2

q δ(ek + ek′ − ek+q − ek′−q)

×{fkfk′(1 + fk+q)(1 + fk′−q)

− (1 + fk)(1 + fk′)fk+qfk′−q}, (26)

where gx-x
q is the x-x scattering matrix element. The x-phonon

interaction r
x−ph
k is considered in the Appendix in connection

with the heat transfer from the x bath to the lattice.

A. Reservoir-condensate scattering rate

The right-hand side of the general kinetic equation (25)
becomes from (20)–(22) in the quasiparticle approximation
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A = 2πδ(ω − ek) again after an integration over ω

− Re rx-c
k |�(R,T )|2

= −2π

�

∑
k′

g
c-x,2
0 |�(R,T )|2δ(ek + ek′ − ek+k′ )

× [fk′fk(1 + fk+k′ ) − (1 + fk′)(1 + fk)fk+k′]. (27)

We estimate the x-c scattering matrix element by its long-
wavelength limit putting all x-Hopfield coefficients in the
reservoir range equal to 1:

gc-x
0 
 6ERa2

0

F
ux

k=0 = 3ERa2
0

F
. (28)

ER and a0 are the 2D x Rydberg and Bohr radius, respectively.
The x-Hopfield coefficient at k = 0 is for the case of zero
detuning ux

k=0 = 1
2 . If we use the same arguments to determine

the p-p interaction in the condensate we get with three more
exciton Hopfield coefficients at k = 0 the formula

g0 = 3ERa2
0

8F
. (29)

Compared to the condensate-exciton reservoir scattering ma-
trix element gc-x

0 the blueshift matrix element g0 is eight times
smaller. In the numerical evaluation of our theory for structure
formation we will use the relatively small value (29). Because
of the neglected momentum transfer in the c-x matrix element,
g0 may be somewhat larger than gc-x/8.

Note that the particle-particle scattering rate (27) is bilinear
in the distribution function f; the back-scattering term can be
neglected because for the higher lying final state fk+k′ 
 0 as
already discussed for the GP equation above.

A comparison with the GP equation shows that 1/2 of the
loss rate in the Boltzmann equation summed over k enters as a
gain into the GP equation, as required by particle conservation.

B. Simplifications for a reservoir in local equilibrium

In general situations with spatiotemporal variations of the
order parameter and the x-distribution function fk(R,T )
the numerical solution would be extremely extensive. Because
the main physical interest concerns the spatial and temporal
variation of the condensate, the treatment of the reservoir
should be kept as simple as possible. Therefore Wouters and
others [10,11,15] used only a simple rate equation for the total
x density in the reservoir. We go one step further by simplifying
the above derived quantum Boltzmann equation by assuming
a local (by no means global) thermal equilibrium in which the
inter-reservoir scattering rates (26) drop out due to detailed
balance. The local equilibrium distribution can in general
be expressed in terms of collision invariants. For the dominate
x-x scattering alone, the conserved quantities are the particle
number, the momentum, and the energy. The corresponding
local equilibrium Bose distribution is

f 0
k (R,T ) = 1

eβx (R,T )(ek−�k·ux (R,T )−μx (R,T )) − 1
. (30)

Here βx(R,T ),ux(R,T ),μx(R,T ) are the inverse temperature,
drift velocity, and chemical potential of the x reservoir,

respectively. These quantities are determined by the corre-
sponding hydrodynamic equations. Because one does not
expect condensation in the reservoir, one can simplify the
general Bose distribution (30) by a Boltzmann distribution for a
nondegenerate Bose gas. Summing the Boltzmann distribution
over all k values, 1

F

∑
k fk = Nx(R,T ), where F is the cross

section of the MC, one gets the total 2D x density Nx . The
thermalized nondegenerate 2D x distribution is

fk = Nx(R,T )

(
2π�

2βx(R,T )

mx

)
e−βx (R,T )εk , (31)

where we used the fact that in a 2D system the chemical
potential can be expressed analytically in terms of the total
density [16]. We also dropped the drift term, because a drift
of the reservoir would be strongly damped by the coupling of
the x-phonon coupling. However, if with a special excitation
a strong drift is induced, one can include this effect also by
generalizing the rate equation to a continuity equation with a
drift term in the form ∇ · j(R,T ), with the current density j.
The rate equation which follows from the summed quantum
Boltzmann equation (25) is

