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Array of dipoles near a hyperbolic metamaterial: Evanescent-to-propagating
Floquet wave transformation
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We investigate the capabilities of hyperbolic metamaterials (HMs) to couple near-fields (i.e., evanescent waves)
emitted by a two-dimensional periodic array of electric dipoles to propagating waves. In particular, large-order
Floquet harmonics with transverse-magnetic polarization that would be evanescent in free space, and therefore
confined near the array surface, are transformed into a propagating spectrum inside the HM and thus carry power
away. Because of this property, independent of the finite or infinite extent of the HM, the power generated by an
array of elementary electric dipoles is strongly enhanced and is mostly directed into the HM when the array is
located near a HM surface. In particular, the power coupled to the HM exhibits narrow frequency features that
can be employed in detection applications. The results shown in this paper provide a clear signature on wave
dynamics in HMs. A link between the results pertaining to the case of an isolated dipole on top of HM and
the planar array is found to be convenient in explaining both wave dynamics and spectral power distribution.
The narrow frequency emission features appear in the array case only; they depend on its spatial periodicity and
remarkably on the HM thickness.
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I. INTRODUCTION

Hyperbolic metamaterials (HMs) are a subcategory of ar-
tificial uniaxial anisotropic materials that exhibit a hyperbolic
isofrequency wave-vector dispersion diagram [1–3].

HMs allow for engineering the spatial spectrum of propa-
gating waves, and thus power emission, exploiting a wide prop-
agating spectrum when compared with common dielectrics.
This unusually wide spatial spectrum of power emission leads
to novel phenomena, such as the enhancement of the power
scattered by nanospheres [4] or of the one emitted by imposed
dipoles [4–6] located above HM surfaces. Furthermore, HMs
are capable of absorbing (in the form of propagating waves)
the power emitted by sources in their proximity. This, in
turn, means that decay rate of emitters can be controlled
without resorting to a substrate’s loss engineering. For this
reason, HMs have been used to engineer the Purcell effect and
emission decay rate, as well as the enhancement of sponta-
neous emission [7–14]. Moreover, the wide spatial spectrum
supported by HMs leads to applications such as focusing
with extreme subwavelength resolution and superlensing
[15–22], as well as absorption and reflection control [23–25].
HMs have also been shown to exhibit negative refraction
[26–29] and epsilon-near-zero capabilities [30,31], and the
latter could be employed, for example, to improve nonlinear
processes. In [32] the formation of second harmonic double-
resonance cones has been proven. Moreover, efficient second
harmonic generation has been reported in [33] through the
use of micrometer-thick slabs with a hyperbolic permittivity
tensor.

HMs can be fabricated at infrared and optical frequen-
cies using metal–dielectric multilayers [9,34], dielectric–
semiconductor multilayers [35], graphene–dielectric multi-
layers [5,28,31,36], or metallic wires embedded in dielectric
substrates [25,37]. In particular, the emergence of hyperbolic
dispersion in multilayered HMs does not rely on any resonant
behavior and thus occurs in a wide frequency band. A

review of certain wave properties in HMs is reported in
[4,38–40]. We stress that practical HM realizations alter
the ideal hyperbolic wavevector dispersion curve and limit
the propagating spectrum, in contrast to what is predicted
by the effective medium approximation (EMA), which does
not introduce any limitation for the propagating spectrum in
HMs [4,6,41].

In this paper, we carry out an analysis of electromagnetic
waves generated by a two-dimensional (2D) periodic array
of electric dipoles located above a HM. This paper is a
precursor to the investigation of the scattered power upon
an array of passive, polarizable particles on top of HMs, as
for example done in [4] for a single spherical nanoparticle.
Once the resulting linear system is solved for the induced
dipole moments of the particles, the scattered power evaluation
would follow a similar procedure to that reported here. We
first show how Floquet waves (FWs) emanating from such
an array, that would be otherwise evanescent in free space,
are instead transformed into propagating extraordinary waves
inside a HM. We then investigate the enhancement of the power
radiated by a 2D periodic array of impressed electric dipoles
above a HM substrate, motivated by earlier work in which
small scatterers on top of HMs (which can be modeled using
single dipole approximation) or roughness on HM surfaces
is shown to realize unprecedented absorption of plane waves
[23,25]. We show that most of the power generated by the
2D periodic array is directed toward the HM. We investigate
how the array periodicity plays a critical role in the possibility
to allocate wave propagation in the ideally indefinite spectral
propagating channels of the HM. We further show the effect
of a HM substrate’s thickness on the properties mentioned
above. For the case of a 2D periodic array of sources on
top of HM, we show the existence of very narrow frequency
emission peaks in both infinite- and finite-thickness HMs and
then explain the theory thereof. Such peaks can be useful for
sensing applications. Finally the discrete dipole approximation
and its limitations are discussed over a representative example
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of an array of rectangular current sheets (i.e., with limited
physical domain).

II. COUPLING AND PROPAGATION OF LARGE-INDEX
FLOQUET WAVES TO A HM

The 2D periodic array of elementary electric dipoles is
located above a HM at a distance h from its surface, as in
Fig. 1(a). Electric dipolar sources in the array are located
at rmn = r00 + max̂ + nbŷ (m,n = 0, ± 1, ± 2, . . .), where a

and b are the periods along the x and y directions, respectively,
and r00 = x00x̂ + y00ŷ + z00ẑ is the location of the reference
dipole. In the following, the 00th reference dipole is assumed
to be located at r00 = 0 (here we implicitly assume the time
harmonic convention e−iωt ). Thus an electric dipole at rmn

has a dipole moment pmn = p00exp[ikt · (rmn − r00)], where
kt = kx x̂ + ky ŷ is the wavevector defining the progressive
phasing of the dipoles on the x, y plane, and p00 = px x̂ +
py ŷ + pzẑ is the electric dipole moment of the 00th reference
dipole.

We demonstrate here that near fields, in the form of FWs,
emitted by a 2D periodic array of electric dipolar sources
are coupled to propagating waves inside the HM substrate.
It is well known that, in general, and depending on the
array periodicity, only a certain (finite) number of FWs are
propagating in a common dielectric and thus carry power away
from the array. The remaining FWs are in general evanescent
and are confined mostly to the array plane forming the near
field.

