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Spin density waves in the Hubbard model: A DMFT approach
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We analyze spin density waves (SDWs) in the Hubbard model on a square lattice within the framework of
inhomogeneous dynamical mean field theory (IDMFT). Doping the half-filled Hubbard model results in a change
of the antiferromagnetic Néel state, which exists exactly at half filling, to a phase of incommensurate SDWs.
Previous studies of this phase mainly rely on static mean field calculations. In this paper, we will use large-scale
IDMFT calculations to study properties of SDWs in the Hubbard model. A great advantage of IDMFT over static
mean field approaches is the inclusion of local screening effects and the easy access to dynamical correlation
functions. Furthermore, this technique is not restricted to the Hubbard model, but can be easily used to study
incommensurate phases in various strongly correlated materials.
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I. INTRODUCTION

Strongly correlated materials have been the focus of
interest for over half a century, because of their intriguing
properties such as metal-insulator transitions, magnetism,
and high-temperature superconductivity, which cannot be
observed in weakly interacting systems. A prototype model
for theoretically describing strongly correlated materials is the
one-band Hubbard model [1–3],

H =
∑
ij,σ

tij c
†
iσ cjσ + U

∑
i

ni↓ni↑, (1)

where the first term corresponds to the kinetic energy and
the second term to a local density-density interaction. The
operator c

†
iσ creates an electron on lattice site i in spin direction

σ , and the operator niσ = c
†
iσ ciσ corresponds to the electron

density at site i. The interaction is taken to be repulsive, U > 0,
throughout this paper.

The physics of the Hubbard model with repulsive inter-
action is determined by the competition between the local
density-density interaction and the nonlocal kinetic energy.
This competition is the cause for the Mott-metal-insulator
transition, a well known phenomenon observed in the Hub-
bard model [4]. The half-filled Hubbard model undergoes a
transition from a metal to a Mott insulator, where, due to the
repulsive interaction, electrons become localized. Besides the
metal-insulator transition, long-range ordered phases have also
been extensively studied in the Hubbard model. For a bipartite
lattice and large enough dimensions, d > 1, the ground state of
the Hubbard model at half filling is an antiferromagnetic Néel
state; each lattice site is occupied with one electron in average,
and the spin polarization alternates between neighboring
lattice sites. Besides this antiferromagnetic phase at half
filling, one can also observe different ordered phases such as
ferromagnetism or superconductivity in the Hubbard model,
depending on the lattice structure and system parameters.

There are a variety of analytical and numerical techniques
to theoretically analyze the Hubbard model. A particularly
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successful technique, which is able to directly study the
properties of strongly correlated models, is the dynamical
mean field theory (DMFT) [5–7]. DMFT maps the lattice
model onto a quantum impurity model, which must be
solved self-consistently. Nonlocal terms in the self-energy
are thereby neglected, which becomes exact for infinite
dimensional lattices. Although DMFT is an approximation for
real materials, it has provided many insights into fundamental
properties of strongly correlated materials. Furthermore, there
are ways to incorporate the momentum dependence into the
self-energy, which are known as cluster DMFT or dynamical
cluster approximation [8].

Although long-range ordered phases have been analyzed by
DMFT since the introduction of the method, previous works
have mainly focused on commensurate phases such as the
antiferromagnetic Néel state, ferromagnetism, etc. In order to
analyze the antiferromagnetic Néel state within DMFT [9–15],
the lattice is divided into two-site clusters, and momentum-
independent self-energies are calculated separately for each
sublattice. This method is known as the two-sublattice method.

The antiferromagnetic state with electron density close
to, but away from unity has little been analyzed within
DMFT. One approach to perform DMFT calculations for such
incommensurate states has been to incorporate a fixed rotation
angle of the spin direction into the DMFT equations [16,17].
However, if the assumed rotation angle does not correspond
to the ground state of the system, or if one performs a
usual two-sublattice DMFT calculation for the doped Hubbard
model, the self-energy oscillates during the self-consistency
calculation and a converged solution cannot be obtained. We
previously interpreted these oscillations as the tendency of the
system to form a spin density wave (SDW) [14,15]. However,
this interpretation was mathematically not well founded and
properties of the SDW state could not be determined, because
the DMFT calculation did not converge.

