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Finite-frequency-dependent noise of a quantum dot in a magnetic field
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We present a detailed study for the finite-frequency current noise of a Kondo quantum dot in the presence
of a magnetic field by using a recently developed real-time functional renormalization group approach [C. P.
Moca, P. Simon, C. H. Chung, and G. Zarand, Phys. Rev. B 83, 201303(R) (2011)]. The scaling equations are
modified in an external magnetic field; the couplings and nonlocal current vertices become strongly anisotropic,
and develop new singularities. Consequently, in addition to the natural emission threshold frequency, hw = |eV|,
a corresponding singular behavior is found to emerge in the noise spectrum at frequencies Aw ~ |eV + B|. The
predicted singularities are measurable with present-day experimental techniques.
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I. INTRODUCTION

The study of out-of-equilibrium transport properties of
correlated quantum systems is certainly one of the major
challenges in condensed matter physics. Such correlated
systems often emerge in mesoscopic physics and molecular
electronics, and include, among others, real or artificial atoms
and molecules, attached to several electrodes, which are
typically set to different electrochemical potentials. Quantum
dots (QDs)—realizing artificial atoms—represent the most
basic building blocks of these devices. Once connected to
conduction electrodes, they behave as artificial impurities
interacting with the Fermi sea of conduction electrons on the
electrodes attached. QDs with an odd number of electrons,
in particular, realize artificial magnetic impurities, and thus
typically display a Kondo effect, one of the most paradigmatic
many-body phenomena in condensed matter systems.

Obviously, understanding time-dependent fluctuations in
such nonequilibrium systems is of major importance. In this
respect, the noise spectrum of a biased device is a very
interesting and important quantity since it provides informa-
tion on the dynamics of excitations on short-time scales. It
is only very recently that it became possible to investigate
high frequency noise and response functions in mesoscopic
circuits in the quantum regime, hAw > kpT [1-3]. Thanks to
progress in on-chip detection of high-frequency electronic
properties, exploring the nonequilibrium fast dynamics of
correlated nanosystems is now accessible, though experiments
are delicate since they involve frequencies in the 30—100 GHz
range [4]. In recent experiments, in particular, high frequency
current fluctuations of a carbon nanotube quantum dot in the
Kondo regime have been measured, by coupling the QD to a
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quantum detector via a superconducting resonant circuit [5].
Strong resonances have been observed in the emission noise
for frequencies close to the bias voltage, in agreement with
theoretical predictions [6,7].

Compared to experiments, theory is still lagging behind,
and describing theoretically how such many-body states
behave under nonequilibrium conditions represents a major
unsolved challenge: though there are several approaches to
describe electronic transport through correlated mesoscopic
circuits [8—16], similarly to the approach presented here,
currently none of them is able to describe these correlated
states satisfactorily in all regimes of interest.

In this paper, we shall study the nonequilibrium noise
spectrum of a generic strongly correlated mesoscopic element,
a quantum dot. The description of time-dependent correlations
is particularly challenging in this system, the reason being that
the effective interaction between a QD and the conduction
electrons cannot be treated perturbatively, and an infinite
order resummation of the perturbative corrections is needed.
For a nonequilibrium system, however, this resummation is
especially complicated since the effective interaction does
not only display a singularity at the Fermi energy o ~ 0,
but also exhibits a singular structure whenever the transferred
energy is in resonance with the chemical potential difference of
the two electrodes, @ ~ |, — gl = |eVyp|. Simple-minded
resummations where the frequency dependence of the effective
coupling is neglected, cannot account for the aforementioned
fine structure, and more sophisticated functional renormaliza-
tion group schemes, similar to the ones used in Ref. [17]
must be developed. Within the latter approach, however,
the effective interaction becomes nonlocal in time, and the
definition of instantaneous current operators satisfying current
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conservation—and thus the computation of time-dependent
correlation functions—becomes a particularly delicate issue
[6]. It is probably for this reason that most calculations focused
so far on the zero-frequency (shot-noise) limit [18-23], and
finite-frequency results are rather limited [5,6,24-29].

In Ref. [6], we developed a current conserving real-time
functional renormalization group (RG) formalism, and have
shown that the somewhat intuitively derived equations of
Ref. [30] follow easily within this formalism. We have
shown that, similar to the effective interaction (vertex), local
measurables (in time) also develop a nonlocal character in
the course of the RG process. We then used this formalism
to compute the noise spectrum of a quantum dot in the local
moment regime [6] and compared that to the experimentally
measured noise spectrum, to find good agreement [5]. Notice
that our real-time FRG approach is different from the FRG
approach used by Metzner et al. [31] and Kopietz et al. [32];
similar to the real-time RG of Schoeller and Konig [33], we
work on the Keldysh contour, however, unlike the usual FRG
method, we perform the RG transformation on the bare action
and keep only quartic but nonlocal interaction terms.

Here, we intend to give a more detailed description of
the formalism presented in Ref. [6] and extend it to the
case where an external field is also present. Throughout this
paper, we shall focus most of our attention on the Kondo model,
where the external magnetic field B couples to the impurity
spin operator S,'

Hp = —BS*,

and the (unrenormalized) interaction is of a simple exchange
form,

Ho=s 3 Yiw WS 0ootir . ()

«o,BeL,R 0,0’

with ¥ the creation operator of an electron of spin o in lead
a € {L,R}, o the Pauli matrices, and the j,4 denoting dimen-
sionless exchange couplings. Nevertheless, our formalism is
very general and can be applied to any local quantum impurity
problem with a “quantum impurity” having some internal

quantum states, s € {1,...,Q} of energy E; and interacting
with the leads through the Hamiltonian
Hoo= Y > g 196" vl ©))
ik s,8

with i and k labeling conduction electron channels of different
chemical potentials, x; and g, respectively.” The fields ¥y,
(and ;) in the previous equations are constructed in terms of
quasiparticle operators,

Var = / Cao(E)e 17 g, 3)

"We consider the effect of a local Zeeman field. A field applied to
the conduction electrons has a similar effect.

2In the Kondo case, i is a composite label standing simultaneously
for spin and lead indices i = («,0).
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with a a short time (1/a a high energy) cutoff, and the operators
Cuo (€) destroying a quasiparticle of energy & + w,, in lead o
(of energy £ + p; in channel i in the general case).’

The nonequilibrium quantum impurity problems defined
by Egs. (1) and (2) constitute “hard problems” and do not
possess complete solutions yet. The Kondo problem, Eq. (1)
has, however, an exact solution under equilibrium conditions
[34,35] and is well-understood [36—38]. For a quantum dot, in
particular, the couplings j,g assume the simple form, j,z =
J vivg, with v, a complex two-component spinor of unit
length. The dimensionless coupling j generates a dynamical
energy scale, the so-called Kondo temperature*

14,
a

T[( ~

Below this energy scale the effective exchange coupling
becomes infinitely strong, and a local Kondo singlet is formed
[36]. Similarly, in equilibrium, the effective couplings gf,f/ of
the generalized problem, Eq. (2) would typically scale to strong
coupling below some Kondo scale provided that some of the
levels E; are degenerate.

Here, we shall not attempt to reach this strong coupling
regime [7], rather we restrict ourself to the weak coupling
regime, where either the voltage or the temperature, or the
Zeeman splitting is sufficiently large compared to Tx. Our
main goal is to investigate in detail the properties of the
correlation functions of the current operators in this so-called
“weak-coupling” regime and to determine the frequency-
dependent conductance of a biased device as well as its
emission/absorption noise spectrum and the symmetrized
noise, accessible through direct measurements of the noise
spectrum [2]. Particular attention shall be devoted to spin
relaxation processes, which are crucial to provide a self-
consistent cutoff to the singular structures. As we shall see,
in a two-terminal Kondo device, all noise components exhibit
interesting, singular structures at the thresholds @ = eV and
w = £|eV £ B|. The differential emission noise spectrum
dS™(w)/dV, in particular, exhibits a peak at w = eV [5,6],
which is then split in a magnetic field, as shown in Fig. 1, in
agreement with the recent independent results of Ref. [39].
Similar structures are predicted in the symmetrized noise of
the device (see Fig. 18).