Consider, for example, the direct electric field produced by
a 2D periodic array of elementary electric dipoles in free space,
represented in terms of transverse-to-z polarized electric (TE)
and magnetic (TM) pq-indexed FWs as

E(r) =
∞∑

p,q=−∞

(
ETM

pq + ETE
pq

)
. (1)

Each FW in free space is given by [42]

ETM,TE
pq (r) = i

2abε0

ei(kt,pq ·r+kz0,pq |z|)

kz0,pq

eTM,TE
pq , (2)
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FIG. 1. (Color online) (a) Schematic of an array of electric
dipoles at a distance h from the surface of a hyperbolic metamaterial.
Example of HM made of a stack of dielectric and silver layers
with thicknesses d1 and d2 and relative permittivities ε1 and ε2.
(b) Schematic of single dipole at a distance h from the surface of
a hyperbolic metamaterial as in part (a).

with

eTM
pq =

{[
k2
z0,pq

k2
t,pq

kt,pq ∓ kz0,pq ẑ

]
kt,pq

+ [
k2
t,pq ẑ ∓ kz0,pqkt,pq

]
ẑ

}
· p00,

eTE
pq = k2

0

k2
t,pq

(kt,pq × ẑ)(kt,pq × ẑ) · p00, (3)

where the minus (plus) sign in Eq. (3) is used when the ob-
servation point is above (below) the array plane. Longitudinal
wavenumbers in free space kz0,pq will be denoted with “0” in
the subscript. The transverse wavevector of a pq-indexed FW
is defined as

kt,pq = kt,00 + 2πp

a
x̂ + 2πq

b
ŷ, (4)

and k2
t,pq = kt,pq · kt,pq . It is clear that the field in

Eqs. (1)–(3) is intimately related to the transverse and longitu-
dinal wavenumbers kt,pq and kz0,pq , respectively. In free space
the relation of kt,pq and kz0,pq follows the free space isofre-
quency wavenumber dispersion equation k2

t,pq + k2
z0,pq = k2

0,
with k0 = ω/c the free space wavenumber, ω the angular
frequency, and c the speed of light in a vacuum. Therefore,
for large pq-indexed FWs, the longitudinal wavenumber in
free space kz0,pq = i

√
k2
t,pq − k2

0 is purely imaginary, with
Im(kz0,pq) > 0 to satisfy the radiation boundary condition at
infinity (for “proper” waves, detailed information on proper
and improper wave can be found in [42–45]). Such FWs are
evanescent waves decaying exponentially away from the array
plane (on the other hand, improper waves have opposite sign
and grow exponentially toward infinity).

Consider now the scenario in Fig. 1(a), where the FWs
generated by a 2D periodic array of electric dipoles with
transverse wavenumber kt,pq couple to a homogeneous HM
characterized by the relative permittivity tensor

εHM = εt (x̂x̂ + ŷŷ) + εzẑẑ, (5)

with εt εz < 0 in an ideal lossless case, where εt and εz (both
real numbers) represent the transverse and longitudinal entries
of the diagonal relative permittivity tensor, respectively. Inside
the HM, TM waves are extraordinary waves that satisfy the
hyperbolic isofrequency dispersion relation [1,2,4] (assuming
nonmagnetic materials; thus, relative permeability is taken as
unity in the following)

k2
t,pq

εz

+
(
kTM
z1,pq

)2

εt

= k2
0, (6)

where kt,pq is matched to that of the FWs in free space above
the HM (longitudinal wavenumbers in HM are denoted with
“1” in the subscript). Isofrequency hyperbolic wavevector
dispersion occurs when εtεz < 0, and we recall that two
possible scenarios may occur, with either εz < 0 or εt < 0.
The latter will be treated in Sec. IV, because it can be obtained
at optical frequencies by simply stacking metal and dielectric
layers of subwavelength thicknesses [4,6,29,34].

155128-2



ARRAY OF DIPOLES NEAR A HYPERBOLIC . . . PHYSICAL REVIEW B 89, 155128 (2014)

Following Eq. (6), the pq-indexed TM FWs in the HM have
longitudinal wavenumbers given by

kTM
z1,pq =

√
εt

(
k2

0 − 1

εz

k2
t,pq

)
, (7)

with sign of the square root chosen regarding the condition
explained in the following. In general, assuming the presence
of losses in the HM, the longitudinal wavenumber is complex
and given as

kTM
z1,pq = βTM

z1,pq + iαTM
z1,pq . (8)

A FW generated by the array at z = 0, with trans-
verse wavenumber kt,pq , assumes the wave propagator
exp(ikTM

z1,pq |z|) = exp(−ikTM
z1,pqz) along the −z direction inside

the HM underneath. The condition αTM
z1,pq > 0 is necessary to

satisfy the boundary condition when z tends to −∞. Also, as
explained in [4,27,29], waves in the HM are backward when
εt < 0 and εz > 0 and hence characterized by βTM

z1,pq < 0 (i.e.,
phase propagation occurs along +z, whereas power flows
along −z). Indeed, as specified in [42–45] backward waves
are characterized by a wavenumber that satisfies the relation
βTM

z1,pq αTM
z1,pq < 0.

Note that observing Eq. (7), when assuming absence of
losses inside the HM, kTM

z1,pq is purely real for large pq index
values, since the ratio εt/εz is negative. This means that any
TM FW with sufficiently large pq order is able to propagate
inside the HM with a real longitudinal wavenumber kTM

z1,pq .
On the other hand, FWs with small pq indexes, in particular
the fundamental one with (p,q) = (0,0), may or may not
be propagating. Low-order FWs are propagating if εt > 0,
whereas they are evanescent when εt < 0. Nevertheless, the
most important phenomenon is that, in theory, an infinite
number of FWs are able to propagate in an ideal HM with
an unlimited hyperbolic isofrequency wavevector dispersion
curve. In practical realization of HMs, however, the HM
periodicity along a coordinate would restrict the range of
FWs that are able to propagate, as will be briefly discussed
in Sec. IV, and the power in FWs would strongly depend on
the distance of the array from the HM and the presence of
losses.

Having clarified the propagation of TM and TE FWs inside
a HM, we now analyze their excitation generated by a 2D
periodic array of dipoles located at a distance h below the
array. We first assume that the HM is homogeneous with the
relative permittivity tensor, as in Eq. (5), and it is semi-infinite.
As previously described, the direct field produced by the array
is represented as a sum of pq-indexed FWs (i.e., plane waves),
as in Eqs. (1)–(3) for an array in free space. Each pq-indexed
FW generated by the array and directed toward −z is partly
reflected at the free space/HM interface, with TM/TE Fresnel
reflection coefficient

�TM,TE
pq = Z

TM,TE
HM (kt,pq ) − Z

TM,TE
0 (kt,pq )

Z
TM,TE
HM (kt,pq ) + Z

TM,TE
0 (kt,pq )

, (9)

conveniently given in terms of the characteristic wave
impedances of free space

ZTM
0 (kt,pq ) = kz0,pq

ωε0
, ZTE

0 (kt,pq ) = ωμ0

kz0,pq

(10)

and the characteristic wave impedances

ZTM
HM(kt,pq ) = kTM

z1,pq

ωε0εt

, ZTE
HM(kt,pq) = ωμ0

kTE
z1,pq

(11)

for the extraordinary (TM) and ordinary (TE) waves inside the
HM, here assumed to be homogeneous. Note that kTM

z1,pq for
the extraordinary wave (TM) inside the HM is evaluated as in
Eq. (7), whereas kTE

z1,pq for the ordinary (TE) wave is evaluated
by the ordinary wave dispersion relation k2

t,pq + (kTE
z1,pq)2 =

εtk
2
0; thus,

kTE
z1,pq =

√
εtk

2
0 − k2

t,pq . (12)