In this paper, we demonstrate how to overcome these
above-mentioned difficulties by performing large-scale sim-
ulations using the inhomogeneous DMFT (IDMFT) to study
inhomogeneous phases in strongly correlated materials. As an
example, we study incommensurate SDW states in the doped
Hubbard model on a square lattice. However, the IDMFT is
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neither restricted to the Hubbard model nor to the square
lattice, but can be employed for any strongly correlated model
with local interactions. We show that the oscillations, which
have been observed in previous DMFT calculations, indeed
indicate the emergence of SDWs. The IDMFT is an extension
of DMFT to incorporate inhomogeneities and has been so far
used to study surfaces, interfaces, superlattices, and trapped
strongly correlated systems [18–28]. Furthermore, there have
been a few works in which the IDMFT has been used for
SDWs in the Hubbard model. However, these calculations have
been for small cluster sizes or one-dimensional slices of the
lattice. Thus, these calculations mainly focused on the SDW
state called vertical stripes in the context of the high-
temperature superconducting cuprates [29–31]. Using the
IDMFT, we are able to find a converged and self-consistent
solution for the doped, magnetically ordered Hubbard model,
and thus are able to analyze different kinds of SDWs without
a priori knowing the rotation angle of the SDW. Furthermore,
the IDMFT gives us a direct access to dynamical correlation
functions, which is a great advantage over previous static mean
field calculations.

The remainder of this paper is organized as follows: In the
next section, we will explain technical details of the IDMFT
calculations. This is followed by our results for the SDW phase
of the Hubbard model, including an analysis of static as well
as dynamical properties. A short summary will conclude this
paper.

II. TECHNICAL DETAILS ON THE CALCULATIONS

A. Dynamical mean field theory

DMFT relates the lattice model to a quantum impurity
model. This mapping becomes exact in the limit of infinite
dimensions. In this high-dimensional limit, the hopping
amplitude has to be scaled as t → t�/

√
z (z is the coordination

number of the lattice), in order to ensure a nontrivial kinetic
energy. A consequence of this scaling is the vanishing of the
momentum dependence of the self-energy, �(k,ω) → �(ω).

The local lattice Green’s function can thus be written as

Gloc(z) = 1

N

∑
k

1

z − εk − �(z)

=
∫

dε
ρ0(ε)

z − ε − �(z)
, (2)

where εk represents the noninteracting band structure of the
lattice, and ρ(ε) the corresponding noninteracting local density
of states (DOS).

The mapping onto a quantum impurity model can be done
by comparing the local lattice Green’s function [Eq. (2)] to
the Green’s function of an impurity model with the same local
interaction term, which reads

Gimp(z) = 1

z − �(z) − �(z)
,

where �(z) is the hybridization between the impurity level and
an electron bath.

An iteratively performed DMFT calculation is done as
follows: First, with a given self-energy, which can be zero in the
first iteration, the local lattice Green’s function is calculated

by Eq. (2). Second, from this local lattice Green’s function,
one calculates the hybridization �(z) of the corresponding
quantum impurity model by

�(z) = z − [Gloc(z)]−1 − �(z). (3)

This hybridization defines a quantum impurity model, whose
self-energy must be determined. With this self-energy,
one calculates a new local lattice Green’s function from
which the next quantum impurity model is determined. This
procedure continues until a converged solution is found.

