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Optical conductivity of a two-dimensional metal at the onset of spin-density-wave order
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We consider the optical conductivity of a clean two-dimensional metal near a quantum spin-density-wave
transition. Critical magnetic fluctuations are known to destroy fermionic coherence at “hot spots” of the Fermi
surface but coherent quasiparticles survive in the rest of the Fermi surface. A large part of the Fermi surface is
not really “cold” but rather “lukewarm” in a sense that coherent quasiparticles in that part survive but are strongly
renormalized compared to the noninteracting case. We discuss the self-energy of lukewarm fermions and their
contribution to the optical conductivity σ (�), focusing specifically on scattering off composite bosons made of
two critical magnetic fluctuations. Recent study [S. A. Hartnoll et al., Phys. Rev. B 84, 125115 (2011)] found
that composite scattering gives the strongest contribution to the self-energy of lukewarm fermions and suggested
that this may give rise to a non-Fermi-liquid behavior of the optical conductivity at the lowest frequencies. We
show that the most singular term in the conductivity coming from self-energy insertions into the conductivity
bubble σ ′(�) ∝ ln3 �/�1/3 is canceled out by the vertex-correction and Aslamazov-Larkin diagrams. However,
the cancellation does not hold beyond logarithmic accuracy, and the remaining conductivity still diverges as
1/�1/3. We further argue that the 1/�1/3 behavior holds only at asymptotically low frequencies, well inside the
frequency range affected by superconductivity. At larger �, up to frequencies above the Fermi energy, σ ′(�)
scales as 1/�, which is reminiscent of the behavior observed in the superconducting cuprates.

DOI: 10.1103/PhysRevB.89.155126 PACS number(s): 72.10.−d

I. INTRODUCTION

Understanding the behavior of fermions near a quantum-
critical point (QCP) remains one of the most challenging
problems in the physics of strongly correlated materials.
As one possible manifestation of quantum criticality, the
resistivity ρ(T ) of optimally doped cuprates, Fe-pnictides,
heavy-fermion compounds, and other materials exhibits a
linear-in-T behavior over a wide range of temperatures [1–3]
instead of the T 2 behavior expected for a Fermi liquid (FL)
with umklapp scattering [4]. Another type of the non-FL
(NFL) behavior, ρ(T ) ∝ T b with b ≈ 3/2, has been observed
near the end point of the superconducting phase in the hole-
and electron-doped cuprates [5,6], whereas ρ(T ) ∝ T c with
c ≈ 5/3 has been observed near ferromagnetic criticality in a
number of three-dimensional itinerant ferromagnets [7].

In addition to the dc resistivity, the optical conductivity
provides useful information about the energy dependences of
the scattering rate and effective mass. The real part of of the
conductivity σ ′(�), measured at � � T , can be described by
a “generalized Drude formula” [8]

σ ′(�) = �2
p

4π

1/τtr(�)[
�

m∗
tr(�)
m

]2 + (
1

τtr(�)

)2 , (1.1)

where �p is the effective plasma frequency, τtr(�) is the
transport scattering time, and m∗

tr(�) is the “transport effective
mass” (m is bare electron mass). If the fermionic self-energy
� = �′ + i�′′ has a stronger dependence on the frequency
than on the momentum across the Fermi surface (FS),
m∗

tr(�)/m is equal to 1/Z(�), where Z = (1 + ∂�′
∂�

)−1 is the
quasiparticle residue. The transport scattering rate 1/τtr(�)
is proportional to �′′(�), but may be much smaller than the
latter if the dominant scattering mechanism involves small

momentum transfers. For an ordinary FL with interactions
roughly the same at all momentum transfers, �′′(�,T ) ∼
1/τtr(�,T ) ∝ max{�2,T 2} and Z = const (Ref. [9]). Equa-
tion (1.1) then predicts that σ ′(�) = const at low frequen-
cies, when Z�′′(�) � �. Instead, the measured σ ′(�) of
many strongly correlated materials depends strongly on the
frequency, often as a power law σ ′(�) ∝ 1/�d with positive
exponent d, meaning that σ ′(�) increases as � gets smaller.
For example, σ ′(�) of several underdoped and optimally
doped cuprates in the (x,�) domain outside the pseudogap
phase (x stands for doping) was described by a power-law
form with either d ≈ 1 (Ref. [10]) in a wide frequency range,
roughly from 100 meV to about 1 eV, or with d ≈ 0.7
(Ref. [11]) and d = 0.65 (Refs. [12,13]) in the intermediate
frequency range � ∼ 100–500 meV. Likewise, σ ′(�) of the
ruthenates SrRuO3 (Ref. [14]) and CaRuO3 (Refs. [15,16]), as
well of the helimagnet MnSi (at ambient pressure, Ref. [17]),
follows a power-law form with d ≈ 1/2.