The paper is organized as follows. In Sec. II, we introduce
the real-time functional renormalization group formalism, with
special emphasis on the construction of the Keldysh action
and the derivation the scaling equations for the couplings.
The current operator and the corresponding equations for
the current vertices are discussed in Sec. III. In Sec. IV,
we discuss the issue of decoherence in terms of the master
equation approach and present results for the pseudofermion
self-energy, while the result for the finite-frequency noise are
presented in Sec. V. We give the final remarks in Sec. VI.

3The operators ¢, (£) are normalized such that {c,, (5),cl,a,(é§’)} =
80{0{’800’8(& - é’)

“*The prefactor in the expression of T is not universal, and depends
on the exponential cutoff scheme in Eq. (3). We determined it from
the RG equations by identifying the energy at which the renormalized
couplings diverge.
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FIG. 1. (Color online) Voltage dependence of the differential
emission noise, dS7,;(V,T =0)/dV at a constant frequency, w =
40 Tk for various Zeeman splittings B. All energies are measured in
units of the Kondo temperature, Tk . In the upper figure, the spin decay
time has only been incorporated when computing the current vertex
renormalization, while in the lower panel, a finite pseudofermion
lifetime has been used to compute the diagrams in Fig. 14.

II. THE REAL-TIME FUNCTIONAL RENORMALIZATION
GROUP APPROACH

In this section, we shall present in detail the real-time
functional renormalization group (RTFRG) we have developed
in Refs. [5] and [6]. First, we discuss how our functional RG
formalism is constructed on the Keldysh contour and show
how the RG equations of Ref. [9] can be derived within this
formalism. Then, in the next section, we discuss how the RG
equations can be extended to the current vertex (Sec. III B).

A. Keldysh action

For the nonequilibrium physics discussed here, it is most
convenient to work with a path integral formalism on the
Keldysh contour. This approach allows one to incorporate
retardation effects in a natural way, and does not suffer from the
restrictions of a Hamiltonian theory, where the renormalized
theory is local. In this approach, fermionic fields are replaced
by time-dependent Grassmann fields living on the Keldysh
contour, wjm(t) — WM,(Z), (z € K). As usual, the branches
z — tg =t £ i6 of the contour are labeled by a Keldysh label
k = 1,2, and they represent forward/backward propagations
in time.

The dynamics of the systems is determined by the Keldysh
action,

S= Slead + Sspin + Sint' (4)

The terms Sicaq and Sgpin describe the conduction electrons
action and the spin action in the absence of interaction. They
are quadratic in the fields and determine the noninteracting
Green’s functions (see below).

The part Sy describes the spin, which we represent using

Abrikosov’s pseudofermions [40] as St — %Zm/ f;ajs, fy

with the pseudofermion operators fj satisfying the constraint
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>, £ f, = 1. Correspondingly, in the path integral language,
the spin part of the Keldysh action simply reads

San = [ NGB YIC TG

which can also be expressed in terms of the Keldysh labels «
as

Spn=3 /_ T Y T i+ 500 [P0, ©)

with the sign s, being s, = + for the upper («x = 1) and
lower (k = 2) contours. Here, the chemical potentials A; =
Mo + sB/2 account for the splitting of the two spin states,
s = =, but they also act as Lagrange multipliers to implement
the constraints, and allow us to separate in the Xy — 00
limit the contribution of the states satisfying ) fj fi=1
The actions (5) and (6) determine the four pseudofermion

correlation functions F’" and FS2 depending on the choice
of the Keldysh branches « and «’ (see Appendix). The
time-ordered propagator, e.g., is given by the “11” component,
Fl{(1) = F!'V@),

FIO @0 = —i( {00 F, O)s,, = —ilT O £O)

~ —i e (O) — e PHO)), (7

with 7, denoting the time ordering and ©(¢) and O(t) = 1 —
©(¢) the forward and backward step functions, respectively.

The interaction part of the action, Siy, is initially local in
time. However, as we shall see, the elimination of high-energy
degrees of freedom—implemented in our scheme by rescaling
a in Eq. (3)—generates retardation effects in the course of the
RG procedure and the interaction becomes therefore nonlocal
in time. We therefore replace the Kondo couplings by some
time-dependent vertex functions, gZ;'E‘T,S,(t), which depend on
the incoming and outgoing electrons’ spin and lead indices
and on the pseudofermion spins, and write the interacting part
of the action as

Su=Y 33 / d di’ s, 257 (1 — 1)

K ad'co’ s,s’

X FODFID G Ope ) - ®)
Here, f = (¢t + t)/2, and the tensor function ggg?‘”'(z) collects

the various components of the Kondo couplings. Initially, the

couplings ggg;”/sl(t) are local in time and are given by

giif‘” @)= 4

In the absence of an external field, this SU(2) invariant
structure is conserved, ggéig,s/(t) — (gaa(1)/4) 05y - 050,
and it is enough to keep track of just four functions, gy ()
[see also Eq. (18)].

The structure in Eq. (8) can be justified by observing
that the spin evolves very slowly at electronic time scales
and interacts only weakly with the electrons. Therefore its
time evolution can be well approximated by that of a free
spin (pseudofermion). In contrast, conduction electrons have
fast dynamics, and their scattering on the slow impurity

©))

Os5 " 0o’ 80) .
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FIG. 2. Components of real-time Feynman diagrams. Electron
and pseudofermion propagators are denoted by continuous and
dashed lines, respectively. Incoming and outgoing electrons carry
Keldysh (k), spin (o), and lead (o) quantum numbers, while
pseudofermions carry only Keldysh and spin (s) labels. The nonlocal
vertex g(‘l’;;“,x,(t) is indicated by a filled circle. The time argument
of the pseudofermion is # = (¢ + ¢’)/2. Finally, the current vertex is
labeled by three time arguments: the time ¢ of the measurement, and

the times #; and 7, of the incoming and outgoing electrons.

’

spin induces retardation effects which become more and
more pronounced as one approaches smaller and smaller
energy scales or, equivalently, long-time scales. These are
precisely the effects we want to capture within our formalism.
Technically, this implies that we need to keep the time
arguments of the electron fields v, () and ¥, (¢'), while we
can eliminate the time evolution of the pseudofermion fields
using their bare real-time evolution, f;(t) &~ e~ f,(t")
for short time differences. From a diagrammatic point of view,
we can represent the interaction term (8) by a nonlocal vertex
diagram, depicted in Fig. 2.

Notice that the couplings in (8) do not have a Keldysh
label, and that all fields live on the same branch of the Keldysh
contour. This is obvious for the bare action, but this structure
is also approximately maintained by the renormalized action
as long as only singular terms are summed up (see Sec. II B).

Finally, the term Sje,q describes the electrons in the leads
and generates the noninteracting Keldysh Green’s functions
of the fields V., (t). At T = 0 temperature, e.g., a simple
calculation yields for the time-ordered and greater propagators

Glpiior (1) = =i (T Ve (DO} (0))
_5aa’8aa’e_iﬂat
t —ia sgn(t)

G ) = —i (Yo (OY}(0))
_Saa’aaa’e_iuur

t—ia

= Saa/aaa’Glzy(t) =

= 80{01’800’G2(t) =

The other electronic propagators are given by similar expres-
sions and are listed in Appendix.
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B. Derivation of the RG equations for the couplings

Let us now turn to the derivation of the RG equations.
In this section, we shall proceed by using Wilson’s RG
approach within a path integral formalism [41]: we gradually
increase the time scale a — a’ thereby eliminating high
energy electronic degrees of freedom, and compensate for
the reduction of the cutoff 1/a — 1/a’ by renormalizing the
vertex function g(¢) — g’'(¢).