∂Nx

∂T
= P (R,T ) − ReRx-c

p-p(R,T )|�(R,T )|2 − 2γxNx. (32)

The coupling rate of the excitons to the condensate results
from (27) with (31):

ReRx-c
p-p 
 πN2

x g
c-x,2
0 F 2 βx

�
e−βE0 . (33)

The sum of the two momenta k + k′ has to be large enough
to reach an unpopulated state and to scatter one particle
sufficiently down into the condensate. β−1

x is a measure of
the energy width over which the excitons contribute to the
transitions into the condensate. Similarly one can evaluate the
principal value integral of the dispersive shift (18). Integrating
first over the angle between �k, �k′ one gets for a parameter
(E0 − μc)/�

2kk′/m � 1 the value of π/2 for this angle
integral. The integral over k′ yields an error function of the
argument 1/k. The final integral over k from the error function
times a Gaussian yields the remarkably simple final result

ImRx-c
p-p = −π2g

c-x,2
0 F 2N2

x βx

2�
, (34)

provided the parameter βxE0 � 1 which is well fulfilled. Note
again that the transition rate and the corresponding dispersive
shift are quadratic in the reservoir x density Nx as it should be
for a p-p scattering rate. The dispersive shift combines with
the blueshift term in the nonequilibrium GP equation (20) to
an “extended blueshift”

g0N0(R,T )

�
+ π2g

c-x,2
0 F 2Nx(R,T )2βx

2�
. (35)

Thus there is not only a blueshift proportional to the condensate
density N0, but due to the coupling to the reservoir also one
which increases with the square of the x-reservoir density Nx .
Such a quadratic shift has already been observed below the
condensate threshold [17]. This sub-threshold region can be
described by a stochastic extension of the nonequilibrium GP
equation (see Sec. V).
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Before we turn to the derivation of an equation for the local
reservoir temperature, we want to discuss the limitations of our
approach. The description of the pumped reservoir in terms
of bosonic excitations, which are furthermore nondegenerate
and in local equilibrium, may not hold directly during an
intensive pump pulse, but may hold only somewhat after pump
pulse, when an initial thermalization of the primarily excited
electrons and holes has already taken place.

C. Derivation of a rate equation for the local x temperature

In local thermal equilibrium we may still have slowly
varying exciton temperature Tx(R,T ) � Tb larger than the bath
temperature Tb. Its equation of motion can be obtained by
multiplying the Boltzmann equation with the x translational
energy εk using the relation

Nx(R,T )kBTx(R,T ) = 1

F

∑
k

εkfk(R,T ), (36)

which in 2D is just the thermal x energy density. Assuming that
we excite by wide-angle excitation excitons with a momentum
kp, one can write the pump rate as

1

F

∑
k

εkPk(R,T ) = P (R,T )εp, (37)

with εp = εkp
. Similarly the radiative loss term can be written

as −2γxNxkBTx . As shown in the Appendix the coupling
to the thermal acoustic phonons results in a cooling rate
NxkB(Tb − Tx)/τac, where τ ac is the x-phonon relaxation
time (A6). This form can be obtained by making a relaxation
time approximation to the inter-reservoir x-phonon scattering
rates. The coupling to the condensate causes a loss rate of
energy (assuming that the energy of the x scattered to higher
energy is directly absorbed by the phonon bath)

1

F

∑
k

εkr
x-c
k 
 −N2

x g2
0 |�|2. (38)

The two rate equations for Nx and for NxkBTx yield the rate
equation for the thermal energy per particle:

dkBTx

dT
= P (R,T )

Nx

(
εp − kBTx

) + kB(Tb − Tx)

τ ac
. (39)