The DMFT can also be used to investigate properties
of long-range ordered phases of strongly correlated models.
When performing calculations for a magnetic phase, one has
to calculate a spin-dependent self-energy, which results in a
spin-dependent hybridization of the quantum impurity model.
In the case of an antiferromagnetic Néel state, one has to
take into account the doubling of the unit cell. The local
lattice Green’s function can then be calculated by the so-called
AB-sublattice method,

Gloc(z) =
∫

dερ0(ε)

(
z − �↑(z) −ε

−ε z − �↓(z)

)−1

.

As stated above, the AB-sublattice method works well for
the antiferromagnetic Néel state, where the spin direction
alternates between nearest neighbors. However, this method
fails to describe long-range ordered phases, which are not
commensurate with two sublattices, e.g., the antiferromagnetic
state of the doped Hubbard model. In the following, we will
show how to overcome this problem by using IDMFT.

B. IDMFT for SDWs

In order to stabilize a long-range ordered SDW state with
wavelength larger than two lattice sites, one has to divide
the lattice into large enough clusters so that the wavelength
of the ordered state can be taken correctly into account.
A way to do that is to use the IDMFT, which maps each
lattice site of a cluster onto its corresponding quantum
impurity model, thereby assuming a momentum-independent
self-energy. Although the self-energy between different lattice
sites vanishes within this approximation, the self-energy of
each lattice site may be different. The IDMFT can thus describe
inhomogeneous systems, such as cold atoms in a trap potential,
or interfaces and surfaces of strongly correlated systems. We
here apply the IDMFT for a homogeneous model, but in a
situation where the symmetry of the model is spontaneously
broken, which results in an inhomogeneous state.

The IDMFT works as follows: After setting the size of
our cluster, usually between 400 and 2000 lattice sites, we
initialize a self-energy for each lattice site. In the first DMFT
iteration, this self-energy can be set to zero. We usually choose
this self-energy in a way that it breaks the SU(2) symmetry of
the Hamiltonian in order to obtain an SDW wave solution. [If
the SU(2) symmetry is not broken, the IDMFT solution will be
a paramagnetic state.] Using these self-energies, we calculate
the local Green’s functions for all lattice sites by using a matrix
inversion:

Gloc(z) = [z · I − H − �]−1, (4)
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where H is the noninteracting Hamiltonian of the chosen
cluster. At this point, one must specify if the calculation is
performed for a finite cluster with open or periodic boundary
conditions, or if the calculation is for an infinite lattice, which
consists of repeating this finite cluster. In the case of the infinite
lattice, the Hamiltonian will include momentum-dependent
terms, which must be integrated over. Equation (4) then reads

Gloc(z) =
∫

dkxdky([z · I − Hkx ,ky
− �]−1).

After having calculated all local Green’s functions, lattice-
site-dependent quantum impurity models can be determined
similar to Eq. (3) by

�ii(z) = z − [Gii,loc(z)]−1 − �ii(z). (5)

(The inversion of the local Green’s function is performed
locally in order to determine the hybridization of a local
quantum impurity model.) We now solve all these quantum
impurity models and calculate the corresponding self-energies.
With these self-energies, one can then calculate the local
Green’s function of the next IDMFT iteration [see Eq. (4)].
Because the self-energy depends on the lattice site, this method
is able to calculate properties of inhomogeneous phases for this
cluster.

During the IDMFT procedure, self-energies of several
quantum impurity models must be calculated. In this paper,
we use the numerical renormalization group (NRG) [32,33]
for this purpose. The NRG is a well established method which
is able to calculate numerical-exact dynamical correlation
functions such as Green’s functions and self-energies [34,35].

These calculations thereby involve two time consuming
steps: First is the calculation of the self-energies of all lattice
sites, which scales linearly with the number of lattice sites.
The other time consuming step is the calculation of the local
Green’s functions, which involves a matrix inversion of the
whole cluster and thus scales cubically with the number of
lattice sites.