To determine the renormalization of g(¢), let us assume an
interaction vertex of the form (8) and expand the functional

Z= /DfD?/DwDW 'S

in Sjy. The contributions of nth-order diagrams can be
evaluated using Wick’s theorem, and can be represented by
Feynman diagrams. The diagrammatic components are shown
in Fig. 2.

It is relatively easy to see that, as a result of the structure
of the pseudofermion Green’s functions listed in Appendix,
each pseudofermion loop contains at least one exponentially
small pseudofermion propagator, ~e~#*, since for any time
configuration it involves at least one of the three propagators,
F=(t), Fi(t < 0), or F, S’ (t > 0). The physical subspace, how-
ever, corresponds to having exactly one pseudofermion, which
has a probability P, =) e P%_ In fact, when computing
physical quantities, the contribution of every diagram must be
normalized by this probability, while the chemical potential
of the pseudofermions is taken to infinity, A; — oo. Thus the
physical subspace ) fj fs = 1 corresponds to diagrams with
a single time-ordered pseudofermion loop.

It follows by the same argument that, upon integration
over all time arguments of a given diagram, only those time
configurations give a contribution where the pseudofermion
lines are time ordered along the Keldysh loop (see Fig. 3).
The pseudofermion fields thus lead to an effective time
ordering along the Keldysh contour. The contribution of all
diagrams in Fig. 3 is thus proportional to ~e~#* which
is, as explained above, proportional to the probability of

FIG. 3. The physical subspace fj fs =1 corresponds to
diagrams with a single time-ordered pseudofermion loop.
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having exactly one pseudofermion available. Of course, time
ordering is automatically performed by the ® functions in the
pseudofermion propagators, upon integration over all internal
time arguments of a given diagram.

Let us now investigate the effect of changing a — a’ =
a + éa. In a given nth-order diagram, we need to perform 2n
integrations over some times on the upper and on the lower
contour. However, under the rescaling a — a’ the value of
the integrand changes substantially only when two of the
contracted time arguments of the fields ng), say t; and f,
happen to be close to each other, |t,| = |t; — ;| ~ a,implying
that all time arguments of the two corresponding vertices must
also be close to each other. This is obvious from the structure
of the fermionic Green’s functions, which change only locally
upon rescaling a — a’. The change in GL(f; — 1) is, e.g.,
approximately equal to

da sgn(t12)

(1 — ia sgn(112))’

at T =0 temperature, and decays asymptotically as
sgn(tip)/ t122. Similarly, the rescaling of any other electronic
Green’s function gives a short range contribution in time.
Therefore we can safely assume that the typical distance
of t; & 1, from the time arguments of all other vertices is
large compared to |t; — t»| ~ a. Under this assumption, we
can integrate over contracted local time arguments, #; and #,,
and compensate the change (Sij"/) by adding a corresponding
interaction term to the action.

Let us now focus on two vertices as being part of a big
diagram containing n > 2 vertices. Using Wick’s theorem,
we can write the contribution of these two vertices as a
sum of normal ordered operators (which contain fields f, f,
¥, ¥ to be contracted with external vertices) multiplied by
certain internal contractions. Typical contractions are sketched
in Fig. 4. We only show those contractions that contain at
least one v contraction, since only these contributions change
upon rescaling a, and therefore only these diagrams can give
a contribution to the renormalized action, at least in leading
order in a. Furthermore, as a basic principle, we shall keep
only those diagrams that do not vanish in the equilibrium
limit, B — O and pu; = ug.

We have the following four classes. (a) Diagrams with a
single ¥ contraction. Such diagrams do not give a contribution
for the following reasons. If one of the vertices is on contour
« = 1 and the other on contour ¥ = 2, then its change is pro-
portional to SGE(II — 1) ~ 1/(t12 i a)*>. The strength of this
correction can be estimated within the local approximation,
g(t) — g 8(t), whereby one replaces the fields ¥/ (t) — ¥ (7)
and ¥ (t') — ¥(7), and integrates over the internal variable,
t12. This procedure yields a vanishing contribution. If, on the
other hand, the two vertices are on the same Keldysh branch,
then at least one pseudofermion leg of the two vertices must
be connected. This follows from the observation that, to give a
nonvanishing (i.e., ~e~P%0) contribution, the time arguments of
the pseudofermions must be contracted to form an ordered loop
along the contour. Diagrams of type (a) can thus be ignored.
(b) and (b*) Diagrams with one pseudofermion line contraction
and one v contraction. These diagrams renormalize g, as
shall be discussed in detail below. (c) Diagrams with two
contractions. These diagrams account for the relaxation of

t ~ s —ilgt
SGa(l‘lz) ~ —ie 12
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PN

~

FIG. 4. Possible contractions of two vertices with time arguments
at a distance ~a. Contractions of type (b) and (b’) renormalize
the interaction, while contractions of type (d) renormalize the
pseudofermion propagators and account for spin relaxation. Crosses
indicate the logarithmic derivative with respect to the scaling
parameter a.

the spin’s density matrix, and incorporate information on the
Korringa relaxation. We shall neglect these diagrams, and only
keep track of the spin relaxation through the pseudofermion’s
relaxation [diagram (d)]. (d) Diagrams with two 1 contractions
and one pseudofermion contraction. These diagrams generate
a pseudofermion self-energy, and account for (at least part of
the) spin relaxation.

Let us now focus on the vertex renormalization, i.e., on the
family of diagrams (b) and (b’) in Fig. 4. Depending on the
Keldysh labels of the two vertices, these give rise to 4 + 4
diagrams, as shown in Fig. 5. As an example, let us discuss
the first diagram (diagram (1) in Fig. 5), on the upper Keldysh
contour. By rescaling a, we generate the following term in the
effective action:

—iSf,fB:/dtdt’ > Z{

a,a' 0,0’ 5,5

> /dl‘l dir gog ™ (t — 1)

a,§5,6

x 8295 (1, — )8 Gly(ty — 1)
x F! B(r th—tr— r’)]efw' /2 e_“‘f’(lz_t)ﬂ}

x [ @ - B OY 1),
where 7 = (¢ + ¢')/2. In order to obtain this equation, we have
used the expansion

- t+t = ; /
f;n( : 1) ~ FO(F) =2 ang

f(,l)(t2 + t’) ~ f(l)(t—) o ik (=1)/2
s 2 s/ )

(10)
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(1) (1Y

FIG. 5. Possible vertex corrections. To leading order, only dia-
grams (1), (1’), (2), and (2’) contribute to vertex renormalization.
Crosses indicate the logarithmic derivative with respect to the scaling
parameter a.

which assumes a slow spin dynamics compared to that of the
electrons. We thus conclude that we can compensate for the
change of the Green’s function §G, in diagrams of type (1)
in Fig. 5 by renormalizing the interaction kernel g(¢) on the
upper Keldysh contour by

g0t~ )= 3 [ dndn gz e gl 1 - 1)

a,§,6

1
x 8§GL(t; — 1) F} |:§(t +t—th— t’):|

.)\s ’ .)\x’
X exp |:l ?(tl —t )i| exp |:—17(tz — t)] .
(11)