The first term describes the energy rate generated by the
pump pulse, which relaxes toward the bath thermal energy
according to the second term. Thus this equation describes
how the pumping deposits heat and how the x temperature
relaxes from this hot spot towards the bath temperature. The
additional equation (39) for the thermal x energy could perhaps
replace the rate equation of “inactive excitons” which had to
be used in order to describe the dynamics of spontaneous
quantum vortices in accordance with the experiment [18].
More generally it has been found that such a second reservoir
equation has to be used in situations with large deviations from
thermal equilibrium [19], where the reservoir temperature will
certainly be higher than the lattice temperature and will require
its own equation of motion. Thus the heat flow from the hot
spots to the cooler regions could replace the higher lying bath
of “inactive excitons” in Ref. [18]. Both rate equations for

FIG. 5. Second-order x-phonon scattering self-energy �x-c
x−ph. The

phonon is shown by a wavy line; the vertex here describes the
x-phonon interaction.

Nx(R,T ) and kBTx(R,T ) can be completed by a corresponding
diffusion term if necessary.

D. Evaluation of the particle-phonon scattering amplitude

Another scattering channel from the reservoir to condensate
is the scattering by phonon emission. Longitudinal acoustic
(a) and longitudinal optical (LO) phonons have energies
(typically several meV) relevant for the reservoir-condensate
coupling. The second-order diagram of the phonon scattering
for G1 shown in Fig. 5 yields again in the quasiparticle
approximation for thermalized x and a thermal phonon bath
with ni,k = 1

eβ�ωi,k −1
for i = {a,LO}

ReRx-c
i-ph = 2π

�

∑
k

g
x-ph,2
i,k δ(εk + E0 − �ωi,k)

× [fk(1 + ni,k) − (1 + fk)ni,k]


 2π

�
βFg

x-ph,2
i,k′ Nxe

−β(�ωi,k′ −E0). (40)

Only the phonon emission processes are important, because
the thermal population ni,k of the resonant phonons is very
small. �k′ = {k; x,ky,π/Lz} is the phonon wave number which
fulfills the energy conservation

εk′ = �ωi,k′ − E0. (41)

In order to calculate again the corresponding complex scat-
tering amplitude we have to evaluate the diagram � 1

2 ,i-ph(X,X′)
of Fig. 6 for the order parameter equation with two inner
propagators G and the phonon propagator D. Taking, e.g.,
the contribution for the scattering from the reservoir to the
condensate, i.e., −�<

1
2 ,i-ph

(X,X′), we get by inserting again a

still to be determined phase factor a2 (omitting for conciseness
again the central coordinates)

− ia2

∑ ∫
d2r

∫ ∞

0
dtg

x-ph,2
k1,i

G<(k1,ω1)D>(k2,ω2)

× ei(k1−k2)·re−i(ω1−ω2)t−γ t (42)

FIG. 6. Second-order x-phonon scattering self-energy �x-c
1
2 x-ph

for

the GP equation.

155302-6



QUANTUM KINETIC DERIVATION OF THE . . . PHYSICAL REVIEW B 89, 155302 (2014)

and after the integration over r and t and using the Baym-
Kadanoff ansatz

+ ia2

∑
g

x-ph,2
k,i fk(1 − ni,k)

−1

−i(ek − ωk,i) − γ

= ia2

∑ g
x-ph,2
k,i fk(1 + ni,k)

i(ek − ωk,i) + γ
(43)

or

ia2

∑
g

x-ph,2
k,i fk(1 + ni,k)

(
γ − i(ek − ωi,k)

(ek − ωi,k)2 + γ 2

)
. (44)

With the choice a2 = 1 we get the contribution to the
nonequilibrium GP equation the result in the limit γ → 0:

i�

2

∑
g

x-ph,2
k,i fk(1+ni,k)

(
π

�
δ(ek−ωi,k)−i

2

�

P

ek−ωi,k

)
. (45)

The imaginary part of the phonon-assisted scattering ampli-
tude is thus with the final replacement ek = E0 + εk and the
addition of the back-scattering contribution

ImRx-c
i-ph =−2

�
P
∑

k

g
x-ph,2
i,k

fk(1+ni,k)−(1+fk)ni,k

εk+E0−�ωi,k

. (46)

