
PHYSICAL REVIEW B 89, 155127 (2014)

Minimal model of the magnetically induced metal-insulator transition:
Finite-temperature properties

M. Dian1,2 and R. Hlubina1

1Department of Experimental Physics, Comenius University, Mlynská Dolina F2, 842 48 Bratislava, Slovakia
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An unconventional type of metal-insulator transition is realized in the FeSi1−xGex alloys which is driven by the
magnetic instability of the paramagnetic insulator. Recently, a minimal model for this type of transition has been
introduced and studied in the limit of vanishing temperature. Here we explore the finite-temperature properties of
the minimal model in the mean-field approximation. We show that the predictions of the model are in qualitative
agreement with experimental data on FeSi1−xGex and on FeGe under pressure.
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I. INTRODUCTION

A large part of modern condensed matter physics concen-
trates on situations when the presence of electron-electron
interactions leads to qualitatively novel phenomena.
Interaction-driven transitions from a metal to an insulator, the
so-called Mott transitions, are among the most fascinating
phenomena of this sort. An outstanding example of the
relevance of the Mott transition is provided by the physics
of high-temperature cuprate superconductors.

Although many details of the Mott metal-insulator tran-
sitions are still under debate, the general picture of such
transitions seems to be clear: the metal may become insulating
only if the electron-electron interactions become sufficiently
strong with respect to the kinetic energy of the electrons. In
a sense, this is a quantum analog of the freezing transition:
the atoms freeze when the potential energy exceeds the energy
of their thermal motion. The insulating state of the electrons
at low temperatures usually develops magnetic order as a
consequence of the charge localization, thereby making the
freezing analogy even more precise.

Nevertheless, a completely different type of metal-insulator
transition has been experimentally observed in the isoelec-
tronic and isostructural FeSi1−xGex alloys [1,2]. In fact,
the end-member FeSi has a smaller lattice constant than
the other end-member FeGe; therefore, the kinetic energy
of the electrons in FeSi should be larger than in FeGe.
On the other hand, since the dominant electronic states in
the vicinity of the Fermi level of the alloys are of Fe 3d

character [3–5], the local electron-electron repulsion should
be quite independent of x throughout the whole composition
range of FeSi1−xGex . Therefore, if there has to be a difference
of the electrical properties between FeSi and FeGe, then FeSi
should be metallic and FeGe should be insulating. However,
the experiment finds the exact opposite: FeSi is insulating and
FeGe is metallic!

On the other hand, the evolution of the magnetic properties
of FeSi1−xGex with x is quite conventional: the less correlated
end-member FeSi is nonmagnetic [6], whereas the more
correlated end-member FeGe is magnetically ordered with
a large magnetic moment ∼1μB per Fe atom [7,8]. This
observation, therefore, suggests [9] that it is the magnetism
which causes the mysterious metal-insulator transition in
FeSi1−xGex , just the other way round as in the usual case.
We are, therefore, confronted with an unconventional type

of the metal-insulator transition, which has been dubbed the
magnetically induced metal-insulator transition [9].

Recently, a fully microscopic minimal model for mag-
netically induced metal-insulator transitions has been pro-
posed [10]. The ground-state phase diagram of the minimal
model has been studied within the mean-field approxima-
tion [10] and also making use of correlated variational
wave functions [11]. The finite-temperature predictions of the
minimal model are presented in this paper. In order to be able
to obtain a broad view of the model in a large parameter space,
we have chosen to work in the mean-field approximation.

The plan of this paper is as follows. In Sec. II we present
the minimal model, specify the parameters for which it will be
studied, and introduce the mean-field equations to be solved. In
Sec. III we present the finite-temperature phase diagram of the
minimal model which consists of the paramagnetic and ferro-
magnetic phases, and we describe several relevant observables
in both phases. Our conclusions are presented in Sec. IV.