The contributions of the other diagrams can be treated
similarly. However, while diagrams (1), (1°), (2), and (2’)
lead to changes of time- and anti-time-ordered electronic
propagators ~sgn t1/(t1» & ia sgn t1,)?, integrating to a finite
value ~1/a, changing the electron propagators in diagrams
3), (3"), (4), and (4’) results in terms ~1/(t;» £ ia)?, and
integrate to =~ 0. Notice that in the latter four diagrams
the pseudofermion propagators do not contain ® functions.
Therefore these diagrams do not result in any interesting
renormalization. Put in another way, the parent diagrams of
(1), (1), (2), and (2°) (without the crosses) contain logarithmic
singularities associated with the contraction of #; and t,, while
the diagrams (3), (4), and (4’) contain no such singularity. In
the spirit of leading logarithmic approximation, where only
maximally singular diagrams are kept, we thus drop the latter
two sets of diagrams. Notice that within this approximation, the
generated vertex functions do not have oft-diagonal Keldysh
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e e

d l TR

FIG. 6. Graphical representation of Eq. (12). The derivatives with
respect to a of the electronic Green’s functions are represented by
crossed solid lines.

labels. Furthermore, one can show that the contributions
of diagrams (3) and (4) are identical to those of (1) and
(2), and therefore the structure of Eq. (8) is conserved by
the RG procedure. The renormalized coupling, g’ can thus
be expressed as g’ = g + 8g, with §g = 8gV + 5¢1", and
with 8g1(r — ') given by an expression similar to (11).
Introducing the scaling variable ! = In(a/a) and then dividing
dg by da/a = 51, we obtain an integro-differential equation for
the coupling g(t — t'):

d (t_t) 05058 650's' /
g— = Z/dl‘] dfz[glm (t—tl)g (t—1)

a@,§,6

al 2

ihs(1=1)/2 =ik (=1)/2

y G (1 _IZ)Fg <t+tl -1 —ﬂ)

X e

0§65 Gs; (T_S ’ 8Gfi(t1 - t2)
t8us (¢ —1)8s (22—t )T

x F! (’ +h 2— h—t > em;azt)/zem.«(nz’)/Z]

12)

This constitutes a complete integro-differential equation for
the vertex function with the boundary conditions (9). It can
be represented graphically as in Fig. 6. As we have discussed,
during the RG procedure one generates pseudofermion self-
energy corrections [diagrams (d) in Fig. 4]. The imaginary part
of these self-energy corrections corresponds to pseudofermion
decay, and is proportional to the spin relaxation rate (see
Sec. IV). Equation (12) thus incorporates spin relaxation
through the pseudofermion propagators F.

Fortunately, these somewhat cumbersome equations can
be further simplified by relatively simple approximations.
At T = 0 temperature, the pseudofermion propagator F! is
approximately given by

Pt t+H—t—1t
2

t+t—t—t . .
~—i® <%> emiit—n=OK2 (13

If we assume that typical electronic time differences involved
in the vertices are short compared to #; — t;, we can then
set t — f; and t' — t, in the argument of the ® function,
giving O(t; — t;). With this approximation, the exponential
functions can be regrouped and time integrals become simple
convolutions. In this spirit, we approximate F} as

bF! t+H—106—t
2

~ [th(fl _ tz)ei(tlftz)h]e*i(ﬂrtl*trt’))»f/2. (14)
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Writing furthermore G',(¢) as G,(1) = G(t)e "*«' and thus
separating its trivial chemical potential dependence, the
above integro-differential equations reduce to the following
differential equations in Fourier space:

os;a’s’(

d 8o’ w) 05565 )"ES 550’5 )‘*55’
O‘O‘T:Z[&m a)+7 8o w + >

5 )‘«55 )\S’E
XE;(w++—M&>j|, (15)
where the notation Agy = Ay — Ay has been introduced for the
energy splitting of the states s and s’. The cutoff function
87 (w) can be expressed here as

4 . 0G(t
Bl (w) = —/dt e'w’E;(z)e”*s—a‘}( ), (16)

This function, on the one hand, accounts for the finite band-
width of the conduction electrons, and cuts off contributions at
frequencies |w| 2 1/a. However, it also accounts for the finite
temperature thermal decoherence of the conduction electrons
at times ¢ > 1/7T, and furthermore, also incorporates the
effect of spin relaxation processes through the pseudofermion
propagator F'. For most practical purposes the detailed shape
of this cutoff function is not very relevant, and for practical
purposes it can usually be replaced by a simple function

B (w) ~ B[1/a — (0* + T, (17)
with ' =I'(a) a spin relaxation rate that we determine
self-consistently (for details, see Sec. IV). The validity of
these latter approximations can be checked against the solution
of the full integro-differential equations (12). We emphasize
that relaxation processes play an important role since even at
T = 0 temperature a finite bias voltage can generate a large
intrinsic spin relaxation, I', which regularizes the logarithmic
singularities. The scaling equations (15) are valid in the
presence of the external magnetic field which enters through
the pseudofermions energy A, = Ao — sB/2, (s = £1). At
the same time, they are identical to the equations obtained
in a more heuristic way in Refs. [42] and [30]. However,
in our real-time functional RG formalism, the derivation is
rather straightforward and the approximations made are better
controlled.

Notice that the usual poor man’s RG procedure can be
recovered by the local approximation, i.e., by dropping the
time dependence of g, and replacing the generated nonlocal
couplings by local ones, g(t) — 46(¢) fdt g(t), which cor-
responds to assuming frequency independent couplings in
Eq. (15).

In the absence of an external magnetic field, all couplings
are of the form

os;o’s’

8o (18)

1
@)= 3 0ss " Oog’ gmx/(t) s
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the terms A,y identically vanish, and and the renormalization
group equations simplify to

% =Y 800 @) gow @) By (@ —pa).  (19)

We determine the renormalized couplings by solving
Eq. (15) [or Eq. (19)] numerically, while taking into account
the spin decoherence rate [see Sec. IV and, particularly,
Eq. (34)]. As discussed in the introduction, the initial couplings
Jap can be parametrized in terms of a single dimensionless
coupling, j, and a spinor v,. It is convenient to choose a
suitable gauge so that v, is real, and can be parametrized in
terms of a single angle 6, as {v,} = {cos(6/2), sin(6/2)}. In
terms of this, the matrix j,g becomes

: Jir  JLR [ cos*§ cos § sin §
1= ke re) =7 \cos 2 sin 8 sin2® |- (20)
2 S 2

The value 6 = /2 corresponds to symmetrical coupling to
the left and right electrodes, while for 6 = and 6 = 0 the
quantum dot is decoupled from the left and right electrode,
respectively.

Typical results for some of the components of the matrix
g(w) are displayed in Fig. 7. The rescaled couplings display
strong features (logarithmic singularities in the absence of
decoherence) at frequencies of the order of voltage drop
between the external contacts, w = £V /2. The effect of the

oz —_V=50T,
__.V=100T
0.18t 6 =m/2 .
. V=150T,
- 0.16 L.V=200T,
<.,0.14
—n
=0.12
0.1
0.0 : -
2200 -100 0 100 200
w/TK
0.2 , T —0=n/2
V = 2007k ---0=m/4
0.15} _ 6-m8
3 M
=, O.1¢ 1
-
> ,"
0.05}
L o -
-200 -100 0 100 200
w/TK

FIG. 7. (Color online) (Top) The frequency dependence of the
gzzm(w) component of the coupling matrix for different voltage
biases. The magnetic field is set to zero. (Bottom) The frequency
dependence of the same component for a fixed bias V = 200 Tk, but
for different 6. Spin relaxation has been incorporated self-consistently
(see text).
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-100 0 100 200
UJ/TK

FIG. 8. (Color online) The frequency dependence of the nonzero
components of the coupling matrix in an external magnetic field
B =20 Tk. The voltage bias is fixed to V = 200 Tk .

asymmetry on the renormalized couplings is shown in Fig. 7.
Notice that for strong asymmetry (6 = 0 or &), only the peak
associated with the Fermi surface of the more strongly coupled
electrode survives, while the other is almost washed away.
The effect of the magnetic field on the renormalized couplings
is presented in Fig. 8. The longitudinal couplings gg5* ()
develop peaks at w = £V /2 — o B, while the transversal
ones gog’’(w) develop peaks at at +1/2(V + B). Notice
that the decoherence rate I" prevents the flow from running
towards the strong coupling regime. Therefore the peaks in
the renormalized couplings get slightly broader and partially
suppressed.