Note that we had to choose the phase factor a3 = i for the
scattering diagram of Fig. 3 with 3 inner propagators, while
we obtained here with 2 inner propagators a2 = 1 to have
consistent particle conservation. These choices can be unified
in the following rule: The phase factor in the diagrams with N

inner propagators has to be chosen as aN = iN−2.
The x-phonon interaction elements are given in the ap-

pendix for acoustic (a) and LO phonons. Obviously the rate
has the linear dependence of the x concentration, as the
phenomenologically assumed rates used so far. Note that there
is no cross-section dependence of the resulting x-ph scattering
rate because the 1/F from the square of the matrix element
cancels against the area F in the rate expression (40). It
will turn out that in particular the dispersive shifts due to
the LO phonon transitions will have a physically important
contribution in connection with the spontaneous structure
formation discussed in Sec. V.

Naturally, higher order scattering processes like inelastic
scattering and multiphonon scattering will additionally con-
tribute to the scattering rates between the reservoir and the
condensate.

IV. DISCUSSION OF THE RESULTING GP EQUATION

With the corresponding extensions the nonequilibrium GP
equation is

(
i�

∂

∂T
+ �

2∇2

2mc

− U (R,T )

)
�(R,T )

= g0|�(R,T )|2�(R,T )

+ i�

2
(Rx-c − 2γc + iImRx-c)�(R,T ), (47)

where the total scattering amplitude is the sum of those for the
p-p and the two phonon-assisted transitions:

Rx-c = Rx-c
p-p +

∑
i=a,LO

Rx-c
i-ph. (48)

For a reservoir in local thermal equilibrium described by
the density Nx only (i.e., disregarding possible temperature
variations) we display the above derived density dependence
of the complex transition rates explicitly:

Rx-c = Sx-c
p-pN

2
x (R,T ) + Sx-c

a-phNx(R,T ) + Sx-c
LO-phNx(R,T ).

(49)

In the nonequilibrium GP (47) and (32) we used for consistency
the center coordinates R,T for the spatial coordinate and time.
The real part of the x-c coupling function describes the gain
which is reduced by the cavity losses γc. Particle conservation
dNx/dt = −d|�(x)|2/dt requires that the gain is Rx-c/2 for
all three kinds of transitions as it has been found explicitly.
The dispersive contributions of the included dissipative rates
are given by the sum of the principal value integrals related to
the rates (27) and (40). As mentioned, the gain (17) and the
dispersive shift (18) due to p-p scattering from the reservoir
to the condensate agree with the ones derived earlier by an
equation of motion technique combined with an adiabatic
elimination [14,20]. The shifts due to p-p, p-a-ph, and p-LO-ph
scattering add to the blueshift of the condensate contained in
μ 
 g0N0 with increasing pump power.

The nonequilibrium GP equation is still a homogeneous
equation; thus if the order parameter was zero at an initial time
it will stay so forever. Thus at least a dynamical symmetry
breaking in the form of a small but finite initial value has to be
included. A better choice is to assume stochastically distributed
fluctuations as an initial value of �(R,T = 0) [15]. Naturally
if one wants to determine correlations of the order parameter
the GP equation has to be extended by stochastic Langevin
fluctuation fields which are connected with all dissipative
processes as, e.g., treated by Wouters and Savona [11].

For the reservoir we will limit ourselves in the following
to the rate equation for the x density. From Eq. (32) one gets
by including also the x-phonon scattering rates the following
reservoir rate equation:

∂Nx

∂T
= P (R,T ) − ReRx-c(R,T )|�(R,T )|2 − 2γxNx, (50)

into which the total rate (49) due to x-c and x-i-ph scattering
has to be inserted.

A pair of equations like (47) and (50) has been used
recently [15] to explain the observed spontaneous structure
formation with phenomenologically chosen x-c rate and shift.
The pump beam had a ring structure, which in turn created a
ring-shaped x-reservoir distribution Nx(R,T ) resulting finally
in a ring-shaped polariton condensate �(R,T ). In the corre-
sponding simulations the x-c particle-particle scattering rate
between the reservoir and the condensate has been taken as
proportional to Nx as that obtained for the phonon scattering
alone. More generally the scattering rate should be a sum of a
linear and a quadratic term in Nx as derived above.