As discussed above, for TM waves with large pq indexes,
kTM
z1,pq is real, assuming a lossless HM, and thus also ZTM

HM(kt,pq )
is real. Furthermore, in the case of a HM with εt < 0 consid-
ered here, we conclude after observing Eq. (11) that ZTM

HM(kt,pq )
is real and positive because a TM wave in the HM is backward
(i.e., βTM

z1,pq < 0), as discussed previously. Therefore, in a HM,
including the occurrence of losses, the characteristic wave
impedance ZTM

HM(kt,pq ) as in Eq. (11) has a positive real part
that is associated with power flowing in the HM in the −z

direction. [Here, the general expression of a characteristic
wave impedance Z(kt,pq ) is defined assuming that the real
part of the z-directed (in the positive or negative z direction)
Poynting vector emitted by the array of dipoles in absence
of reflections is given by S(kt,pq ) = 1

2 Re[|Et,pq |2/Z∗
0 (kt,pq)],

where Et,pq is the transverse field of the pqth harmonic,
yielding always positive S(kt,pq ) for waves carrying power
away from the array (note that an asterisk [*] denotes complex
conjugation).]We recall that the total power propagating in the
±z direction is the sum of power of all the Floquet harmonics,
given as

P±z =
∫∫

A

1

2
Re(E × H∗) · (±ẑ)dA =

= 1

2
Re

( ∞∑
p,q=−∞

[ ∣∣ETM
t,pq

∣∣2

ZTM∗
0 (kt,pq)

+
∣∣ETE

t,pq

∣∣2

ZTE∗
0 (kt,pq )

])
ab

(13)

owing to the spatial orthogonality of Floquet harmonics with
different orders and the vectorial orthogonality of TM and TE
waves with the same harmonic order (details can be found in
Sec. 2.2 of [1]). Here A is the unit cell cross section orthogonal
to the z direction.

Each FW generated by the array above the HM is
partly transmitted into the HM with transmission coeffi-
cient T TM,TE

pq = 1 + �TM,TE
pq . We recall that all reflection and

transmission coefficients �TM,TE
pq and T TM,TE

pq are defined
with respect to transverse electric fields [46]. Therefore, the
transverse field at any location r above the 2D periodic array
of dipoles (i.e., z > 0) is represented as

Et (r) =
∞∑

p,q=−∞

[(
ETM+

t,pq + ETM−
t,pq �TM

pq ei2kz0,pqh
)

+ (
ETE+

t,pq + ETE−
t,pq �TE

pq ei2kz0,pqh
)]

eikz0,pq z, (14)
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where the subscript t denotes the transverse component of the
direct electric field ETM,TE

pq in Eq. (2) and +/− superscripts
denote that the respective quantity is evaluated at the limit
z → 0+ and z → 0−, respectively (the array plane is assumed
at z = 0). Note that the transverse component of ETE

pq is always
continuous across the array plane (i.e., ETE+

t,pq = ETE−
t,pq ), and TE

FWs are only emitted by transverse-to-z dipole components.
On the other hand, the transverse component of ETM

pq should be
treated carefully. For example when p00 is transverse to z, the
transverse component of ETM

pq is continuous across the array
plane (i.e., ETM+

t,pq = ETM−
t,pq ); however, when p00 is along z, the

transverse component of ETM
pq follows the relation ETM+

t,pq =
−ETM−

t,pq [dictated by Eq. (3)].
At any location r below the array of dipoles and above the

HM (i.e., −h < z < 0) the transverse electric field is

Et (r) =
∞∑

p,q=−∞

[
ETM−

t,pq

(
e−ikz0,pq z + �TM

pq eikz0,pq (2h+z)
)

+ ETE−
t,pq

(
e−ikz0,pq z + �TE

pq eikz0,pq (2h+z))]. (15)

The transverse field transmitted to a homogeneous HM
(i.e., at any location r belonging to the HM, with z < −h) is

represented as

Et (r) =
∞∑

p,q=−∞

[
ETM−

t,pq T TM
pq e−ikT M

z1,pq (z+h)

+ ETE−
t,pq T TE

pq e−ikT E
z1,pq (z+h)]eikz0,pqh. (16)

Looking at Eq. (16), it is clear that the distance h plays a
fundamental role in determining the spectrum of evanescent
waves in free space that can be coupled to propagating waves
in the HM. In particular, when the array is located at a certain
distance h from the HM surface, waves will decay with the
propagator eikz0,pqh, resulting in a decay factor e−Im(kz0,pq )h in
free space, and this will prevent high pq-indexed FWs from
transferring power to the HM underneath.

III. POWER GENERATED BY A 2D PERIODIC ARRAY OF
ELECTRIC DIPOLES ABOVE A HM

The real power density (the real part of the Poynting vector)
of each pqth FW in the (+z) upward direction above the array
is expressed as

Sup(kt,pq ) = 1

2
Re

[∣∣E+
t,pq + E−

t,pq�pqe
i2kz0,pqh

∣∣2

Z∗
0 (kt,pq)

]
, (17)

where Z0(kt,pq ) is the TM/TE wave impedance in vacuum.

Analogously, the real power density of each pqth FW evaluated at the HM interface in the downward direction, and thus
entering the HM, is given by

Sdown(kt,pq) = 1

2
Re

[
|E−

t,pq |2[(1 + �pqe
i2kz0,pqh)(1 − �pqe

i2kz0,pqh)∗]

Z∗
0 (kt,pq )

]
= 1

2
Re

[
|E−

t,pqe
ikz0,pqh|2[(1 + �pq)(1 − �pq)∗]

Z∗
0 (kt,pq)

]

= 1

2
Re

[
|E−

t,pqTpqe
ikz0,pqh|2

Z∗
HM(kt,pq )

]
, (18)

where ZHM(kt,pq ) is the wave impedance in HM. In Eq. (18)
through the 1st to the 3rd expression, the power density in the
−z direction is given (1st) at the array level, (2nd) in vacuum
side of the HM-vacuum interface, and (3rd) in the HM side
of the same interface. Note that, in Eqs. (17) and (18), kz0,pq

and Z∗
0 (kt,pq) are both either purely real or purely imaginary

in vacuum, and thus the three expressions yield equal results.
In the 1st expression �pqe

i2kz0,pqh [appearing in both Eqs. (17)
and (18)] is the reflection coefficient evaluated at the array
plane, observing the downward direction, and in both the 2nd
and 3rd expressions E−

t,pqe
ikz0,pqh represents the transverse field

of the downward-propagating wave evaluated at the HM’s top
surface. The superscript TM/TE is omitted in Eqs. (17) and
(18) since both expressions are valid for both TM and TE
waves, assuming all quantities are evaluated accordingly. The
superscripts +/− follow the same convention introduced in
Sec. II.