II. THE MODEL AND ITS SOLUTION

As described in detail in Ref. [10], the minimal model
for the FeSi1−xGex alloys concentrates on the Fe atoms only.
The iron atoms are supposed to occupy an fcc lattice, which
is a reasonable approximation to the actual locations of the
Fe atoms in the B20 structure. The alloys are modeled by a
single-band Hubbard model on the fcc lattice with nearest-
neighbor hopping amplitude t and on-site repulsion U . Let
us label the four sites of the fcc lattice in the simple cubic
cell by the index λ = 1,2,3,4; see Fig. 1. This means that each
lattice site i = (R,λ) of the fcc lattice is uniquely described by
the position of the simple cubic unit cell, R, and by the index
λ. In order to allow for the possibility of a band-insulating
state, we assume that the on-site lattice potential at one of the
four sublattices, say λ = 1, is different from the remaining
sublattices, and we assume that there are two electrons per
simple cubic unit cell. If the potential on the λ = 1 sublattice is
sufficiently lower than that on the remaining three sublattices,
we can obviously end up with a band insulating state. The
Hamiltonian of the minimal model, therefore, reads

H = t
∑
〈i,j〉σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓ +
∑
iσ

(�i − σB)niσ , (1)

where c†iσ creates an electrons at site i, cjσ annihilates an
electrons at site j , niσ = c†iσ ciσ , σ = ↑,↓ is the spin index
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FIG. 1. fcc lattice with two inequivalent types of sites. Black and
white sites correspond to λ = 1 and λ = 2,3,4, respectively. The
on-site lattice potential on the black sites is lower than on the white
sites.

and �i is the sublattice potential which equals −� if i lies
in the sublattice with λ = 1; otherwise �i = 0. Note that we
have also allowed for external magnetic field B applied along
the z axis.

In Ref. [10] it has been argued that the whole series of
the FeSi1−xGex alloys can be modeled by Eq. (1) with a
positive tunneling matrix element t ≈ 0.25 eV. It has also been
suggested that increasing the Ge content x should be described
by increasing the dimensionless interaction strength U/t and
that for the potential we should take

�/t = 12 − 1.5U/t. (2)

Note that for U/t = 0, Eqs. (1) and (2) reduce to a tight-
binding model for a noninteracting band insulator, whereas
for U/t = 8 we have to do with the quarter-filled Hubbard
model on the usual fcc lattice, which is believed to possess a
fully polarized ground state [12,13].

Finite-temperature mean-field solution

In what follows we study the Hamiltonian [Eq. (1)] at a finite
temperature T . We make use of the variational formulation of
the mean-field theory and we approximate the true interacting
Hamiltonian H by a variational Hamiltonian for independent
particles H0. The variational parameters of H0 will be chosen
so as to minimize the following H0-based estimate of the
grand-canonical free energy of the system described by Eq. (1):

�(μ,T ,B)=−T
∑
Q

ln

[
1 + exp

(
μ − εQ

T

)]
+ 〈H − H0〉0,

where T is the temperature, μ is the chemical potential, Q

labels the single-particle eigenstates of H0 with eigenenergies
εQ, and the symbol 〈. . .〉0 denotes a thermal average with
respect to H0.

The variational Hamiltonian H0 is constructed as follows.
Let us first define creation operators for electrons in the Bloch
states with wave-vector k and site index λ on a lattice with L

simple cubic unit cells:

c
†
kλσ = 1√

L

∑
R

eik·(R+λ)c
†
Rλσ .

In terms of these operators, H0 is defined as

H0 =
∑
kσ

x
†
kσAkσ xkσ , (3)

where x
†
kσ = (c†k1σ ,c

†
k2σ ,c

†
k3σ ,c

†
k4σ ) is the four-dimensional

row vector of creation operators and xkσ is the conjugate
column vector of annihilation operators. The 4 × 4 matrices
Akσ are given by

Akσ =

⎛
⎜⎜⎜⎝

e1σ 4tCxCy 4tCyCz 4tCxCz

4tCxCy e2σ 4tCxCz 4tCyCz

4tCyCz 4tCxCz e3σ 4tCxCy

4tCxCz 4tCyCz 4tCxCy e4σ

⎞
⎟⎟⎟⎠, (4)

where we have introduced the notation Cα = cos(kαa/2), with
α = x,y,z labeling the Cartesian components and a standing
for the lattice constant of the simple cubic lattice. The diagonal
energies eλσ are the variational parameters to be optimized.