It is interesting that in the theory of BEC in atomic gases
very similar concepts have been developed to describe the
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condensate by a dissipative GP equation while the coexisting
thermal cloud is described by a coupled quantum Boltzmann
equation [21]. This theory is referred to as the ZNG approach
according to the initials of the authors; for a recent review see
Ref. [22].

BEC as a nonequilibrium second-order phase transition

The nonequilibrium GP equation (47) has a rather similar
structure as the equation for a single laser mode after an
adiabatic elimination of the polarization. Both equations are of
first order in the time derivative and are driven by the difference
of gain and loss. A derivation of the gain in analogy to the laser
theory has been given in Ref. [20] for a single-mode BEC
theory and refined in Ref. [14]. A stochastic extension of this
formulation has been used for linewidth calculations. Naturally
the difference between these single-mode theories and the
nonequilibrium GP equation is that the spatial dependence
of the order parameter field allows one to study a much
richer scenario of spatial structures typical for quantum gases,
while the nonlinear single-mode laser equation allows one
to investigate only temporal structures. Only a laser theory
formulated in terms of a nonlinear wave equation for the
electric light field in the cavity would have a comparable
richness of spatial-temporal phenomena.

In order to illuminate the close relation of the nonequi-
librium BE theory and the laser theory we make use of the
concept of the Ginzburg-Landau theory for nonequilibrium
phase transitions. Quite generally, one can introduce the
Ginzburg-Landau potential in the stochastic theory of the
Fokker-Planck equation with a drift term and a diffusion
term [24]. The drift term can be expressed in terms of a
functional derivative of the Ginzburg-Landau potential and
it appears again in the associated Langevin equation next to
the fluctuations. In order to make contact with these concepts,
we assume that the reservoir variable Nx can be eliminated,
neglecting for the time being the temperature equation. Nx

can be adiabatically eliminated, if γx � γc, which however for
present-day microcavities is not the case. Note however that
in an application of the reservoir-condensate equations for the
description of spontaneous structure formation [15] it has been
assumed (without further discussion) that �γx = 10 meV >

γc = 1 meV. Anyhow we describe the result of an adiabatic
elimination of the reservoir for the purpose of illustration.
For the reservoir density (32) we assume dNx/dt  2γxNx .
For the simpler case of a linear x density dependence of the
x-c transition rate, i.e., Rx-c = rx-cNx , we obtain the adiabatic
solution

Nx = P

rx-c|�|2 + 2γx


 P

2γx

(
1 − rx-c|�|2

2γx

)
. (51)

It should be noted that this stationary equation holds gen-
erally for stationary pumping. Separating the phase with
� = e−iφ |�| and inserting this ansatz and Nx into the
nonequilibrium GP equation (47), one obtains the phase

φ(t) =
∫ t

0
dt(μc + Imrx-cNx) =

∫ t

0
dt(g0|�|2 + Imrx-cNx)

(52)

and the equation of motion for |�|
∂|�|
∂t

= −δV [|�|]
δ|�|

= 1

2

[
rx-cP

2γx

(
1 − rx-c|�|2

2γx

)
− 2γc

]
|�|, (53)

where the functional VV [|�|] is the Ginzburg-Landau po-
tential. The first term on the right-hand side of (54) is a
functional derivative of V [|�|]. A nonequilibrium GP equation
of this type has been postulated—not derived—by Keeling
and Berloff for MC polaritons [23]. The resulting Ginzburg-
Landau potential is

V [|�|] =
(

γc

2
− rx-cP

4(2γx)

)
|�|2 + rx-c,2P

8(2γx)2
|�|4. (54)

This is the paradigmatic Ginzburg-Landau potential of a
second-order nonequilibrium phase transition. Below the
threshold pump power Pth = 4 γc

γxrx-c the parabola |�|2 has a
minimum at |�| = 0. At threshold there is a critical slowing
down; i.e., the parabola widens and becomes eventually
negative. The positive fourth-order term together with the
negative second-order parabola provides a new minimum at
a finite |�| value. Stochastic forces will cause fluctuations
of the order parameter around its minimum. If one plots the
potential as a function of the polar coordinates φ and |�|, one
gets the well-known Mexican hat structure.