In Eqs. (17) and (18) numerators are real values; in
contrast, denominators may be complex values, depending
on the medium in which each FW is propagating into and
the transverse wavevector kt,pq . In particular, Z0(kt,pq ) is real
only when k2

t,pq < k2
0 and purely imaginary otherwise (for

both TM and TE waves). In other words, only low pq-indexed
FWs with real kz0,pq carry power away from the array in the
upward direction. Similarly, ZTE

HM(kt,pq ) is (assuming lossless
HM) either purely imaginary for any kt,pq (when εt < 0 and
εz > 0) or purely real only for the spectrum k2

t,pq < εtk
2
0

(when εt > 0 and εz < 0). However, for extraordinary waves
with TM polarization inside the HM, the situation is rather
different. The term ZTM

HM(kt,pq) has a real part (purely real for
a lossless HM as discussed in Sec. II) for large pq-indexed
FWs because kTM

z1,pq has a real part (purely real for a lossless
HM) for large pq indexes, as described in Sec. II. Therefore,
the total power coupled from the array in free space to the
HM underneath is determined by the power carried by a very
large number (infinite for an ideal lossless HM) of propagating
FWs hosted by HM (however, note that the power coupled
to FW with large pq is also limited by the decay along the
distance h, as described in Sec. II). Indeed, as will be discussed
in later sections, practical HM implementations based on
periodic arrangement of layers or other configurations (e.g.,
wire medium) limit the maximum pq indexes of FWs that can
propagate in HM, thus limiting the maximum amount of power
coupled to HM. Equation (18) is valid for a homogeneous
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HM (that includes losses), and it is generalized to the case
of multilayer HM by substituting Tpq with 1 + �pq , and
ZHM(kt,pq ) with the impedance at the multilayer HM interface,
in the downward direction Zdown(kt,pq), as explained in [5].
The field inside the HM multilayer can be evaluated via the
transfer matrix method.

We now investigate in detail the power coupled to TM and
TE plane wave spectra, based on [1,47,48], adapted to periodic
structures, as in [49], for modeling the power emitted by a 2D
periodic array of impressed (transverse or vertical) electric
dipoles located slightly above an infinitely extended HM, as
in Fig. 1(a). Then, we establish the relation between the plane
wave spectra emanating from an array and a single dipole [as
in Fig. 1(b)] above the same HM. Note that this TL formalism
represents the solution of Maxwell’s equations in the analyzed
environment (i.e., it is an exact representation) [1,47,48].

We are interested in the power emitted in +z and −z

directions, in the following denoted by superscripts “up”
and “down,” respectively. The power emitted in a unit cell
directed up/down for an array of transverse dipoles with
p00 = px x̂ + py ŷ is given as a sum of TM and TE contributions
as

Pup/down = ω2

2ab

∞∑
p,q=−∞

[
UTM

up/down(kt,pq ) + UTE
up/down(kt,pq)

]
(19)

expressed in [W]. The TM and TE power spectra in Eq. (19)
(normalized by angular frequency squared, ω2) directed toward
the +/− z directions are

UTM
up/down(kt,pq) = |p00 · kt,pq |2

|kt,pq |2
Re

(
Y TM∗

up/down(kt,pq)
)

∣∣Y TM
up (kt,pq ) + Y TM

down(kt,pq )
∣∣2 ,

(20)

UTE
up/down(kt,pq ) = |p00 · (ẑ × kt,pq )|2

|kt,pq |2

× Re
(
Y TE∗

up/down(kt,pq)
)

∣∣Y TE
up (kt,pq) + Y TE

down(kt,pq)
∣∣2 . (21)

The power emitted in a unit cell in an array of vertical
dipoles with p00 = pzẑ is instead

Pup/down = ω2

2ab

∞∑
p=−∞

∞∑
q=−∞

WTM
up/down(kt,pq ), (22)

where the power spectrum (normalized by angular frequency
squared, ω2), which comprises only TM waves, is

WTM
up/down(kt,pq) = |p00 · ẑ|2

ω2|ε|2 |kt,pq |2

× Re
(
ZTM

up/down(kt,pq )
)

∣∣ZTM
up (kt,pq) + ZTM

down(kt,pq )
∣∣2 . (23)

Here ε is the permittivity of the host medium in which
the dipole are placed, and in the following we use ε = ε0.
In Eqs. (21) and (23), the impedances Z

TM/TE
up/down, Y

TM/TE
up/down =

(ZTM/TE
up/down)−1, are defined by the ratio of transverse field

components [1]

ZTM
up/down(kt,pq) = lim

z→0±

±Etot
pq (z) · kt,pq

Htot
pq(z) · (ẑ × kt,pq )

, (24)

ZTE
up/down(kt,pq ) = lim

z→0±

±Etot
pq(z) · (kt,pq × ẑ)

Htot
pq(z) · kt,pq

, (25)

where the “tot” superscript indicates that the E/H field is the
sum of both the direct and the reflected fields of the respective
pqth Floquet harmonic, and here in the limit operation,
the sign + (−) is taken for the “up” (“down”) direction. Note
that in this case, Z

TM/TE
up = Z

TM/TE
0 because there is no wave

reflected from the upper space; whereas Z
TM/TE
down (kt,pq) needs to

be computed via the transfer matrix method, since it accounts
for the reflection at the HM interface. Equations (19)–(23)
are derived by lengthy though straightforward substitutions of
Eqs. (1)–(3) into Eqs. (17) and (18), utilizing the reflection
coefficients evaluated at the array plane based on Y

TM/TE
up/down and

Z
TM/TE
up/down for particular dipole orientations as p00 = px x̂ + py ŷ

or as p00 = pzẑ. Accordingly, the power carried in a FW har-
monic is

∫∫
A

S(kt,pq )dA = [ω2/(2ab)]U (kt,pq) for transverse
dipoles’ excitation and

∫∫
A

S(kt,pq )dA = [ω2/(2ab)]W (kt,pq )
for vertical dipoles’ excitation. (Since these expressions are
applied to either TM or TE polarizations, and either the up
or down directions, the common TM/TE superscripts, and
up/down subscripts have been omitted.) In Appendix B, the
derivation steps for UTM

down are provided as an example. Those
for the other terms can be derived in an analogous way.

In the following, we establish a relation between the power
expressions related to the 2D periodic array of electric dipoles
to that of a single electric dipole on top of HM, as in Fig. 1(b),
analyzed in [4], for example. According to the expressions
presented in [4] for the single dipolar source case, the upward-
and downward-directed power emitted by a transverse dipole
is

Pup/down = ω2

8π2

∫∫ [
UTM

up/down (kt ) + UTE
up/down(kt )

]
dkxdky.

(26)

The power emitted by a vertical dipole is

Pup/down = ω2

8π2

∫∫
WTM

up/down (kt ) dkxdky . (27)

Note that the functions U and W within the summations in
Eqs. (19) and (23) for the periodic array case are the same
functions as the integrands in Eqs. (26) and (27) for the
single dipole. In other words, the radiation from the array
corresponds to a spectral sampling of the continuous spectrum
of waves emanating from a single source. This fact emphasizes
the importance of array periodicity to control effectively the
sampling in the band of propagating FWs in HM, as it will be
pointed out in what follows.