Let us denote the nth eigenvector of the matrix Akσ as
φknσ (λ) and let its eigenvalue be εknσ , where n = 1, . . . ,4. The
single-particle eigenstates of H0 are, therefore, characterized
by Q = knσ , their energy is εknσ , and their occupation
numbers are given by the Fermi-Dirac distribution fknσ .
Minimization of �(μ,T ,B) with respect to eλσ yields the
conditions

eλσ = �λ + U 〈nλ−σ 〉0 − σB, (5)

where the spin- and orbital-resolved occupation numbers
〈nλσ 〉0 have to satisfy the self-consistent equations

〈nλσ 〉0 = 1

L

∑
kn

fknσ |φknσ (λ)|2. (6)

For a given chemical potential μ, we have to solve the coupled
set of Eqs. (5) and (6) together with the eigenvalue problem
for the real symmetric matrix Eq. (4). Afterwards the chemical
potential μ has to be chosen so that∑

λσ

〈nλσ 〉0 = ρ, (7)

where for the electron density we take ρ = 2.
Throughout this paper, we will assume that the symmetry

between the orbitals λ = 2,3,4 is not spontaneously broken. If
we, furthermore, take into account the constraint Eq. (7), then
there are only three variational parameters to be optimized.
Following Ref. [10], we will make use of the three variational
parameters x, m1, and m2, in terms of which we can write

〈n1σ 〉0 = ρ

8
+ 3x + σm1, 〈n2σ 〉0 = ρ

8
− x + σm2.

The Helmholtz free energy in the mean-field approximation
reads as F (N,T ,B) = �(μ,T ,B) + μN , where N = ρL is the
total electron number. When expressed per simple cubic unit
cell, this can be written as

f (ρ,T ,B) = −T

L

∑
knσ

ln

[
1 + exp

(
μ − εknσ

T

)]

+ ρμ − U
∑

λ

〈nλ↑〉0〈nλ↓〉0. (8)
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On the other hand, the internal energy per unit cell u = 1
L
〈H 〉0

is easily found to be given by the expression

u(ρ,T ,B) = 1

L

∑
knσ

εknσ fknσ − U
∑

λ

〈nλ↑〉0〈nλ↓〉0.

Making use of the expressions for f (ρ,T ,B) and u(ρ,T ,B)
we can calculate the specific heat per unit cell in two alternative
ways:

c = −T
∂2f

∂T 2
= ∂u

∂T
.

Other physical observables which we will be interested in
include the total magnetization per unit cell

m = m1 + 3m2,

the uniform magnetic susceptibility

χ = 2
∂m

∂B
= − ∂2f

∂B2
, (9)

and the inverse electronic compressibility

1

κ
= ∂μ

∂ρ
= ∂2f

∂ρ2
. (10)

The mean-field problem posed by Eqs. (4), (5), and (6)
has been solved numerically on finite lattices with periodic
boundary conditions. Typically we have studied L = 127 ×
127 × 127 unit cells. In order to speed up the calculations, we
have made use of the point-group symmetries of the minimal
model.

III. RESULTS

A global scan of the finite-temperature phase diagram along
the line defined by Eq. (2) shows only two thermodynamic
phases which are distinguished by whether the magnetization
m is finite or not; see Fig. 2. Note that, as expected, the
magnetic phase diagram is quite conventional: magnetic
ordering starts at the critical interaction Uc/t ≈ 3.494 and
its critical temperature grows with increasing U . In Ref. [10]
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FIG. 2. (Color online) Finite-temperature phase diagram of the
minimal model along the line defined by Eq. (2). The dotted line
shows the locations of the maxima in the temperature dependence of
the uniform susceptibility χ in the paramagnetic state.

it has been suggested that the quantum critical point at U = Uc

corresponds to the experimentally determined transition in
the FeSi1−xGex alloys, observed at xc ≈ 0.25 [1], from the
paramagnetic insulator at x < xc to the ferromagnetic metal at
x > xc. In the rest of this section we shall study the physical
properties of the paramagnetic and ferromagnetic phases,
concentrating not only on their magnetic, but also on their
electric and thermal properties.