Next we turn to the treatment of realistic polariton micro-
cavities in which the exciton lifetime on the order of ns is about
1 to 2 orders of magnitude longer than the photon lifetime in the
cavity (order of several ps); i.e., γx  γc. Under this condition
the dynamics of the x density slaves that of the condensate
wave function; i.e., the condensate wave function follows
nearly instantaneously the value of Nx . For the elimination
of Nx(t) one has to integrate the rate equation of Nx in time.

The nonequilibrium GP equation described by condensate-
reservoir equations or by its simplified form obtained after
elimination of the reservoir yield for the excitations a modified
Bogoliubov spectrum as shown by Wouters and Carusotto [10]
and Keeling and Berloff [23], respectively. The frequency
spectrum of the nonequilibrium condensates goes to zero
already at a finite k value and is purely imaginary below this
point.

V. APPLICATION OF THE GP EQUATION
FOR PATTERN FORMATION

Recently a series of papers used spatially structured,
nonresonant excitation beams in the form of rings [15], a
symmetrical array of several dots [25], and a central dot
surrounded by one or several rings [26,27]. A series of
interesting nonlinear dynamical effects have been seen, like
spontaneous pattern formation, coexistence between localized
and freely propagating condensates, and the spontaneous
formation of vortex-antivortex pairs.

As an example for the use of the above derived nonequi-
librium GP equation (47) and (50) with its microscopically
determined rates and shifts we will calculate the pattern
formation for CdTe microcavities. As in the experiment a bath
temperature of 4 K is assumed, while the reservoir temperature
is taken to be 20 K; i.e., the reservoir is not in equilibrium with
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the lattice. The higher temperature increases the x-c transition
rates. The depth of the photon-like part is taken as E0 =
13 meV with a LO-phonon energy of �ωLO = 21 meV. The x
Rydberg is Eb = 25 meV, and the x Bohr radius is aB = 5 nm.
For all other material parameters we refer, e.g., to Ref. [28]. For
the real and imaginary part of the p-p scattering amplitude we
use the analytical results (33) and (34) while the momentum
integrals of the phonon-assisted scattering amplitudes are
calculated numerically with a finite damping constant γ = 2
meV in the resonance denominator (40) and (46) [as, e.g., in
the form of (44)]. We list the values used in the calculation
by us and compare them by the values used by Manni
et al. [15]: �go = 1.8 × 10−3/8, 2.4 × 10−3 [15] meV μm2,
�γx = 10−2, 10 [15] meV, �γc = 0.1, 1.0 [15] meV. In the sub-
section on BEC as a second-order nonequilibrium phase transi-
tion we commented already on the surprisingly large reservoir
damping constant used by Manni et al. The damping constants
chosen by us correspond to an exciton lifetime τx = 120 ps and
to a cavity lifetime τc = 6 ps. The values of the resulting rates
and shifts (50) due to the interaction with longitudinal optical
phonons are �ReSx-c

LO-ph = 1.0 × 10−4 meV μm2, �ImSx-c
LO-ph =

−1.7 × 10−4 meV μm2. The corresponding results for
acoustic phonon scattering are �ReSx-c

a-ph = 1.0 × 10−3,10−1

[15] meV μm2, �ImSx-c
a-ph = −1.5 × 10−3, − 2.2 × 10−2 [15]

meV μm2. Finally the quadratic particle-particle scattering
rates are �ReSx-c

p-p = 4.7 × 10−7 meV μm4,�ImSx-c
p-p = −1.2 ×

10−6 meV μm4. Such quadratic processes in Nx have not
been included in the simulations of Manni et al. Their
phenomenologically chosen transition amplitudes linear in Nx

are of a similar size as our calculated rates and shifts for the
acoustic-phonon assisted processes alone.