Before going into the details of the wave dynamics of the
system under analysis, we provide two preliminary examples
showing how the HM affects the emitted power and the
ratio of the power directed toward the HM for an array
of dipoles against a single dipole for an infinitely extended
HM substrate. Here we utilize a semi-infinite practical HM
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FIG. 2. (Color online) (a) Enhancement of the power P = Pup +
Pdown emitted by an array of dipoles (a = b = 300 nm) with a HM
underneath, with respect to that emitted in free space. Dipoles are
polarized along x, with kt,00 = 0.5k0x̂. For comparison, the power
enhancement pertaining to a single dipole over the HM is also
provided. (b) Ratio of power emitted by the array and a single
dipole toward HM (down) and toward the upper homogeneous
isotropic space (up) versus frequency. Dashed lines are obtained for
a homogeneous HM (via EMA) made of silver and silica layers with
equal thicknesses d1 = d2 = 10 nm, whereas solid lines are obtained
using a rigorous multilayer Green’s function implementation for the
same HM. Silver permittivity ε2 is from [50] and dielectric relative
permittivity ε1 is equal to 2.2. Source distance from the HM is
assumed as h = 10 nm.

implementation consisting of a stacked bilayer made of silver
(whose dielectric relative permittivity function ε2 is taken from
the experimental results, including losses in [50]) and silica
(ε1 = 2.2) layers with equal thicknesses d1 = d2 = 10 nm.
The power evaluations are carried out using HMs modeled
with two methods: the EMA as given in [51], where

εt = ε1d1 + ε2d2

d1 + d2
, ε−1

z = ε−1
1 d1 + ε−1

2 d2

d1 + d2
. (28)

and the more accurate multilayer Bloch analysis [46] based
on the transfer matrix method in evaluation of the impedances
Zdown(kt,pq ).

In Fig. 2(a), we report the enhancement of the total
power P = Pup + Pdown emitted by an array of dipoles with
respect to the total power emitted by the array in free space.
The power enhancement for an array of dipoles in general
increases as the frequency is increased. As a comparison,
we also provide the enhancement for a single dipole, which
exhibits less dependence on frequency, and the enhancement
is larger than that in the array case at lower frequencies,
whereas at higher frequencies, the array case shows more
enhancement due to periodicity of the sources, as will be
shown in Sec. IV. Moreover, the EMA vastly overestimates
the power enhancement at lower frequencies for both cases.
We will recall the reasons behind this overestimation in the
next section using a spatial spectrum interpretation. This
is a well-known shortcoming of EMA [4,6,41], which was
recently discussed in [52] by showing that the presence of
surface plasmon modes supported by multilayer HMs limits
the validity of EMA. In our multilayer HM we have used a
silver layer as the topmost layer. If we were to use a silica
layer instead, its effect would result to an increased distance
of the dipole array from the HM, which would in turn reduce
the coupling of power from the array of dipoles to the HM.
We refer the reader to detailed investigations on the topic

a = b
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a = 60 nm a = 150 nm a = 300 nm

FIG. 3. (Color online) (a) Emitted power P = Pup + Pdown by an
array of dipoles (polarized along x and with kt,00 = 0.5k0x̂) and
(b) the ratio of power emitted by the array toward HM and toward
free space versus frequency with respect to different array periods
a = b. The HM is as in Fig. 2. This result is calculated assuming a
multilayer HM.

reported in [4,6]. When using the rigorous multilayer Bloch
theory (it is exact when assuming ideally smooth surface
boundaries), the enhancement for the array case is between
10- and 30-fold for frequencies between 500 and 800 THz,
where EMA yields at least one order more enhancement at
low frequency. In Fig. 2(b), we report the ratio Pdown/Pup for
the cases in Fig. 2(a). When using the Bloch model, we observe
that the array has a Pdown/Pup ratio between 20 and 30 over
the whole frequency range, whereas the ratio is higher for the
single dipole case, especially at the lower frequencies. The
overestimation of Pdown/Pup by the homogenized HM model
(EMA) is also observed, particularly at low frequency. We
further show in Fig. 3 the ratios P/Pfree space and Pdown/Pup by
changing the period of the array of dipoles along the x and y

axes, calculated assuming a multilayer HM. We observe that as
the period increases, both P/Pfree space and Pdown/Pup increase.
A period of a = b = 300 nm (half a wavelength at 500 THz)
leads to an enhancement almost more than 10-fold above
500 THz, and it increases at higher frequencies; the power
is mostly directed to the HM over the whole frequency range
shown here (300–800 THz), especially for larger periods.

It is important to note for the array case the occurrence
of peaks at about 627 THz for the a = b = 300 nm case
only; we attribute this peak to the surface plasmon polariton
(SPP) at the interface of free space and HM, for which the
modal wavenumber elaboration is provided in Appendix A.
Moreover, similar narrow-frequency peaks are also present
at many more frequencies when considering finite-thickness
HMs. These peaks are particular to the array of dipoles and
are not observed for the single-dipole emission on top of HM.
The reasons for these peaks will be explained in Sec. V. In the
next section it is proven that we can achieve enhanced, coupled
power toward HM by proper design of the array on top of HM.

IV. DISCUSSION AND ILLUSTRATIVE EXAMPLES

We consider here the same HM as introduced in the
previous section, assumed to have semi-infinite extent in z,
and investigate the dynamics of the FWs emitted by an array
of dipoles. The array of electric dipoles oscillating at 650 THz
(i.e., a free space wavelength of λ0 = 462 nm) is assumed to
be located in free space at a distance h = 10 nm from the HM
(subwavelength proximity).
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FIG. 4. (Color online) Total spectral power versus kx and ky .
(a, b) log10[(UTM

up + UTM
down + UTE

up + UTE
down)/(Wm2s2)] emitted by

the unit transverse electric dipole p00 = (x̂ + ŷ)//
√

2 Cm; (c, d)
log10[(W TM

up + W TM
down)/(Wm2s2)] emitted by the unit vertical dipole

p00 = ẑ. In (a) and (c), EMA is used in HM modeling, whereas in (b)
and (d), multilayer HM is assumed at 650 THz.

We first recall the case for a single emitting dipole as in
Fig. 1(b) that will be helpful in subsequent analyses. The total
power spectra (in logarithmic scale) are given in Fig. 4 versus
kx and ky for both a transverse unit electric dipole located as
in Fig. 1(b) with p00 = (x̂ + ŷ)//

√
2 Cm [evaluated as UTM

up +
UTM

down + UTE
up + UTE

down, terms taken from Eqs. (20) and (21)]
and a vertical unit electric dipole p00 = ẑ [evaluated as WTM

up +
WTM

down, terms taken from Eq. (23)].
We first note in Fig. 4 the strong power spectrum for large

transverse wavevectors. We also observe a strong dependence
on the transverse wavevector direction for the transverse dipole
and no dependence for the vertical one due to symmetry rea-
sons. Fundamentally, for metal–dielectric HMs, the spectrum
provided in Fig. 4 is a wide-frequency phenomenon that does
not rely on resonant characteristics, and it is provided as a
representative frequency.