A. Paramagnetic phase

Let us start by discussing the results for the magnetic
susceptibility χ in the paramagnetic phase; see Fig. 3. Note
that in the low-temperature limit, χ vanishes for all U < Uc,
as expected for an insulating ground state [10]. Less obvious
is the finite-temperature behavior of χ : as U approaches
Uc, the susceptibility develops a large peak at intermediate
temperatures. The peak height grows and its position shifts
to lower temperatures for increasing U . For U close to Uc

the susceptibility predicted by the minimal model becomes
qualitatively similar to the experimental data on FeSi [6]; see
Fig. 4. Within the minimal model, the peak of the susceptibility
is obviously caused by the vicinity to the ordered phase (see
Fig. 2), since at the paramagnetic-ferromagnetic boundary the
susceptibility has to diverge. Our explanation of the anomalous
behavior of FeSi is, therefore, conceptually similar to the
nearly magnetic point of view of Refs. [14–16].

The electronic compressibility κ which is also plotted
in Fig. 3 shows similar behavior to that of the magnetic
susceptibility χ , but with less pronounced peaks at interme-
diate temperatures. The difference between κ and χ becomes
qualitative only on the metallic side U > Uc: the magnetic
susceptibility diverges for T → 0, whereas the electronic
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FIG. 3. (Color online) Magnetic susceptibility χ (top panel),
electronic compressibility κ (middle panel), and specific heat c

(bottom panel) as functions of temperature for several values of U .
Note that for U/t = 3.5 the system is already ferromagnetic and its
susceptibility χ diverges as T → 0.
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FIG. 4. (Color online) A detailed view of the same observables
as in Fig. 3 for U ∼ Uc in the limit of low temperatures.

compressibility stays finite in this limit, as should have been
expected.

It is worth pointing out that, for U > Uc, κ exhibits jumps
at the critical temperature Tc. If Tc is a function of ρ, this
is readily understood within the Landau theory with an order
parameter m,

f = α(T − Tc)m2 + β

2
m4 − 2mB, (11)

since in that case the inverse electronic compressibility Eq. (10)
does possess a jump with magnitude

�(κ−1)

�c
= − 1

Tc

(
∂Tc

∂ρ

)2

,

where �c is the specific-heat jump. The numerical data
presented in Fig. 4 is perfectly consistent with this scaling
relation.

In order to avoid misunderstandings, let us note that
the electronic compressibility κ is quite different from the
compressibility of the crystal β. The electronic compressibility
κ characterizes the metallicity of the sample, since it measures
the changes of the electron density with changing chemical
potential in a rigid crystal, and is in principle observable
by measuring the screening length. On the other hand, the
compressibility β measures how the volume of the crystal
changes with the applied pressure and it is not studied in this
paper.

In Figs. 3 and 4 we show that the specific heat c changes
only little with U for U ∼ Uc. All c(T ) curves exhibit a
peak at T ∼ t which divides the universal high-temperature
region where ultimately c ∝ T −2 from the low-temperature
region where qualitative changes with U occur only at the
lowest temperatures. Thus there is a big difference between
the evolution with U of c on one hand and of χ and κ on the
other hand. This is a hallmark of interaction effects.