Although we are using a cluster of lattice sites in our calcu-
lations, IDMFT is fundamentally different from the cluster
DMFT (CDMFT) or the dynamical cluster approximation
(DCA) [8]. In IDMFT, one determines a local self-energy
separately for all lattice sites, while in the latter methods, one
solves a multisite impurity model for the whole cluster, thus
determining also nonlocal terms of the self-energy. Therefore,
the CDMFT and the DCA are more accurate in principle,
because they incorporate nonlocal fluctuations. However, a
cluster of approximately 1000 sites is by far out of range for
these methods.

III. DOPED ANTIFERROMAGNETIC STATE IN THE
HUBBARD MODEL

Intensive studies about incommensurate SDW states in
the Hubbard model began approximately at the same time
as the discovery of high-temperature superconductivity [36]
that appears in strongly correlated materials close to an
antiferromagnetic phase [37]. These studies concerned the
antiferromagnetic phases in the t-J model [38–45] and the
Hubbard model [10,16,17,46–63] and mainly exploited differ-
ent types of static mean field theory, e.g., Hartree-Fock theory.

Summarizing these results, one can say that an extended region
of SDW states exists in the phase diagram of the Hubbard
model close to half filling. At weak coupling, these SDWs
run along one axis in the (0,1) or (1,0) direction, which are
called vertical SDWs. For stronger coupling, the energetically
favored state is an SDW running along the diagonal of the
square lattice. Furthermore, the SDW state is accompanied
by a charge density wave in the same direction. For strong
enough coupling, the doped holes localize in straight lines,
yielding large areas of nearly half-filled antiferromagnetically
ordered sites and paramagnetic stripes with a particle number
of less than one. These states are usually referred to as stripe-
or domain-wall states. As already mentioned above, besides
these static mean field calculations, there have been up to now
only a few DMFT calculations, because the two-sublattice
method does not yield a converged solution for the doped
Hubbard model. There have been IDMFT calculations for
small clusters, mainly one-dimensional (1D) cuts through the
two-dimensional (2D) lattice [29–31], or DMFT calculations
incorporating knowledge about properties of the SDW [16,17],
such as the ordering vector. Furthermore, we want to note
that there have been some density matrix renormalization
group [64–68] and constraint-path quantum Monte Carlo cal-
culations [64,69] for stripes in the doped Hubbard model. How-
ever, these simulations are also restricted to small cluster sizes.

In contrast to these previous approaches, we here use the
IDMFT for large clusters of lattice sites. This allows us to
stabilize different kinds of SDWs without knowledge about
their properties, such as an ordering wave vector. Furthermore,
the IDMFT incorporates local fluctuations exactly and thus
goes well beyond static mean field theory and gives a direct
access to dynamical properties, i.e., Green’s functions and
self-energies.

We have performed IDMFT calculations for a finite cluster
of at least 400 and up to 2000 lattice sites using periodic
boundary conditions. In these calculations, we have found,
in accordance with previous static mean field calculations,
that doping the antiferromagnetic Néel state in the Hubbard
model results in SDW states. A typical solution of such an
SDW state is shown in Fig. 1. The upper (lower) panel shows
the polarization (occupation) of the lattice. In agreement with
previous calculations, we see that the SDW is accompanied by
a charge density wave in the same direction. The polarization of
the electrons thereby depends on the electron density. Regions
of large electron density, which exhibit a Néel-state-like
order with large polarization, are separated by regions of low
electron density, which exhibit only a small polarization or are
magnetically disordered. For strong interaction, these regions
of low electron density form narrow straight lines, which have
been previously called stripes. In Fig. 1, we observe that
exactly at the center of these stripes, there are always two
neighboring sites which are ferromagnetically aligned. Thus,
the Néel states of neighboring high electron-density regions are
phase shifted. This is in accordance with previous calculations.