Moreover, we note the presence of a much wider spectrum
of waves carrying power in the HM when looking at EMA
results other than multilayer ones. This result clearly explains
that EMA overestimates power quantities and is in agreement
with previous investigations [4,6,41]. Since Bloch analysis
models accurately the HM dispersion properties and EMA
overestimates features for high spectral regions, we will use
Bloch multilayer modeling from this point on.

We then turn our attention to understanding which waves
carry most of the power. To do so, we plot in Fig. 5 the spectral
power U

TM/TE
up/down in Eqs. (20) and (21) coupled to TM and TE

waves toward both the upper and bottom half spaces at 650 THz
for the transverse dipole case in Fig. 4(b). It is clear that the
power is mostly emitted in the TM spectrum in the −z direction
(i.e., toward the HM). A similar situation is encountered when
analyzing the spectral power WTM

up/down in Eq. (23) for a vertical
dipole (not shown for brevity).
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FIG. 5. (Color online) Spectral power log10[UTM/TE
up/down/(Wm2s2)]

versus kx and ky emitted by the unit transverse dipole p00 =
(x̂ + ŷ)//

√
2 Cm in (a) UTM

up : TM polarization and +z direction, (b)
UTM

down: TM polarization and −z direction, (c) UTE
up : TE polarization

and +z direction, and (d) UTE
down: TE polarization and −z direction.

This result is calculated assuming a multilayer HM.

The information in Figs. 4 and 5 will be now used to study
the case of a 2D periodic array of electric dipoles on top of HM
as in Fig. 1(a). Indeed, the spectral power quantities discussed
in Figs. 4 and 5 are subject to sampling in the case of an array
of dipoles, as mentioned in Sec. II. Here we assume the array’s
progressive phasing is governed by kt,00 = 0.5k0x̂, where k0

is the free space wavenumber, and we investigate the spectral
power for three sets of periods (assuming square lattice): 150,
300, and 600 nm. On the left panels of Fig. 6, the power in FW
harmonics (normalized by angular frequency squared, ω2) is
reported versus FW indices p and q. The larger the period, the
more the number of propagating FWs carrying power away, as
discussed in Sec. II. On the right panels of Fig. 6, we show the
spectral power map pertaining to a single transverse dipole on
top of HM, where we superimpose the sampling points due to
array periodicity (white circles; the sampling procedure was
mentioned in Sec. III). It is clear that as the period increases
the spectral power in the case of the array resembles that of
the single dipole. This result indeed demonstrates that, for
increasing periods, dipoles in the array experience less and
less coupling between each other; therefore, the array response
tends to be very similar to an isolated dipole. Moreover, it is
evident that periodicity can be optimized to couple most of the
power to propagating extraordinary waves in HM.

Indeed, the effect of the period, thus the sampling of the
spatial spectral power, manifests itself in the enhancement
and upward/downward redistribution of the emitted power. In
order to achieve enhancement of emitted power with respect
to free space P/Pfree space, one needs to sample at as many
points as possible inside the propagating spectrum of HM
with high kx and ky . The increase in the period realizes this
with a large ratio of Pdown/Pup as well. On the other hand, if
an array of dipolar sources were to represent induced dipoles
modeling polarized scatterers, the fraction of the scattered
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FIG. 6. (Color online) (a, c, e) The spectral power of the Flo-
quet harmonics versus the indices p and q for the array peri-
ods a = b = 150, 300, 600 nm; (b, d, f) total spectral power
log10[(UTM

up + UTM
down + UTE

up + UTE
down)/(Wm2s2)] versus kx and ky

emitted by the unit transverse dipole p00 = (x̂ + ŷ)/
√

2 Cm at
650 THz, where the white circles denote the Floquet harmonic
sampling locations on the kx–ky plane in the array case for various
array periods, as in (a, c, e). This result is calculated assuming a
multilayer HM.

power to the power impinging on a unit cell would decrease
with increasing period; thus, this decrease would undesirably
downplay the coupling to the propagating spectrum in HM. A
critical balance must be determined for this situation and will
be studied in the future.

V. FLOQUET WAVES COUPLED TO MODES IN HM:
ARRAY OVER FINITE-THICKNESS HM SUBSTRATES

We analyze the effect of finite HM thickness, as in Fig. 7,
on the power emission enhancement and redistribution. The
effect of number of bilayer unit cells N on spectral power and
then on the enhancement and redistribution of emitted power
is demonstrated.

The spectral power density sampling scheme explained
in the previous section stresses the relationship between the
power emitted into FWs and the spectral power emitted by a
single dipole. Therefore, the study of spectral power due to
a single source over a finite-thickness HM is fundamental
in characterizing the emission from an array in the same
setup. We start by showing in Fig. 8 how the number of
layers affects the spectral power distribution, generated by a
single dipole polarized along x, for varying number of bilayers

z
h

Si

1d
2d

1 2( )w N d d

FIG. 7. (Color online) HM substrate with finite thickness, where
N is the number of metal–dielectric bilayers. This substrate configu-
ration is investigated for both a single dipolar source and an array of
sources.

N = 1,5,10 and N → ∞, using the same HM composition
as in the previous examples. We first observe that the power
spectrum is strong over a wide wavevector space, a sign that
large wavenumber waves are actually able to transport energy
away from the array. Furthermore, we observe circular “belts”
of spectral peaks in high kx and ky regions. The number of
peaks depends on the number of metal–dielectric layers, in
agreement with the bulk plasmon modes reported in [40].
As the number of layers N tends to infinity in Fig. 8(d), the
field inside the HM is composed of a more uniform spectrum
of propagating waves guided by the HM substrate. Next we
stress the presence of the peak representing the wavenumber
spectrum coupled to the SPP mode on the interface of
free space and HM, whose existence and wavenumber are
determined in Appendix A for the case of homogeneous HM.
The power coupled to this mode is in the spectrum slightly
larger than the |kt | = k0 circle, and it is clearly visible in the
close-up view in Fig. 8(d), which is present in all cases reported
in Fig. 8, but not so well defined for N = 1. We stress that this
innermost circular peak of the spectrum in the vicinity of the
circle with radius k0 remains a distinct spectral feature as N

increases, even when the aforementioned spectrum becomes
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FIG. 8. (Color online) Spectral power log10[UTM
down/(Wm2s2)]

versus kx and ky emitted by the unit transverse dipole p00 = x̂ Cm
over a multilayer HM at 650 THz for a varying number of
bilayers N .
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FIG. 9. (Color online) Emitted power by an array of dipoles
(normalized to the power emitted by the same array in free space)
and ratio of power emitted toward HM and toward free space versus
frequency, compared with the case of a single dipole on HM. This
result is calculated assuming a multilayer HM.

uniform for N → ∞. This distinct spectral feature will, of
course, affect the total emitted power by an array when some
spectral sampling point lays on it, as discussed next.