It is worth pointing out that, for U � Uc, we do not find an
additional peak of the specific heat at temperatures T < t . This
disagrees with the analysis of the specific heat data for FeSi in

Ref. [6], where it was assumed that the phonon contributions
to the specific heat cph are identical in FeSi and CoSi and as a
consequence a peak of the electronic contribution cel was found
close to 300 K. This procedure has been taken for granted
also in most of the later papers on FeSi. However, a refined
analysis of cel has been presented more recently [17], where
only the same shape of the function cph(T ) for FeSi and CoSi
has been assumed, and a change of the overall energy scale
(Debye energy) has been allowed for. Also the contribution of
the conduction electrons to the specific heat of CoSi has been
taken into account. Such improved analysis led to a function
cel(T ) for FeSi whose dominant feature was the presence of
a gap below ≈200 K and a mild temperature dependence at
higher temperatures, much closer to what we find than the
older analysis of Ref. [6].

In view of the very recent discovery of a quite different
temperature dependence of the elastic constants in FeSi and
CoSi [18], it seems to be very likely that not even the shape
of the functions cph(T ) needs to be the same in FeSi and CoSi
and, therefore, even the improved analysis of Ref. [17] does not
need to be correct. Therefore, in our opinion, the experimental
problem of finding cel(T ) in FeSi is still open. The most reliable
procedure for subtracting the phonons would make use of a
direct determination, by means of inelastic neutron scattering,
of the phonon density of states in FeSi.

We have found that the single-particle spectrum exhibits
quite strong dependence on temperature for all values of U �
Uc. Such temperature dependence of the band structure should
be observable also in spectroscopic measurements; therefore
we have calculated the real part of the optical conductivity
σ (ω). For the sake of simplicity, we have neglected the k
dependence of the dipole matrix elements and we have used
the formula

σ (ω) ∝ 1

ωL

∑
m,n

∑
kσ

(fknσ − fkmσ )δ(εkmσ − εknσ − �ω).

The result of this calculation is shown in Fig. 5. We emphasize
that our σ (ω) should not be directly compared to experiments,
because the high-energy spectrum of the minimal model
obviously can not be realistic. What we would like to illustrate

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6  7

σ(
ω
)

ω/t

T/t=0.01
T/t=0.16
T/t=0.31

 0

 1

 2

 3

 0  5  10  15

ω/t

Ν(ω)

FIG. 5. (Color online) Optical conductivity σ (ω) of the minimal
model for U/t = 3.4 at several temperatures. The inset shows the
restricted sum-rule function N (ω) for the same parameters. Both
σ (ω) and N (ω) are plotted in arbitrary units.
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by Fig. 5 are three qualitative aspects of σ (ω), which we believe
to be robust:

(i) The direct optical gap is larger than the indirect
gap which determines the low-temperature thermodynamic
properties. Its magnitude may be reduced by including longer-
range hoppings in Eq. (1), but in order to keep the number of
parameters small, we do not take such hoppings into account.

(ii) The optical spectra change with temperature even at
frequencies �ω ≈ 4t much larger than the temperature scale.
Such behavior has in fact been observed in optical studies
of FeSi [19] and it has been cited as evidence for strong
correlations [20].

(iii) The results for the restricted sum-rule functionN (ω) =∫ ω

0 dνσ (ν) shown in Fig. 5 remind us of the fact, well known in
the context of the high-temperature cuprate superconductors,
that the optical sum rule in an interacting system may be
temperature dependent even for a large cut-off energy �.
Therefore, the values of N (ω) at different temperatures do
not have to converge to each other with increasing ω, as has
been assumed in the experimental papers [19,20].

To summarize, the absence of the Drude peak in σ (ω)
and the vanishing of the electronic compressibility κ , both
at T = 0, clearly show that the paramagnet has an insulating
ground state. As soon as the temperature becomes finite,
the paramagnet acquires a finite compressibility κ and is
technically metallic. Only first-order transitions could be
present within the paramagnet, but at the mean-field level we
have found none.