III. SCALING EQUATIONS FOR THE CURRENT
VERTEX OPERATOR

A. Current and noise definitions

Having established the RG equations for the interaction
vertex, let us now turn to the definition and renormalization of
the current operator. The current operator can be constructed by
exploiting the equations of motion, and take on forms similar
to Egs. (1) and (2). In the Kondo model, one trivially finds

A A e 4
1L(t) = —Ir(r) = Z Eviﬁ S@) - Y (Do pp(t),  (21)

ap
with the time arguments indicating Heisenberg operators.

Here, for simplicity, we suppressed the internal spin indices
and expressed the current vertex matrices as

0 —ijLR
L = vk = . 22
A% v v (ijLR 0 ) (22)

In the Kondo model, current conservation is satisfied at the op-
erator level, ;. (t) = —Ig(t). For the general Hamiltonian, (2),
the equation of motion amounts to a similar expression of the
form,

hy= 3" e I Xow OV v (). (23)

with the X,y (¢) denoting time evolved Hubbard operators,
|s)(s’|, and the current vertices given by

WO = —i Bk — S )L, . (24)

PHYSICAL REVIEW B 89, 155138 (2014)

Having the current operators at hand, one can then define
the various current-current correlation functions. The “bigger”
and “lesser” noise correlation functions are defined as

Sq(t.t') = (I,(t) Ig(t")) and (25)

o)) = (I (1) Ip(0), (26)

while the symmetrized and antisymmetrized noise components
are given by

Sop (11) = 3{[o(0)  Tp(t)]), @7

with [...,...]s+ denoting anticommutators/commutators, re-
spectively. The Fourier spectra of these are directly accessible
through noise measurements. The spectra of S<(w) can be
measured by emission or absorption experiments [43,44],
while the symmetrized noise is accessible through standard
ac noise spectroscopy. [2,45].

B. Current vertex scaling equations

Having established the RG equations for the interaction
vertex, let us now turn to the renormalization of the current
operator. To compute the current-current correlation functions
(26) and (27) within the path integral formalism, we first
express the current operators I, in terms of Grassmann fields
on the Keldysh contour, I, — I). Representing the spin
operators using pseudofermions, we obtain

N e -
L= 100="3 v P f7©

ada’'co’ss’
X YO0 oo Vg (1) (28)
Introducing then the corresponding generating functional,
21 0)] = (e Tea TS UHIOLO) (29

all current-current correlation functions can be generated by
functional differentiation with respect to h,/(¢).

Unfortunately, however, similar to the interaction vertex g,
the current vertex becomes nonlocal in time upon rescaling
a — d’, and therefore Eq. (28) only holds for the unrenor-
malized (bare) current operator. Also, though the current
vertex is initially obviously related to the interaction vertex, its
generated time structure turns out to be very different from that
of the interaction vertex and, as we show later, it necessarily
acquires the following form under the RG

nn=ey /dtl dty (VEYS7S (1 — 1,1 — 1)

Xﬁ(t)fs’(t) : &aa(tl)wa’a’(h) (30)

with the initial condition that for the bare theory, a = ag
(VO (r1.12.00) = 38(11) 8(12) vEy 000 Ssy. (31)

The structure (30) follows from detailed derivations, however,
heuristically one can argue that this structure is needed to keep
track of the time of measurement t in addition to the times
where the incoming and outgoing electrons are scattered, #; and
1 (see the Feynman diagrams in Fig. 2). Although the current
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vertex still has a four-leg structure, just as the vertex, due to
its double time dependence it can no longer be identified with
the coupling vertex. Therefore we represent it by a different
diagrammatic symbol, depicted in Fig. 2.

To investigate how the current vertex is renormalized, we
follow a strategy similar to that of Sec. II B. We expand the
generating functional (29) simultaneously in the field h(a")(t)
and also in the interaction kernel g(#). Again, similar to Sec. II,
we find that changing a — @’ changes only the contributions
of those diagrams and those configurations, where (at least)
two contracted fields are close to each other, |t} — 5| ~ a.
The contractions of the electronic fields appearing in a current
vertex can then be classified similar to Fig. 4, and one can argue
that only contractions shown in Fig. 9 must be considered,
with both the current and the interaction vertex lying on the
same branch of the Keldysh contour. Notice that the current
and the coupling vertex are not equivalent and therefore do
not “commute” when placed on one of the branches of the
Keldysh contour. Therefore the number of diagrams for the

J

dV‘”‘”t—tr—t . AGL(t; —t t+t
( ) Z /dtl dn, [gZé”(t—n)Vai’j’”(tz—t,t—t’) all 2)Ff( :

dl

il
e
=Y

0565
+ 8aa

+ VT =T - 18l St —

+ VIS (= FF—1)g05 (1 — 1

(t—tl)Vf”‘”( —f,f—
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D)W e e
N S

FIG. 9. Diagrams renormalizing the current vertex. Crosses indi-
cate the logarithmic derivative with respect to the scaling parameter
a. Notice that the current and the coupling vertex do not “commute”
and the diagrams came in pairs. Each diagram corresponds to a term
in Eqgs. (32) and (33).

ai v
dl

upper branch of the Keldysh contour is four. These diagrams
are sketched in Fig. 9.

The RG equations of the current vertex can be obtained
following very similar lines as in Sec. II, and we obtain for the
left current vertex, Voo Y= =(vhHe o's’

. ;) oM tH11=2D)/2

al s 2

t/)aG(tz(fl —B) £ (f— I+ t) ok 412D/
ol $ 2

t/)aGfi(tl —h) Fi <l/ +h f) ik (=212
s
2

Again, following the same steps as in Sec. II B and approximating the cutoff function as in (17), we obtain

dvas;a’s’(w w/)

oo’

+ avuv(a)w +)\ss)g(;;gv <w/+

2

k] o508 )\‘S.S"
dl :—Z[gaés Y(“)_"_

al
t ’
,)8G&(t1 — 1) (- '+t poitglrir 2072 | 32)
al ’ 2
) asas(a)—’—)\’ss’w):‘s (a)—"_)\’SS I’L&)
25) &30 + s — o)
) a s'§ @
0§65 Asy &5;0'% =K
—8ui |\ @t 5 ) Vaw (@ A5y, @)E, (0 + A5y — a)
0565 Gs; (r K ’ )”Es —5 7
- Va&’ (a) o' + )\ss) 8aa W + 7 ‘:‘a(a) + Ay — /'L&) . (33)

This set of equations needs be solved parallel to the scaling
equations, Eq. (15) with the initial condition (31).

As we discussed before, though the renormalized couplings
g(w) drive the scaling of the current vertices, V(w;,ws,ap),
there seems to be no simple connection between these two.
In other words, it is unavoidable to introduce the renor-
malized current vertices within the functional RG scheme
to compute time-dependent current correlations. Very im-
portantly, the above extension also solves to problem of
current conservation: Eq. (33) is linear in V. Therefore, as
the bare vertices satisfy v, = —vy, the full vertices shall also
satisfy V. (¢,t") = —Vg(t,t") by construction, and therefore the
condition IEK)(t) + II(QK)(t) = (0is automatically fulfilled for any

(

value of the cutoff, a. On the other hand, we could not find any
systematic way to generate a current field from just the renor-
malized action, Eq. (8), such that it respected current conserva-
tion. The introduction of the current vertex and its RG equation
seem to be therefore unavoidable to extend the formalism of
Refs. [17,30] to compute time-dependent correlations.