In Fig. 9, we report the emitted power enhancement
P/Pfree space and the ratio of the power in the downward/upward
direction Pdown/Pup as previously done in Fig. 3. The left
panels are pertinent to the array of dipoles, whereas the
right panels show the case of a single dipole for comparison.
Various numbers of bilayers N = 1,5,10 and N → ∞ are
analyzed. Importantly, power enhancement is observed in all
cases. Furthermore, in the case of array of dipoles on top
of a HM substrate with finite N , the spectral sampling of
the spectral peaks in Fig. 8 by the FW harmonics, which
depends on the frequency, results in narrow frequency peaks
of the total emitted power and the power in the downward
direction, as in Fig. 9(a) and 9(c). This will be further justified
by the discussion relative to Fig. 10. Moreover, for an array
of dipoles, we observe that as N increases, P/Pfree space and
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FIG. 10. (Color online) Power spectrum of extraordinary TM
waves carrying power in the −z direction, log10[UTM

down(kt )/(Wm2s2)],
versus kx (horizontal axis) and frequency (vertical axis) emitted by a
single transverse dipole with p00 = x̂ Cm on top of a finite thickness
of HM with N = 5 layers. Black dashed curves indicate spectral
sampling lines corresponding to kt,p0 = kx,p x̂ for p = −8, −7,

. . . ,0, . . . ,7,8 (denoted at top of the plot) when an array of dipoles
in considered. This result is calculated assuming a multilayer HM.

Pdown/Pup become more stable versus frequency, whereas for
N = 1, the peaks are sharper and Pdown/Pup becomes lower
than other cases at lower frequencies. This is due to several FW
harmonics sampling the very sharp circular peak in spectral
power [given in Fig. 8(a) for a certain frequency]when varying
the frequency. In the single dipole case, it is clear that even
N = 5 is enough to emulate the effect of N → ∞. Therefore,
having greater N causes larger values of P/Pfree space and
Pdown/Pup at low frequency with respect to the N = 1 case.
For the array of dipoles, when N → ∞, we still observe a peak
at 627.4 THz, which is absent in the single dipole case. This
particular peak is due to the innermost peak circle in Fig. 8
[a close-up view is provided in Fig. 8(d) and is representative
for other cases as well] that corresponds to the SPP, briefly
described in the Appendix A.

The power enhancement peaks for the array of dipoles can
be explained by investigating the frequency evolution of the
sampling points of the spectrum emitted by a single dipole.
This is shown in Fig. 10 assuming N = 5, where UTM

down is
plotted versus kx/k0 (x-axis) and frequency (y-axis), for ky =
0. We also superimpose the frequency evolution of kx,p =
kt,pq · x̂ normalized by k0 (the p index is indicated on the top
of the plot) denoted by dashed lines, assuming kt,00 = 0.5k0x̂.
One can note that as the frequency increases more and more
FW harmonics fall in the propagating spatial spectrum of HM.
At certain frequencies, a kx,p sample coincides with a spectral
peak (observed as circular spectral regions in Fig. 8), and
this causes the occurrence of a narrow frequency feature in
Fig. 9. Since several FW wavenumbers can meet the peaks of
the power spectrum in the HM, several power emission peaks
can occur when varying the frequency. Therefore, the finite
thickness HM has very narrow frequency features in power
emission, which can be useful in detection applications. It
is important to note that the mode represented by the peak
in the region where |kx | is slightly larger than k0 does not
belong to the propagating spectrum of HM, but it is the long-
range SPP, as shown in [40] and in Appendix A. The sampling
of this mode by the FW with the p = −1, q = 0 harmonic
(pointed out by the pink arrow in Fig. 10) results in the peak
at 627.4 THz previously observed in Figs. 2 and 3. Note that
this mode is distinct from the propagating spectrum of HM
and is present even for N → ∞. On the other hand, for the
single dipole case, the wavenumber associated with the power
coupled to this SPP mode is included in the integration domain
of Eq. (26) at any frequency; thus, we do not observe a power
peak in Fig. 2.

VI. EFFECT OF SOURCE SPECTRUM

In the previous sections we have considered ideal (i.e.,
pointlike) dipoles as array elements. However, in general, the
size and physical domain of existence of the extended electric
currents of the array elements also affect the amount of power
coupled to the HM. This becomes especially important when
the domain of the array element current is no longer extremely
subwavelength. For example, if we assume an extremely
impressed flat current domain, then in Eqs. (20) and (21) the
dipolar term p00 can no longer be assumed to have a constant
spatial spectrum. It should be replaced by p00 (kt ) evaluated
in terms of the sheet electric current density J00 (x,y) flowing
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FIG. 11. (Color online) The schematic of (a) a periodic array of
rectangular current sheets on top of HM and (b) a single rectangular
current sheet on top of HM.

over the unit cell area S at z = 0, as in

p00 (kt ) = 1

−iω

∫∫
S

J00 (x,y) · e−i(kxx+kyy)dxdy. (29)

As an example, consider a periodic array of flat rectangular
current domains with dimensions lx and ly , as depicted in
Fig. 11(a), on which a constant current J00 flows in the region
x ∈ (−lx/2, lx/2) and y ∈ (−ly/2,ly/2). Then, the spectral
power emitted by this array will be the FW sampling of the
spectrum emitted by the isolated current sheet in Fig. 11(b),
equivalent to the case described in Sec. IV for imposed dipoles.
The dipolar term p00 (kt ) is a function of kt and is given by

p00(kt ) = 1

−iω
(J00lx ly)

sinkxlx

kxlx

sinkyly

kyly
. (30)

It is clear that when kxlx � 1 and kyly � 1, then p00(kt )
becomes constant (and independent of kt ) approaching the
discrete dipole case as

p00 ≈ 1

−iω
J00lx ly . (31)

Now let us show the effect of the source spatial spectrum
on the total emitted power spectrum. For a fair comparison
with the cases in Sec. III, here we will assume |p00(kt )| having
unity maximum, determined by imposing | 1

−iω
J00(x,y)lx ly | =

1 Cm.
In Fig. 12(a) we report the power spectrum pertaining

to an ideal elementary dipole with p00 = (x̂ + ŷ)/
√

2 Cm
(note that |p00| = 1 Cm) and in Fig. 12(b)–12(d) those
pertaining to the sheet current J00 = −iωp00/(lx ly) for lx =
ly = 20, 30, 40 nm, respectively. As clearly observed, the
distributed current source truncates the high kx–ky spectrum
due to the double sinc envelope in Eq. (30) imposed by the
current domain’s shape and dimensions. Moreover, by visual
inspection of Fig. 12, it is clear that the power spectrum
with large kt (which would be able to couple to the HM)
is suppressed in the distributed current domain case, when
compared with the discrete dipole case. This causes a decrease
of power coupled to the HM, although for electrically small
current domains its effect is limited. Therefore, the total power
emitted by an array of current sheets (evaluated by sampling
of the spectrum in Fig. 12, as shown in Fig. 6) and the power
emitted toward the HM will both decrease as either lx or ly
increases if array periodicity is unchanged.
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FIG. 12. (Color online) Spectral power log10[(UTM
down)/(Wm2s2)]

versus kx and ky emitted at 650 THz (a) by the discrete dipole
p00 = (x̂ + ŷ)/

√
2 Cm and (b, c, d) by the constant sheet current

J00 = −iωp00/(lx ly) flowing over a flat square sheet with sides
lx = ly = 20, 30, 40 nm, respectively, centered at the origin. This
result is calculated assuming a multilayer HM.