B. Ferromagnetic phase

Before discussing the properties of the ferromagnetic phase
in more detail, a word of caution is in place. Namely, in reality
FeGe is not a simple ferromagnet as predicted by the minimal
model. In fact, due to the lack of inversion symmetry of the B20
structure, the Dzyaloshinskii-Moriya interaction leads to an
instability of the putative ferromagnet towards the formation
of long-range spirals [21] which exhibit a surprisingly rich
phenomenology in applied magnetic fields [22]. However,
since the observed period of spiraling in FeGe is large,
∼700 Å [23], to a first approximation we shall approximate the
helical state by a simple ferromagnet. In principle it is possible
to include the weak Dzyaloshinskii-Moriya interaction later as
a perturbation to the minimal model.

Returning to the minimal model, in Fig. 6 we plot the
magnetization m as a function of temperature for several values
of U/t in the ferromagnetic phase. Previous work at T = 0 has
found a second critical interaction, UN/t ≈ 6.4, which divides
the region with partially polarized ground states at U < UN

from the fully polarized Nagaoka state at U > UN [10].
Figure 6 confirms this result and it shows that, in the vicinity
of U = UN , a qualitative change of the magnetization curves
m = m(T ) takes place. It is worth remarking that a somewhat
similar change of the magnetization curves has in fact been
observed at xN ≈ 0.4 in the FeSi1−xGex alloys [1].

Let us further remark that the chemical pressure experi-
enced on FeGe by replacing some of the Ge atoms with
the smaller Si atoms can be alternatively realized, without
introducing additional disorder, by high-pressure experiments.
In such experiments on FeGe, a quantum phase transition
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FIG. 6. (Color online) Magnetization m as a function of temper-
ature for several values of U/t .

between two metallic states has been found in the vicinity
of 19 GPa [24]. Within our minimal model, this transition
can be naturally interpreted as a consequence of a cusp in the
pressure dependence of the zero-temperature magnetization
m(0) [10,11]; see Fig. 7. It is worth pointing out that
also according to recent ab initio calculations, the ordered
moment of FeGe decreases for pressures close to pc [5,25].
A similar picture has been suggested in ab initio studies of
metamagnetism in FeSi as well, which find, in between the
paramagnetic insulator and the large-moment metal, a small-
moment metallic phase at intermediate magnetic fields [26].
Very recently the interpretation in terms of a Lifshitz transition
between partially and fully polarized states has been supported
by a detailed study of the pressure dependence of the residual
resistivity [27], which is the quantity which has actually been
measured in Ref. [24].

As already mentioned, the insulator-to-metal transition in
the FeSi1−xGex alloys represents an unconventional univer-
sality class, in which the charge delocalization is driven by
a magnetic instability of the insulator. In order to facilitate a
comparison with the more standard metal-insulator transitions,
let us study the predictions of the minimal model for the
evolution of the physical properties of the metal, starting at
large interactions U and decreasing their value towards Uc.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 3  4  5  6  7  8

U/t

m(0)
S

 0.8  1  1.2  1.4
 0

 0.1

 0.2

 0.3

T/t

1
/
(
t
*

χ)

Tc/t=0.802
S=0.782

fit
data

FIG. 7. (Color online) Fluctuating moment S and the low-
temperature ordered moment m(0) as functions of U/t . The inset
shows the fit of χ−1(T ) for U/t = 7.5 making use of Eq. (12).
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The question is: how does the metal become insulating as
U → Uc?

To answer this question, let us start by comparing the
ordered moment m(0) per simple cubic unit cell, in the limit of
vanishing temperature, with the fluctuating moment S of the
unit cell at temperatures T slightly above Tc. In experimental
papers S is determined from the fit

1

χ
= 3

4S(S + 1)
(T − Tc). (12)

This form follows from Eqs. (9) and (11) which imply
χ−1 = α

2 (T − Tc), if the constant α
2 is interpreted in terms

of the local-moment paramagnetism. In Fig. 7 we plot the
variation of S and m(0) as functions of U . Note that there is
no simple relation between S and m(0), as should have been
expected in an itinerant system. In the fully saturated region
U > UN we find that S is smaller than m(0) and comparable to
its high-temperature value S∞ ≈ 0.67, which does not depend
on U and is given only by the band filling. On the other hand,
as U approaches Uc, the fluctuating moment S decreases, but
the ordered moment m(0) is even smaller. These findings
suggest that the metal-insulator transition is driven by the
disappearance of charge carriers in the limit U → Uc.