We will demonstrate that the nonequilibrium GP equations
with a microscopically calculated scattering amplitude which
is the sum of linear and quadratic terms in the exciton density
Nx are able to reproduce at least qualitatively the observed
spontaneous pattern formation. Furthermore, we highlight the
importance of the nonlinear frequency shifts not only due
to the third-order term in the GP equation but also due to
those depending on the exciton density Nx for the occurrence
of pattern formation. This can be seen most directly, if one
assumes Nx is expressed in terms of � and eliminated, as
shown above; these shifts become nonlinear in � too.
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FIG. 7. (Color online) Mean condensate density versus pump
power for the combined p-p and p-phon coupling (full line) and
the p-phon coupling alone (dashed line) versus pump power.
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FIG. 8. (Color online) Plot of the amplitude of the polariton
condensate.

We use the nonequilibrium GP (47) for CdTe MC polaritons
with a spatially structured pump rate of the form

P (R,T ) = p0 tanh

(
T

t0

)
exp

(
−

√
x2 + (εy)2 − (εr0)2

w2

)
,

(55)
where r0 �= 0 for ring excitation and ε = 1 for excitation
profiles with circular symmetry. For the numerical solution
of the nonequilibrium GP equation we use a split step Fourier
transform method. As initial conditions we assume an empty
reservoir and an infinitesimally small order parameter with a
white noise fluctuating amplitude and phase. The switching-on
time is taken to be t0 = 10−2 ps with a radius r0 = 5 μm for
ring excitations and the width is w0 = 0.34 μm similar as in
the experiments [15]. Separating again phase and amplitude of
the condensate wave function ψ = |ψ |eiφ , we find as shown
in Fig. 7 for ring excitation the mean condensation density
for the combined p-p and p-phon coupling (full line) and the
p-phon coupling alone (dashed line) versus pump power. It is
seen that the quadratic p-p scattering between the reservoir and
condensate lowers the threshold and increases the condensate
density substantially, although it alone is not sufficient to
reach condensation. Next we present in Fig. 8 the spontaneous
structure formation in which the condensate on the ring breaks
up into an eightfold lobe structure. Similar structures have been
found both in the experiment and the simulation by Manni
et al. [15]. The corresponding plot of the phase varying from
−π to +π is shown in Fig. 9.
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FIG. 9. (Color online) Plot of the phase of the polariton
condensate.
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FIG. 10. (Color online) Plot of the reservoir exciton density.

Finally, Fig. 10 shows for reservoir exciton density only
a weak modulation due to the back action of the structured
condensate. The dynamics of the condensation is shown
in Fig. 11 where the condensate density and the reservoir
density are plotted versus time. One sees an initial overshoot
of the reservoir density over its stationary value which is
reached after the condensation is established again with
an overshoot and some relaxation oscillations. The delay
between the formation of the populations of the reservoir
and of the condensate is in the experiment much smaller than
the calculated delay of 1 ns. Here the relatively inaccurate
description of the reservoir in the initial time period during
and immediately after the switching-on of the laser excitation
shows up. In this period the description in terms of only x
bosons which are furthermore assumed to be in a thermal
equilibrium is too simple a picture. Another reason for the
delayed condensate formation is the fact that we did not give
a full stochastic description with Langevin fluctuation, but
include noise only in the initial condition. Mainly to avoid
a retarded condensation the concept of a second reservoir
of inactive excitons was introduced [18]. Whether the above
derived temperature rate equation can also be important in this
respect has to be left to later investigations.

For the pattern formation a sufficiently large value of the
nonlinear shifts ImSx-c

p-pN
2
x + ∑

i=a,LO ImSx-c
i-phNx is of crucial

importance. One may wonder why a shift proportional to
Nx contributes to structure formation based on a nonlinear
GP equation. However, one should keep in mind that if
Nx is eliminated in the GP equation, a nonlinearity in
|ψ | results, as discussed above. By numerical variation
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FIG. 11. (Color online) Plot of the reservoir exciton density
(dashed green line) and the condensate density (full blue line) versus
time.
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FIG. 12. (Color online) Plots of amplitude (left, blue) and phase
here called � (right, red) versus the rotational angle φ at a radius of
4.5 μm at which the amplitude peaks occur in Fig. 8.

we found that for structure formation the dispersive shifts
had to be larger than �|ImSx-c

p-p| � 0.8 × 10−6 meV μm4 and
�|ImSx-c

a-ph| � 0.9 meV μm2. The crucial role of the phase in
pattern formation can also be seen from a plot of amplitude
and phase versus the angle φ at a radius at which the amplitude
peaks occur in Fig. 8 (see Fig. 12).