In Fig. 2, we summarize our calculations in a phase
diagram of the Hubbard model including SDW states. For
weak interaction strengths, U < 3t , we do not observe
any SDW phase. However, for these weak interactions, the
antiferromagnetic Néel state can be slightly doped without
destroying the Néel order and exists up to n ≈ 0.97 electrons
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FIG. 1. (Color online) Typical pattern for a vertical SDW state
in the Hubbard model for U = 8t and an average electron density
〈n〉 = 0.9. The upper (lower) panel shows the electron polarization
(density).

per lattice. For U > 3t , doping the Néel state results in the
emergence of SDW states in the Hubbard model. We have
mainly focused on vertical SDW states, which run along

FIG. 2. (Color online) Phase diagram of the Hubbard on a square
lattice as calculated by IDMFT. The shaded region represents
parameters where we find vertical as well as diagonal SDWs to
be stable. The homogeneous Néel state exists exactly at half filling
for all interaction strengths and for a slightly doped region at weak
interaction.

one of the axes of the square lattice (see, e.g., Fig. 1).
These states have been identified by previous Hartree-Fock
calculations as the ground state in the Hubbard model for
moderate interaction strengths. In our calculations, these SDW
states are stable for strong enough interactions up to an
electron density n ≈ 0.8. Compared to previous static mean
field calculations, our calculated critical occupation number
is much closer to unity. This can be explained by quantum
fluctuations which are included in IDMFT but are absent
in static mean field calculations. The local interaction is
screened by these quantum fluctuations. Thus, static mean field
theories overestimate the parameter region of ordered states.
We want to point out that besides the vertical SDW, different
types of SDWs can be observed in IDMFT calculations. In
the whole parameter regime where vertical SDW states are
stable, SDW states which do not break the square-lattice
symmetry can also be observed. These symmetric SDWs
consist of modulations which run along both diagonals of the
square lattice. Furthermore, for strong interactions, U/t > 7t ,
diagonal SDW states which run along a single diagonal of the
square lattice can be observed close to half filling. The shaded
region in Fig. 2 corresponds to parameters where we find
diagonal SDW states to be stable. These diagonal SDW states
are unstable for weak interaction strengths and large doping.
All stabilized SDW states are energetically very close to each
other; energetic differences are below our current accuracy.
However, compared to the paramagnetic state, any of these
SDW states is lower in energy.

Which state is realized in our IDMFT calculations depends
not only on the energy of the state but also on the way how
the symmetry is broken during the IDMFT calculation. If the
SU(2) symmetry is not broken at all, a paramagnetic state is
formed. If the SU(2) symmetry is broken at a single point,
e.g., by applying a magnetic field in the first IDMFT iteration
at a single lattice site, then a square-lattice-symmetric state
arises. If a magnetic field is applied to lattice sites in a
vertical (diagonal) line, a vertical (diagonal) SDW arises, if
energetically stable.

In order to present a more detailed analysis of SDW states,
we focus now on the vertical SDW state. Our results about
vertical SDW states are summarized in Fig. 3. In Figs. 3(a) and
3(b), we show the spatial modulation of the electron density
and the spin polarization for different occupation numbers and
interaction strengths. The period of the modulation increases
with increasing average electron density (the closer the average
occupation is to unity, the longer is the period). This is
confirmed in Fig. 3(b), where we show that the period of
the modulation is approximately the inverse of the average
number of holes per lattice site, p = 1/(1 − n), where n is the
average number of electrons. Moreover, in Fig. 3(a) it is visible
that while for low average electron densities the modulation is
sinelike, the maximum is flattened, if the occupation is close
to unity; there are more and more half-filled lattice sites that
exhibit a Néel-state-like order, while holes are located within
narrow walls. These states have been called domain-wall
states or stripes in previous mean field calculations. While
the period of the modulation strongly depends on the average
electron density, it is independent of the interaction strength.
For increasing the interaction value for a fixed occupation
number [Figs. 3(c) and 3(d)], the amplitude of the modulation
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FIG. 3. (Color online) (a) Electron density against lattice sites
for different average electron densities and U = 8t . We only show
a single oscillation of the electron density which is periodically
continued. (b) The extracted period of the modulation of the electron
density against the reciprocal density of holes, 1/(1 − n) (n is the
average number of electrons per lattice site). (c) Electron density
against lattice sites for different interaction strengths and fixed
average electron density n = 0.9. (d) The magnitude of the spin
polarization, P = |n↑ − n↓|, against different lattice sites for different
interaction strengths.