Figure 10 displays the frequency dependence of the 11; 11
component for a fixed bias voltage, in the absence/presence
of the external magnetic field. Similar to the renormalized
couplings, the components of the current vertex display
logarithmic singularities in the frequency space atw = £V /2.
These singularities get shifted in the presence of the external
magnetic field.
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FIG. 10. (Color online) Frequency dependence of the current
vertex kernel VE ,Z;M(a)l ,w») for a fixed voltage bias V = 50 Tk, and
for magnetic field B = 0 (top) and 20 Tk (bottom). In the absence
of an external field it shows a logarithmic singularity at frequencies
hw ~ +eV /2, which is then shifted by the presence of the external

magnetic field.

IV. DECOHERENCE EFFECTS

Let us now turn to the important issue of decoherence.
Under nonequilibrium circumstances, a large bias voltage
necessarily entails a finite spin lifetime and related decoher-
ence effects, as also observed experimentally [5,46]. These
decoherence effects lead to a natural low energy cutoff for
the logarithmic singularities and the renormalization group
flow. In this section, we try to capture spin relaxation within
two different approaches. First, we use a perturbative master
equation method with renormalized couplings to determine
the voltage and temperature dependence of the Korringa spin
relaxation rate, I'g (7, V). Then, in Sec. IV 2, we compute the
pseudofermion’s relaxation rate, I'y¢(V,T). Both approaches
result in a consistent picture when combined self-consistently
with the RG scheme developed in Secs. I and II1.

1. Korringa relaxation rate: a master equation approach

In the perturbative regime, min{7,eV,B} > Tk, one can
investigate the relaxation of the spin by perturbation theory.
In this parameter range, spin-flip events are rare, and they can

PHYSICAL REVIEW B 89, 155138 (2014)

be treated as a Markov process [47]. The scattering events in
this Markov process are generated by the exchange interaction,
and consist of the scattering of an electron with spin ¢’ from
lead B into a final state of spin o in lead o, while flipping the
impurity spin from s’ to s. To leading order in perturbation
theory, the transition rate for such process y"fg‘”/, is given

by the simple Fermi golden rule expression

1ol jT . -
w2~ 5 [ 401 0w Sl ol 4 1) f5(@)
(34)

with f,(w) = f(w — uy) the shifted Fermi-Dirac distribution
for the electrons in the lead &, and f,(w) = 1 — f,(w). Notice
the shift in the energy of the conduction electrons by Ay =
—(s — s")B/2 in the argument due to energy conservation.
Within this simple master equation approach, it then follows
that the spin decays exponentially,

(S;) ccexp[—(I'y + 'yl (35)
with

freo'l
M= wly”

a,p,0,0’

and Ty= > ybe7m (36)

a,B,0,0'
This allows us to identify the Korringa relaxation rate
Fg(T,eV,B) =T + 1Ty, 37

as the relevant decoherence rate in the problem.

The integrals (34) can be evaluated analytically. In the
limit of large voltages, eV > T, B, e.g., 'k assumes a simple
analytical form:

eV
Tx(T.eV > B)~ T (j;, + jgg) + jireV coth (ﬁ)

+ O(B?). (38)

For large magnetic fields, on the other hand, B > eV, we
obtain

_ B .2 .2 .2 B
Ck(T.eV < B) =7 (jiL + Jjggr +2Jjig) coth 7

+O(eV?). (39)

It is instructive to express the Korringa rate in terms of the
anisotropy angle, 6, introduced in Eq. (20). In the limit when
one of the variables T', B, or V is much larger than the other
two we obtain:

nj*T (B,V — 0),
Tk = { imj%eV|sin’(@) (T.B — 0), (40)
37j|B| (T,V — 0).

These results agree with those of Refs. [12,48,49]. Notice that
the temperature and the magnetic field generate a decoherence
rate independent of the asymmetry, while the voltage-induced
spin relaxation rate depends on the asymmetry. This is not
so surprising since the current flowing through the device
is proportional to ~sin?(d), and is suppressed for a strongly
asymmetrical quantum dot. The Korringa rate in the large
voltage limit is directly proportional to this current and thus
strongly depends on the asymmetry 6.
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FIG. 11. (Color online) The voltage dependence of Korringa
rate for different temperatures and magnetic fields. The dashed
(blue) line represents the perturbative result: ['gx(eV > B,T) =
wleV|/4In?(leV|/2 Tx).

The previous results were obtained to lowest order in
the exchange coupling, jos. Higher-order logarithmic cor-
rections can be summed up perturbatively [48,49]. We can
estimate the size of these corrections by simply replacing
the bare coupling j with its renormalized value, j —
1/In(max(|eV|,|B|,T)/Tk). This approximation, however,
breaks down at V & 10 Tk. In order to approach the regime
V =~ Tk, the self-consistent incorporation of the relaxation rate
'k (V) is necessary [7]. In particular, in the FRG scheme we
follow Ref. [48] to express the running value of the relaxation

rate 'k (a) as
os;o's’ )\ss’
I'k(a) =27 Z Z/da) 8up a,w+ 2

X folw + )\ss’)fﬁ(w)-

afoo’ s#s'
The physical Korringa rate ' is then obtained by solving the
RG equation self-consistently with the cutoff function (17) and
taking the @ — 0 limit.

In Figs. 11 and 12, we compare the voltage and temperature
dependence of the Korringa rates as computed perturbatively
and by the FRG method. Clearly, for V > Tk the perturbative
result gives a good estimate, but the result starts to deviate

2

(41)

20 : .
+ [—v=0,B=0
S 45l |---v=0.B=10T,
E " |- - Perturbative result
&
)
<
~
O "
10° 10’ 10°

T/Tx

FIG. 12. (Color online) The temperature dependence of the Ko-
rringa rate for V = 0. The dashed-dotted (red) line represents the
perturbative result: Cx (T > eV,B) >~ T/ lnz(T/ Tx).
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below V >~ 10 Tk, and for V ~ Tk a self-consistent calculation
of I'k is necessary. The physical explanation of the much better
performance of FRG is simple: approaching Tk the effective
exchange rate becomes large. This, however, generates an
increased spin relaxation rate, which then naturally feeds back
and provides a cutoff for the logarithmic divergency.

Notice that our real-time FRG results are restricted to the
region where at least one of the parameters 7', eV, or |B]|
is somewhat larger than Tk . Therefore the B = T = 0 FRG
curve in Fig. 11 (the V = B =0 FRG curve in Fig. 12)
should be considered wit a grain of salt for voltages |[eV | ~ Tk
(temperatures T ~ Tk).

2. Pseudofermion self-energy and lifetime

Within the FRG scheme, one often identifies the pseud-
ofermion relaxation rate I',r as the low-energy cutoff energy
of the scaling [50]. Although this energy scale—being related
to the lifetime of a slave particle—has no direct physical
meaning, neverheless, it appears naturally in the FRG scheme
[see Eq. (17)], and is directly related to the spin relaxation
rate. The rate Iy can be most easily defined as the imaginary
part of the retarded pseudofermion self-energy, which can also
be expressed in terms of the bigger and lesser pseudofermion
self-energies as

Ty = ZEZ Jim (27 (@) = 27 (@), 42)

The second-order FRG diagrams for Esg are shown in
Fig. 13. The leading-order (perturbative) expression of 'y
can be obtained by using the bare exchange couplings,

=% /dw|S§s,

o,pB i,s,s

2 Japl? Fo(@) ful — Ay

(43)

Evaluating Eq. (43) in the asymptotic limit, when again one of
the variables 7', V, B is much larger that the other ones, we find
that FI()?) =(3/8) 1“5?, with F(,?) the leading-order expression
of the Korringa rate, Eq. (37).