In order to support this point of view, in Fig. 8 we plot, as
functions of U , several low-temperature characteristics of the
metallic state: the density of states at the Fermi level N (0),
the electronic compressibility κ(0), and the Fermi volume
� defined as � = ∑

nσ min(�nσ ,1 − �nσ ) where �nσ =
1
L

∑
k fknσ is the occupation of the band nσ . It should be

pointed out that N (0) is directly measurable via the linear-in-T
coefficient of the specific heat γ = limT →0

c(T )
T

. In Ref. [1] it
has been found that the coefficient γ of the FeSi1−xGex alloys
exhibits a large enhancement for intermediate concentrations
xc � x � xN , in good qualitative agreement with the data
shown in Fig. 8 [28]. This result can be easily interpreted in
terms of the Fermi volume � (see Fig. 8), which also exhibits
a maximum at intermediate values of U/t .
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FIG. 8. (Color online) Fermi volume � (see text), electronic
compressibility κ(0), density of states at the Fermi level N (0), the
Landau compressibility parameter F s

0 , and the Drude weight D

measured in units of 3te2

�2a
in the metallic state as functions of U/t

for T/t = 0.002.

It is worth pointing out that, according to Figs. 7 and 8,
for U/t � 4.5 we have � ≈ 4m(0). This result follows if we
observe that, in the ground state, per unit cell there are 2m(0)
holes in the valence band with a fixed spin projection and
2m(0) electrons in the conduction bands which are essentially
unpolarized. Moreover, according to Fig. 7 we also have S ≈
�/2 in the same range of U . It is tempting to interpret S as the
fluctuating moment of a dilute nondegenerate gas of spin- 1

2
particles with density �.

The evolution of the electronic compressibility at low
temperatures κ(0) shown in Fig. 8 is qualitatively similar
to that of the density of states N (0). For U > UN we even
find κ(0) = N (0), as should have been expected, since in
this region the system is fully polarized and the Hubbard
model (1) is equivalent to a noninteracting system. Within
Landau’s Fermi-liquid theory, the electronic compressibility
is related to the density of states via

κ(0) = N (0)

1 + F s
0

,

where F s
0 is the Landau compressibility parameter. As already

explained, for U > UN we find F s
0 = 0. Decreasing U slightly

below UN , F s
0 exhibits a sharp increase to a large value

F s
0 ≈ 0.55, as expected in a system with large repulsive

interactions. It is quite natural that under further reduction
of U , the parameter F s

0 exhibits a mild decrease. It is
quite unexpected, however, that for U → U+

c the Landau
compressibility parameter becomes negative, corresponding to
attractive effective charge-charge interactions in the system. A
detailed study of the electronic compressibility in the vicinity
of Uc will be presented elsewhere.

It is instructive to study also the optical conductivity
in the limit of low temperatures. Since in the mean-field
approximation we are dealing with a system of free particles,
the optical conductivity contains a singular part σsing = Dδ(ω)
where D is the Drude weight, which can be thought of as yet
another measure of metallicity. If we neglect the dipole matrix
elements in the calculation of σ (ω) as we did on the insulating
side, we find D ∝ N (0), in agreement with the expectation that
a finite density of states at the Fermi level implies a metallic
state. However, since only intraband processes can contribute
to the Drude weight D, it is easy to write down the full formula
for D of a cubic system:

D = πe2

3a3L

∑
knσ

v2
knσ δ(εknσ − μ),

where vknσ = 1
�

∂εknσ

∂k is the group velocity. The evolution of
the Drude weight D with U/t is shown in Fig. 8. Note that, as
expected, D exhibits a smooth increase from a vanishing value
in the insulating phase to finite values in the metallic region.