becomes larger, and thus the SDW becomes more stripelike.
The maximum of the local electron density increases while the
minimum decreases. At the same time, also the maximum of
the electron polarization increases. However, the modulation
period remains unchanged, if the average filling of the lattice
is not changed. These static properties of SDW states, such
as amplitude and modulation period, qualitatively agree with
previous static mean field calculations.

In contrast to previous attempts to use DMFT, we are here
using large-scale IDMFT calculations. We are thus able to
analyze the influence of finite size effects on our calculations.
Because of the usage of periodic boundary conditions, an
integer number of oscillations of the SDW must be included
within the cluster. If the cluster size does not match the period
of the energetically most stable SDW, which is related to the
occupation number of the system, two things may happen in the
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FIG. 4. (Color online) Left: Occupation number of different lat-
tice sites of a vertical SDW for a fixed chemical potential and inter-
action strength but different cluster sizes. Right: Direct comparison
of a single period of the SDW for different cluster sizes. (The colors
of the right panel correspond to the colors of the left panels.)

system: First, the period of the SDW may be slightly modified.
Second, while most oscillations of the SDW within the cluster
correspond to the most stable SDW, there are a few oscillations
which are altered in order to accommodate the SDW within
the cluster. Figure 4 shows the occupation profiles of vertical
SDWs for interaction strength U = 8t and chemical potential
μ = 2t for different cluster sizes. The left panels show the
occupation number of different lattice sites of the SDW for
different cluster sizes. These panels show that the qualitative
structure of the SDW does only weakly depend on the cluster
size. A direct comparison of a single oscillation of the SDWs
on these different clusters is presented in the right panel of
Fig. 4. The average occupation for this chemical potential is
approximately 〈n〉 = 0.875, corresponding to an SDW with
period 8. We here show a comparison of an oscillation in the
middle of our cluster, where we have initially broken the SU(2)
symmetry and thus the SDW is usually best converged within
the cluster. We observe that while the SDWs for the clusters
20 × 20 and 24 × 24 have different periods and different
amplitudes of the occupation, the SDWs for cluster sizes larger
than 28 and the rectangular cluster look very similar. The size
of the cluster which is needed to obtain reliable results does of
course depend on the period of the SDW. We observe that the
cluster size should be approximately four times the period of
the SDW, which makes it more and more difficult to calculate
SDWs close to half filling with very long periods.

An advantage of IDMFT over static mean field calcu-
lations is the easy access to dynamical properties; in fact,
dynamical properties such as self-energies are calculated in
order to perform an IDMFT procedure. It should be noted
that the Green’s function takes two lattice sites as indices,
G(x1,y1),(x2,y2), because properties vary among different lattice
sites. Therefore, the Green’s function cannot be written in
terms of the distance between lattice sites. However, in order
to show a DOS which does only depend on a single momentum
	k = (kx,ky), we Fourier transform the distance of lattice
sites, 	d = (x1 − x2,y1 − y2), and average it over the whole
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FIG. 5. (Color online) Momentum-resolved spectral function for
the half-filled Hubbard model for U = 8t . The green line marks the
Fermi energy.

lattice. The resulting momentum-resolved spectral function
corresponds then to the DOS which would be measured, e.g., in
angle-resolved photoemission spectroscopy. We thus calculate

Gkx,ky
(ω) = 1

N

∑
x1,y1

∑
x2,y2

{G(x1,y1),(x2,y2)(ω)

× exp[i(kx(x1 − x2) + ky(y1 − y2))]}.
The momentum-resolved spectral functions shown below are
then given by ρkx,ky

(ω) = − 1
π

Im[Gkx,ky
(ω)].