The complete expression of the running rate, I'y(a) is
somewhat involved, and can be expressed as

T os;0’s Ass'\ 7 o's'ios
[pe(a) = ) Z Z/dwgaﬁ’ <a,w— %) Jp(@) 8gy

afoo’ ss’

)\ss’
X <a,a) — ) Jalw — Agy).

(44)

2

FIG. 13. Second-order diagrams for the Keldysh components of
the self-energy. In (a), we represent X~ (¢), while in (b), X<(¢) is
diplayed.
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Similar to I'g, the renormalized rate I'yr can be obtained by
solving the RG equations self-consistently [now using I'pe(a)
as a cutoff], and then taking the a — 0 limit.

It is a delicate problem by itself to decide which of the
two rates, I'x and I'pr should be used as an infrared cutoff.
This issue has been discussed in detail in Ref. [48], by doing
pertubative calculations up to third order in j. This analysis
shows that in the expression for the conduction electrons T
matrix, e.g., several logarithmic singularities emerge which
are cut off by different rates. Since I'x and I'y¢ differ only by
a numerical prefactor of order 1, here we shall not distinguish
them and we choose to use the physical spin relaxation rate
'k as an infrared cutoff, similar to Ref. [9].

V. FINITE-FREQUENCY NOISE

As mentioned earlier, the current operator, fa(t), does
not commute with itself at different times, and therefore,
several different current-current correlators can be defined (see
Sec. IIT A). Emission and absorption noise measurements, e.g.,
give access to the “bigger” correlation function,

Sep(@) = [ Z dt "' Sz4(t) (45)

with S(jﬂ(t) defined in Eq. (25). The spectrum S;ﬁ(a)) is in
general a complex, not symmetrical function in frequency. As
discussed in Ref. [45], S7(w) can be interpreted as the rate by
which the system absorbs (w > 0) or emits (w < 0) photons of
energy |hw|. While usual amplifiers measure a combination of
emission and absorption processes, using a quantum detector
gives the opportunity to measure separately the emission and
absorption noise. Depending on whether photons are emitted
or absorbed by the quantum detector, one can thus measure
the w < 0 (emission) or the w > 0 (absorption) part of S~ (w)
(511,

Sep/ (@ > 0) = S3(w). (46)

Time-dependent current-current correlation functions may
depend not only on the way noise is measured, but also
on the precise spatial location (electrode) where currents
are measured. In our case, however, current conservation
[Eq. (23)] guarantees that it is enough to focus only on one
noise component, say SEL, as all the other ones are trivially
related to it,

SZe(@) = —SZ(w) = S5 () . (47)

We shall therefore focus on S?L in what follows.
A real-time diagrammatic representation of the noise
correlation functions, Egs. (25) and (26) is presented in Fig. 14.

FIG. 14. Diagrams for the noise components. S~ (¢,t") is repre-
sented in (a), and S=<(z,t’) in (b).
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. > . . .
Using Eq. (30), the spectra S5, can be obtained via Fourier
transformation

2
Sii(w) = f—6 Yo Y. /

aa'oco’

do Ve @ ,ay)

X G (@) Vs T (@1.0-) Gg(@-),  (48)

ez os0's' f~ ~
=L T & fasv e

aa'oco’

X G (@) Ve 7 (@1.0-) G (@-) . (49)

with &L =&+ w/2 + Ay /2, Gf (w) the electronic Green’s
functions, and p, the probability of the spin (pseudofermion)
being in state s. These latter are computed self-consistently in
terms of the transition rates, I'y, by solving the detailed balance
equation, paI'y = pyT'y.

A. Emission noise spectra

In the experiments of Ref. [5], one measures the emission
noise of a nanocircuit at a fixed frequency, w, as a function of
the bias voltage, S*™(w,V). In Fig. 15, we therefore display

20 :
hw = 40Tk B=0
10
fuw
o ,
B =101k B < hw/2
< 10t hw-B
= hw ~hw+ B
=
= 20 ~ : :
N B = 30Tk hw/2 < B < hw
3
N

10 hw+ B
hw B\
OO 40 80 120
QV/TK

FIG. 15. (Color online) Voltage dependence of the emission
noise S;7(w) for a fixed frequency, w = 40Tk, and for different
values of the magnetic field. The arrows indicate the positions of the
kinks in the spectra.
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(a) hw
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Tuw (c) hw

eV 4+ B > hw

FIG. 16. Basic photon emission processes.

the zero-temperature voltage dependence of the QD’s emission
noise at a fixed finite frequency w = 40 Tk for various external
magnetic fields. The spectra develop kinks (appearing as sharp
steps in dS™/dV, as shown in the introduction), associated
with the opening of various new photon-emission channels,
displayed in Fig. 16. These kinks can be understood as follows.

In the absence of an external field, B = 0, there is a single
kink (threshold), located at hw/e. Below this voltage the
energy gain of an electron passing through the circuit is not
enough to trigger photon emission. Above this threshold, on
the other hand, the emission noise exhibits a sharp increase
followed by a less steep, close to linear dependence at larger
voltages, V > Tx. The sharp increase close to threshold is
a manifestation of the nonequilibrium Kondo effect [5] and
amounts to aa peak inthe dS°™ /dV spectrum, as also observed
experimentally [5].

For small magnetic fields, B < hw/2 two more kinks
appear at V = hw £ B (see second panel of Fig. 15). These
can be understood as follows. For very small voltages, the
spin is polarized by the external filed (py =1, py =0).
Once the voltage becomes larger than the splitting of the two
spin states, B, spin-flip processes can populate the state ||}),
and py becomes finite. Therefore photon emission becomes
possible through spin-flip processes (shown in Fig. 16), once
the voltage reaches the threshold eV = hw — B. Conversely,
a new spin-flip scattering channel opens at eV = hw + B,
where the potential energy gain of an electron passing through
the QD is converted to a spin excitation and the energy of the
emitted photon [see Fig. 16(b)].

The situation explained in the previous paragraph changes
slightly, once the magnetic field becomes somewhat larger
that Aw/2 [see Fig. 16(c)]. In this case, p; remains zero
as long as eV < B. However, spin-flip emission becomes
energetically possible immediately once the voltage reaches
B and thus p; becomes nonzero, since in this case, the
voltage bias automatically satisfies the condition eV > B >
hw — B. Correspondingly, we recover three kinks at eV = B,
eV = hw,and eV = hw + B, the latter kink corresponding the
simultaneous photon emission and {} — | spin-flip process.
Finally, for B > hw, the location of the kinks remains the same
as for hw/2 < B < hw, but in this case emission starts at the
“optical gap,” huw.

Though the features discussed so far seem to be relatively
weak, experimentally one has access to the differential noise
spectrum, i.e., to the derivative of the current noise with
respect to the voltage, dS°™(V)/dV [5]. This quantity, already
presented in Fig. 1 displays much sharper features than S*™(V)

itself at every threshold, and should allow to identify each
process unambiguously.

B. Frequency dependence of S (w) and S$*(w)

So far, we only discussed the behavior of S~ (w) at a fixed
negative frequency (emission noise), as a function of external
voltage. The spectrum S~ (w) at a finite and fixed voltage
contains, however, more information since it accounts both for
absorption and for emission processes. The function S~ () is
displayed in Fig. 17 for various magnetic fields.

The structures on the w < O (emission) side can be
understood along lines very similar to the ones presented in the

80

60;

40}

20¢

80

601

40}

20r

SrL(W)/Txk [e?/h]

80

607

40}

20' eV B—eV

\ \/~—ev

2100 0 100

hew T

0
—200 200

FIG. 17. (Color online) Frequency dependence of the bigger
noise S;;(w) at T =0 and for different values of the magnetic
field. The arrows indicate the corresponding frequency at which weak
logarithmic singularities emerge in the spectra.
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previous section. Here, however, we need to distinguish only
two regions. For eV < B, the spin-down state is not populated.
Therefore, in this region, only photons with energy hw < eV
are emitted in a process where an electron is transferred
through the QD without spin flip. Correspondingly, in this
region, there is only an emission threshold at fiw = —eV
(see third panel of Fig. 17). For eV > B, on the other hand,
the spin |} state of the QD gets populated, and all three
emission processes of Fig. 15 become active. Correspondingly
a threshold is shifted to w = —(eV + B) and two more kinks
appear at frequencies hw = —eV and @ = —(eV — B).?