While the condensate density varies relatively smoothly,
the phase shows sharp changes with spikes at the end of the
phase walls as is typical for solitary structures.

In conclusion we have derived by quantum kinetic tech-
niques the nonequilibrium Gross-Pitaevskii equations for
condensed exciton polaritons in microcavities. As originally
proposed by Wouters and Carusotto [10] we get a nonlinear
Schrödinger equation with gain and loss terms and a quantum
Boltzmann equation for the excitons in the reservoir which
feeds the condensate by phonon-assisted and by particle-
particle scattering processes. The transition rates and the
corresponding shifts are evaluated explicitly for the mentioned
gain processes. Particularly the excitonic gain due to particle-
particle scattering is quadratic in the reservoir exciton density
which so far has been overlooked. We show how one can
formulate for reservoirs in local thermal equilibrium not
only a rate equation but also an equation for the time and
space dependent temperature of the reservoir. Simple analytic
expressions for the x-c scattering rate and the corresponding
shift are derived. We discuss under which conditions the
reservoir can be eliminated adiabatically in order to obtain
a Ginzburg-Landau potential for a nonequilibrium second-
order phase transition. Finally we apply our microscopic
model to illustrate that it can describe at least qualitatively
the spontaneous pattern formation observed and simulated
phenomenologically by Manni et al. [15].
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APPENDIX: PHONON SCATTERING

The frequency of acoustic (a) phonons ωa,k = csk with k =√
k2
|| + (π/Lz)2, where Lz is the quantum well thickness and

cs is the sound velocity. The interaction matrix elements are in
the long-wavelength limit given by

gx−ph
a,q = [GeLe(q) − GhLh(q)]

√
�q

2ρFLzcs

. (A1)

Here, Ge and Gh are the electron and hole deformation
potentials, respectively. ρ and cs are the density and longi-
tudinal sound velocity. Lz is the quantum well thickness. The
superposition integrals of the x wave functions and the phonon
plane wave

Li(q) =
[

1 +
(

miqa0

2(me + mh)

)2
]− 3

2

. (A2)

Similarly the interaction with LO phonons ωLO,k = ω0 is given
by the matrix element of the Fröhlich coupling

g
x−ph
LO,q = [Le(q) + Lh(q)]

e

q

√
�ω0

FLz

(
1

ε∞
− 1

ε0

)
. (A3)

ε∞ and ε0 are the high-frequency and static dielectric
constants.

Next we discuss briefly the inter-reservoir scattering of the
excitons with acoustic phonons. The scattering rate is for a
nondegenerate x gas for emission and absorption of an acoustic
phonon:

ra
k = −2π

�

∑
q,±1

gx-ph,2
a,q (fk − fk−q)δ(εk − εk−q ∓ �ωa,q)

×
(

na,q + 1

2
± 1

2

)
. (A4)

Assuming a small deviation from the equilibrium distribution
with bath temperature f 0

k , we put fk = δfk + f 0
k and get

with detailed balance in equilibrium the relaxation time
approximation

ra
k 
 f 0

k − fk

τ a
k

with
1

τ a
k

= 2π

�

∑
q,±1

gx-ph,2
a,q

× δ(εk − εk−q ∓ �ωa,q)

(
na,q + 1

2
± 1

2

)
. (A5)

Note that the particle conservation requires a k-independent
relaxation time, so that 1/τa

k has to be averaged over k in the
relevant momentum region:

1

τ a

 1

Nx

1

F

∑
k

f 0
k

τ a
k

. (A6)
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