The momentum-resolved DOS of a half-filled Hubbard
model for U = 8t is shown in Fig. 5. The system is in an

FIG. 6. (Color online) Momentum-resolved spectral function for
the doped Hubbard model for U = 8t , 〈n〉 = 0.95 in the vertical SDW
state. The green line marks the Fermi energy. The lower panel is a
magnification around the Fermi energy.

FIG. 7. (Color online) Momentum-resolved spectral function for
the doped Hubbard model for U = 8t , 〈n〉 = 0.95 in the square-
lattice-symmetric SDW state. The green line marks the Fermi energy.

insulating antiferromagnetic Néel state. The DOS exhibits a
gap around the Fermi energy, as denoted by the green line. If
we dope holes into the system, this state changes into a vertical
SDW state. The momentum-resolved DOS for a vertical SDW
with average electron density 〈n〉 = 0.95 is shown in Fig. 6.
We observe that the lower band crosses the Fermi energy at
three points in momentum space: 	k = (π/2,π/2), 	k = (0,π ),
and 	k = (π,0). In a magnification of the DOS around the
Fermi energy (lower panel of Fig. 6), however, we see that
the band which crosses the Fermi energy becomes gapped at
	k = (π/2,π/2) and 	k = (0,π ). There is a small but finite gap
at the Fermi energy. The lower band possesses spectral weight
only for 	k = (π,0) at the Fermi energy. This “pseudogap”
originates in the SDW order. In the vertical SDW state,
which is shown in Fig. 6, the spectrum becomes gapped for
	k = (π/2,π/2) and one of the two momenta, 	k = (π,0) or
	k = (0,π ), depending on the direction of the vertical SDW.
The momentum where the spectrum at the Fermi energy is not
gapped thereby corresponds to the direction of the SDW; if
there is spectral weight at the Fermi energy for 	k = (π,0), then
the SDW runs along the x directions. This means that there are
paramagnetic stripes in the y direction. These paramagnetic
stripes are the cause for the spectral weight at the momentum
	k = (π,0). For comparison, we show the spectral function
of the square-lattice-symmetric SDW state in Fig. 7. Due to
symmetry, the spectral weight around 	k = (π,0) and 	k = (0,π )
is equal. Furthermore, both momenta possess spectral weight
at the Fermi energy. The spectrum only becomes gapped at the
Fermi energy for 	k = (π/2,π/2). We can therefore say that
this pseudogap in the spectral function is clearly related to the
SDW order.

IV. CONCLUSIONS

We have used the IDMFT for the calculation of incommen-
surate SDW states in strongly correlated electron systems such
as the Hubbard model and have thereby resolved difficulties
encountered in previous DMFT treatments of magnetic states
away from half filling. We have calculated the magnetic phase
diagram of the Hubbard model on a square lattice including
SDW states, and have shown that screening of the Coulomb
interaction due to local fluctuations, which cannot be taken
into account in static mean field calculations, strongly modifies
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the phase diagram. As a result, magnetically ordered phases
vanish for average electron densities n < 0.8. We have focused
in this paper on vertical SDWs, although different types of
SDW can be stabilized. The calculated properties, such as the
period of the SDW, agree very well with previous calculations.
However, a great advantage of IDMFT over static mean field
calculations is the easy access to dynamical properties such as
momentum-resolved spectral functions. We have shown that
due to the SDW order, parts of the spectrum at the Fermi energy
become gapped. The Fermi momenta at which the spectrum is
gapped are directly related to the type of SDW state, e.g., in
which direction the vertical SDW runs.

Finally, we want to stress that this method is not limited
to the SDWs in the Hubbard on a square lattice, but can also

be used for studying properties of incommensurate ordered
phases for various 2D as well as three-dimensional (3D)
lattices. Furthermore, it can be easily adopted to study different
strongly correlated models as long as the interaction is local.
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