VII. CONCLUSION

In this paper, the dynamics of Floquet waves emanating
from a periodic set of emitters above the HM substrate is
studied analytically. The power coupled to the HM from the
array of dipoles is shown to encompass numerous Floquet
waves with high indices. The power emitted by an array of
dipolar sources (over a unit cell) is highly enhanced with
respect to free space emission; moreover, this power is mostly
coupled to the HM substrate. We have also observed the
interesting feature that the power emitted by the array and
that coupled to the HM exhibit narrow frequency peaks of
very strong enhancement, which can be useful in detection,
probing, and filtering applications. The physics behind this
feature associated with arrays over HM has been explained
through the concept of sampling the power spatial spectrum
of the isolated dipole on top of HM.

APPENDIX A: SURFACE PLASMON POLARITON
MODE SUPPORTED AT THE INTERFACE OF

FREE SPACE AND HM

We derive here the transverse wavenumber of the SPP
mode associated with the free space–HM interface. We use
the transverse resonance method [1] applied at the interface;
that is,

ZTM
HM (kt ) + ZTM

0 (kt ) = 0, (A1)

where ZTM
0 and ZTM

HM are evaluated using Eqs. (10) and (11),
respectively, for the case of homogeneous HM. (In the case
of a multilayer HM, Eq. (A1) is still valid, but ZTM

HM could be
evaluated using the transfer matrix method.) Then, Eq. (A1)
leads to

kz1

εt

= −kz0, (A2)
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where for simplicity we have omitted the superscript TM for
kz1. Note that, when losses are neglected, a solution may exist
only if both kz0 and kz1 are imaginary. Assuming a lossless
case for simplicity, with εt < 0 and εz > 1 (recall that we
analyzed the case with Re {εt } < 0, Re {εz} > 1 in Secs. III–
V), solutions of imaginary kz0 and kz1 may be found in the
transverse wavenumber range as

k2
0 < k2

t < εzk
2
0 . (A3)

Solving Eq. (A2) for kt one has

(kz1)2 = (−εtkz0)2,
(A4)

k2
0 − 1

εz

k2
t = εt

(
k2

0 − k2
t

)
,

and both the left- and right-hand side members of the last
equation should be positive. Thus,(

1

εz

− εt

)
k2
t = k2

0(1 − εt )

(A5)
k2
t = k2

0
εz − εtεz

1 − εtεz

.

Note that the fraction term is a positive number larger
than unity since εz > 1, implying that k2

t satisfies the original
assumption in Eq. (A3). The wavenumber of the SPP wave at
the interface of free space and HM thus is

kt = k0

√
εz − εtεz

1 − εtεz

(A6)

when εt < 0 and εz > 1. For |εtεz| 
 1 and |εtεz| 
 |εz|, this
mode has kt slightly greater than k0, which can be observed
in Fig. 10, particularly at smaller frequencies. This result
is in agreement with previous predictions [53,54]. No wave
solutions can be found when εt < 0 and 0 < εz < 1 since kz0

and kz1 cannot be imaginary simultaneously. Similarly, when
εt > 0 and εz < 0, kz1 is never imaginary, a bound mode at the
surface is not supported.

APPENDIX B: EXAMPLE OF THE DERIVATION OF
POWER SPECTRUM EXPRESSIONS: UTM

down

This appendix provides the derivation details of Eq. (20)
(the power spectrum for TM waves UTM

down) starting from
the first line of Eq. (18) [the real (i.e., the time-averaged)
power density flowing in the −z direction]. This is given as
an example, and the expressions for other polarization and
up/down directions can be derived by an analogous treatment.
In the first line of Eq. (18), the equality

�pqe
i2kz0,pqh = Y TM

up (kt,pq ) − Y TM
down(kt,pq )

Y TM
up (kt,pq ) + Y TM

down(kt,pq )
(B1)

is used together with the admittance definition in Eq. (24),
recalling that Y TM

up (kt,pq ) = Y TM
0 (kt,pq). Then we rewrite

STM
down(kt,pq ) as

STM
down = 1

2
Re

[∣∣ETM−
t,pq

∣∣2
Y TM∗

up

[
4Y TM

up Y TM∗
down∣∣Y TM

up + Y TM
down

∣∣2

]]

= 2
∣∣ETM−

t,pq

∣∣2∣∣Y TM
up

∣∣2 Re
[
Y TM∗

down

]
∣∣Y TM

up + Y TM
down

∣∣2 , (B2)

where we have omitted the common dependence on (kt,pq ).
Next, ETM−

t,pq is derived from Eqs. (2) and (3) for transverse
dipoles’ excitation p00 = px x̂ + py ŷ evaluated at the array
plane (z → 0−), and it is given by

ETM−
t,pq = iei(kt,pq ·r)

2abε0

kz0,pq

k2
t,pq

kt,pq (kt,pq · p00). (B3)

In Eq. (B2), |ETM−
t,pq |2 is evaluated as

∣∣ETM−
t,pq

∣∣2 = 1

4(ab)2

|p00 · kt,pq |2
|kt,pq |2

∣∣kz0,pq

ε0

∣∣2

= ω2

4(ab)2

|p00 · kt,pq |2
|kt,pq |2

1∣∣∣Y TM
up

∣∣∣2 . (B4)

Substituting Eq. (B4) in Eq. (B2) yields

STM
down(kt,pq) = ω2

2(ab)2

|p00 · kt,pq |2
|kt,pq |2

Re
[
Y TM∗

down

]
∣∣Y TM

up + Y TM
down

∣∣2

= ω2

2(ab)2
UTM

down(kt,pq ), (B5)

where we have used the definition of UTM
down(kt,pq ) in Eq. (20).

The time-averaged power carried by the pqth TM-polarized
FW is

∫∫
A

STM
down(kt,pq)dA, where A is the cross-sectional area

of the unit cell orthogonal to the z-axis. Note that STM
down(kt,pq )

has no x and y dependence. The total time-averaged power of
TM-polarized waves in the downward direction is the sum of
the power carried by all FWs given as

P TM
down(kt,pq) =

∞∑
p,q=−∞

[∫∫
A

STM
down(kt,pq)dA

]

=
∞∑

p,q=−∞
STM

down(kt,pq)(ab)

= ω2

2ab

∞∑
p,q=−∞

UTM
down(kt,pq ). (B6)
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