Understanding the w > 0 (absorption) side is much easier.
There, all three absorption processes are allowed (if the
photon’s energy is large enough), and correspondingly, three
kinks are always recovered at frequencies hw = eV and
w = eV + B|.

The structure of the symmetrized noise, measured by a
conventional amplifier is much simpler: since the symmetrized
noise is just a combination of the “bigger” and “lesser” noises
S*(w) = [S7(w) + S=(w)]/2, the kinks associated with the
thresholds of the various absorption and emission processes
appear now in it symmetrically at all three frequencies,
hw = £eV and w = +(eV + B) (see Fig. 18).

5Throughout this discussion we assume e¢V,B > 0.
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FIG. 18. (Color online) Frequency dependence of the symmetric
noise Sj,(w) at T =0 and for different values of the external
magnetic field as computed with the RTFRG.
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VI. CONCLUSIONS

In this work, we have developed in detail a real-time
functional renormalization group (FRG) formalism, originally
proposed in Ref. [6], and used it to study the finite-frequency
noise in a quantum dot, subject to an external magnetic field
in the local moment regime. We have shown that within a
systematic real-time FRG formalism, similar to the interaction
vertex, the current vertex necessarily becomes nonlocal in
time, and a RG equation must be constructed to account
for the renormalization of the current vertex. The structure
of our real-time RG scheme thus resolves the long-standing
problem of current conservation. Our approach sums up
all leading logarithmic contributions and is valid at any
frequency, w, voltage eV, or magnetic field B, provided
that max{w,eV,B} > Tx. As demonstrated in Ref. [5],
the present theory accounts well for the features observed
experimentally.

We have solved the FRG equations in Fourier space numeri-
cally, and computed the emission/absorption and symmetrized
noise spectra through a voltage biased QD. A very rich
behavior is found. In the differential emission noise of the QD
dS™(w,V)/dV (measured at a finite frequency w), logarith-
mic singularities appear at the thresholds, hw = eV and hw =
leV £ B, corresponding to the opening of spin-conserving
and spin-flip emission channels, and reflecting the presence
of the nonequilibrium Kondo effect. The experimentally mea-
sured peaks (anomalies) in the differential emission spectra of
Ref. [5], dS™/dV are thus predicted to split up in a magnetic
field into two or three singular features (steps), as shown in
Fig. 1. These results agree in large with the ones presented in
Ref. [39], where similar quantities were investigated by using a
somewhat different (and more involved) technique, formulated
in terms of a Liouvillian approach on the Keldysh contour.
Though the results (locations and general structure of dS/dV
anomalies, etc.) of the two approaches are rather similar,
there are, however, some differences, too, worth mentioning.
Maybe the most important difference between the method
of Ref. [39] and ours is the way the two formalisms treat
spins and spin relaxation. While our approach is based upon
a pseudofermion formalism, the computations of Ref. [39]
are carried out directly in terms of the impurity spin. A great
advantage of the pseudofermion approach discussed here is
that it allows a systematic and relatively easy computation of
the dynamical vertex function, and systematically incorporates
dynamical logarithmic corrections. Including spin relaxation,
however, is not entirely straightforward within this approach.
In a magnetic field in the z direction, e.g., the spin acquires
a finite expectation value, (S*(t)) # 0. Correspondingly, the
spin-spin correlation function (S$%(¢)S%(0)) does not decay to
zero, and its Fourier transform therefore contains a delta peak
at w = 0. As argued in Ref. [52], in equilibrium, this amounts
in the appearance of purely elastic scattering processes in a
magnetic field, originally absent for B = 0. At a finite bias,
if indeed still present, such elastic left-right charge transfer
processes could give rise to a sharp step in the dS/dV curves
at w = eV. Indeed, such a sharp step was found at w = eV
within the approach of Ref. [39] at T = 0 temperature, while
the other steps were found to be washed out due to spin
relaxation.
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Reproducing the previously mentioned finite step—if it
indeed exists—is far from trivial within the pseudofermion
approach. In its simpler form (where certain vertex corrections
are neglected), the pseudofermion method incorporates spin
relaxation only through the pseudofermion’s lifetime, and,
correspondingly, it predicts a broadened resonance even at w =
eV. In Figs. 15-18, for simplicity, we neglected the pseud-
ofermion’s lifetime within the pseudofermion loop of Fig. 14
and approximated it by a nondecaying spin relaxation function.
As shown in Fig. 1, incorporating the pseudofermion’s self-
consistently determined lifetime in this diagram gives a small,
but finite width to all steps in the dS/dV curves. One could,
of course, replace this loop—somewhat heuristically—by a
resumed pseudofermion ladder series (and thereby reproduce
the nondecaying part of the spin-spin correlation function),
but we preferred to present here a self-consistent framework.
Whether the finite jump at w = eV—obtained within a
perturbative approach of Ref. [39]—indeed survives in a biased
system is a rather nontrivial, intriguing question. Observing
it seems to be, unfortunately, beyond current experimental
resolution.

Finally, we should emphasize that the method presented
here is not only relatively easy, but also quite general. It
is not just restricted to a QD, but can be used for any
system with some localized degrees of freedom, coupled to
conduction electrons/leads via a Kondo-like coupling, Eq. (2).
It is thus straightforward to apply it to molecular singlet
triplet transitions [53], double quantum dots systems [54-56],
or side-coupled molecules [57], and a variety of strongly
correlated nanostructures.
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APPENDIX: GREEN’S FUNCTIONS

Evaluation of the path integrals gives automatically prod-
ucts of operators ordered along the Keldysh contour. Cor-
respondingly, the average —i(lﬂﬁ}(t)l/_fg;,(ﬂ))g, e.g., yields
the operator product —i(}[/aa(l)l/_fl,a,(l‘/)) =G ot —1).
Using the representation ¥, ()= fdé Cao (&) e"’(SJ“"C*)e_“'EV2
this immediately yields, e.g.,

G(ZI;) ) ,(t) =G>

0(0'0(0'()

= —i5aaf5ag/e_i””’/d§ e—a\é\ (1 - f(E)) e—igt‘

The integral can be carried out at 7 = 0 temperature and
yields a propagator ~—e~#«'/(t —ia). The other Keldysh
propagators can be determined similarly. They are all diagonal
in the spin and lead labels, G, (t) = 840800 G*(t), and

R oo, a'o’
are given at T = (O temperature by

e—i;l,al
GV =G =———,
t —ia sgn(t)
—i gt
G? =G ({1t=———
t+iasgn(r)’
G2 = G2(1) = _e_m.“l ’
r—1a
G(12) G ®) = eilﬂjﬂ .
t+1a

The Abrikosov pseudofermion Green functions are diag-
onal, F, (KK)(t) = 8¢ F*)(t), and can be computed similar
to the conduction electron propagators, by recurring to the
operator representation. They are given by the following
expressions:

F'N (@) = Fl() = —i e*“f’@(t) — PO+
FP2(1) = Fl(1) = =i e ™(0@1) — e P 00) + -+,
FOVt) = F>(t) = —ie ™ ...

F'9(t) = F=(1) =ie—lksfe—ﬂ% e,

with ©(¢) the Heaviside function, ®() = 1 — O(¢), and
B =1/(kgT). The dots indicate subleading corrections in
e $% which can be dropped within the physical subspace
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