Our results for �, κ(0), and D, therefore, clearly show that
the magnetically induced metal-insulator transition is different
from the Brinkman-Rice scenario which is characterized
by interaction-driven localization of charge carriers with a
concomitant divergence of F s

0 . In our case it is simply the
number of charge carriers which vanishes at the metal-insulator
transition. However, because of its magnetic properties, the
metal-insulator transition can not be identified as a simple
band-crossing (or Lifshitz) transition.
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IV. CONCLUSIONS

In this work we have extended the mean-field study of the
minimal model [Eq. (1)] at T = 0, presented in Ref. [10], to
finite temperatures. We have shown that, for the parameters
specified by Eq. (2) which are believed to be relevant for the
FeSi1−xGex alloys, only two phases exist in the thermody-
namic sense: a paramagnetic with magnetization m = 0 and
a ferromagnetic with m �= 0, separated by a quantum critical
point at a critical coupling Uc/t ≈ 3.494. The paramagnetic
state at T = 0 is insulating, whereas the rest of the phase
diagram [Fig. 2] exhibits a finite Drude weight as well as elec-
tronic compressibility, and is therefore technically metallic.

The temperature dependence of the uniform susceptibility
χ in the paramagnetic phase for U close to Uc is qualitatively
similar to the experimental results for FeSi [6]. The peak of χ at
intermediate temperatures can be traced back to the proximity
of the ordered ferromagnetic phase, thereby supporting the
nearly ferromagnetic scenario for the anomalies of FeSi
[9,14–16]. Furthermore, our model is also qualitatively con-
sistent with the peculiar temperature dependence of the optical
conductivity of the semiconducting compound FeSi [19,20].

Inside the ferromagnetic phase a qualitative change of
the magnetization curves occurs in the vicinity of UN , in
agreement with experiments on FeSi1−xGex [1]. Moreover,
in the limit of vanishing temperature the magnetization m(U )
exhibits nonanalytic behavior at U = UN , whose fingerprints
seem to have been observed in transport properties of FeGe
under pressure [24,27]. In addition, the minimal model
predicts an increased density of states at the Fermi level
N (0) in the range Uc < U < UN , again in agreement with
experiments [1].

In the future it might be interesting to look for possible
metamagnetic transitions in FeSi by studying the finite-B
phase diagram of the minimal model. It might also be
worthwhile to change the electron density ρ with the aim to
describe the isostructural metallic compounds MnSi and CoSi.

It should be pointed out that the FeSi1−xGex alloys have
been described here by a model containing no disorder, which

should rather describe FeGe under pressure. In order to account
for the observed differences between the two physical systems,
for instance, the difference between the critical volumes at the
metal-insulator transition [24], it might be necessary to study
a disordered version of the minimal model [Eq. (1)].

As a next step, one should test the robustness of our pre-
dictions with respect to the fluctuations which were neglected
in our mean-field study of the minimal model. According to a
recent variational study of the minimal model at T = 0 which
takes some of the correlation effects into account [11], the
transition from the paramagnetic insulator to the ferromagnetic
metal may be weakly first order, as also suggested by the
original experiments on the FeSi1−xGex alloys [1]. Corrections
are to be expected also in the paramagnetic phase close to the
transition temperature Tc, since the tendency towards local
moment formation is presumably not described adequately in
our mean-field study. We expect that a proper treatment of
such correlation effects will increase the magnetic anomalies,
and, therefore, the already quite reasonable agreement between
theory and experiments will further improve.

On the experimental side, the applicability of the minimal
model is falsifiable in several ways. First, we suggest that the
electronic specific heat of FeSi does not exhibit any peak at low
temperatures. Second, we predict that the 19 GPa anomaly [24]
in FeGe is caused by a cusp in the pressure dependence of the
zero-temperature magnetization. Third, our results imply that
the Fermi surfaces on the metallic side of the metal-insulator
transition in FeSi1−xGex should be small, and this should be
visible either in angle-resolved photoemission spectroscopy
or in the Hall effect measurements. Moreover, we predict that
the effective charge-charge interactions in this limit should
be attractive. It remains to be seen whether they can lead to
superconductivity.
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