Among the various deviations from the FL scenario, the
linear scaling of ρ(T ) with T and concomitant 1/� scaling
of σ ′(�) are considered as the most ubiquitous and universal
ones [2,3]. As the temperature and frequency dependences of
the conductivity are likely to originate from the same scattering
mechanism, the combination of these two scalings imposes
some important constraints on the form of the fermionic self-
energy.

These constraints form the basis of the phenomenological
“marginal FL” (MFL) theory [18], which stipulates that
�′′(�,T ) scales as � or T (whichever is larger) at any point on
the FS, and also that �′′(�,T ) is comparable to 1/τtr(�,T ).
However, attempts to derive the MFL form of 1/τtr(�,T )
microscopically, in some model for interacting electrons near
a QCP in 2D, have been largely unsuccessful. Problems arise
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both for Pomeranchuk (q = 0) and density-wave (finite-q)
types of a QCP, in either charge or spin channel. For a q = 0
QCP, the fact that critical scattering involves small momentum
transfers implies that 1/τtr is smaller than �′′(�,T ) and not
only differs from it in magnitude but also scales differently with
� and T . Therefore, a MFL behavior of the self-energy does
not translate into that of the conductivity. For a finite-q QCP,
only a subset of points on the FS around hot spots is affected
by criticality, while fermions on the rest of the FS preserve
a regular FL behavior. Because both resistivity and optical
conductivity are obtained by averaging over the Fermi surface,
a NFL contribution from hot fermions is short-circuited by
the contributions from other parts of the FS, i.e., the largest
contributions to ρ(T ) and σ ′(�) come from outside the hot
regions (the “Hlubina-Rice conundrum” [19]).

In the MFL phenomenology, this problem is bypassed by
assuming that the critical bosonic field is purely local, i.e.,
that the corresponding susceptibility does not depend on q

(Ref. [20]) and diverges at the QCP for all momenta. As
a result, typical 1/τtr is of the same order as �′′(�) and
every point on the FS is hot. However, a scenario in which a
bosonic susceptibility softens simultaneously at all momenta
is very special and not likely to be applicable to all systems in
which a linear-in-T resistivity and 1/� scaling of the optical
conductivity have been observed.

An alternative route, which we will follow in this paper, is to
revisit the “conventional” theory of a density-wave instability
with soft fluctuations peaked near a particular q, and to analyze
in more detail contributions to the resistivity and optical
conductivity coming from fermions outside the hot regions.

An important step in this direction has recently been
made by Hartnoll, Hofman, Metlitski, and Sachdev (HHMS)
in Ref. [21]. They considered the optical conductivity of a
two-dimensional (2D) metal near a spin-density-wave (SDW)
instability with ordering wave vector qπ = (π,π ) and focused
primarily on the contribution to σ (�) coming from fermions
in “lukewarm” regions located just outside the hot regions.
Lukewarm fermions behave as FL quasiparticles even right at
the QCP, but their residue is small and depends on the distance
to the hot spot in a singular way. The leading contribution to
�′′(�) of lukewarm fermions comes not from direct scattering
by qπ , as the initial and final states of this process can not be
simultaneously near the FS, but from a composite scattering
process which involves two critical bosonic fields. Scattering
by one field takes a fermion out of the FS, while scattering by
another brings it back to the FS and, furthermore, to the vicinity
of its original location. The self-energy �′′(�) from composite
scattering has a FL form but depends in a singular way on the
distance to the nearest hot spot. Substituting this self-energy
into the conductivity bubble, HHMS obtained a NFL form of
the optical conductivity at the smallest �: σ ′(�) ∝ 1/�1/3 to
two loop-order. (Here and in the rest of the paper, � is assumed
to be positive so that all nonanalytic functions of � are to be
understood as real.)

HHMS further argued that the self-energy from composite
scattering comes predominantly from 2kF processes (two in-
coming particles have nearly opposite momenta), in which case
vertex corrections do not cancel the self-energy contribution.
Hence, the final result for σ ′(�) should be the same as obtained
simply by replacing 1/τtr by �′′.

In this paper, we report two results. First, we analyzed
the interplay between the self-energy, vertex-correction, and
Aslamazov-Larkin diagrams and found that the leading con-
tribution to σ ′(�) is canceled between different diagrams.
In this respect our result differs from that by HHMS. We
found, however, that the cancellation does not hold beyond the
logarithmic accuracy, and even after cancellations σ ′(�) still
diverges at � → 0 as 1/�1/3.

Second, we found that, if the ratio of the spin-fermion cou-
pling to the Fermi energy is treated as a small parameter of the
theory, the 1/�1/3 behavior holds only at asymptotically low
frequencies, below some scale �min which is parametrically
smaller than the scale of the d-wave superconducting transition
temperature Tc. At higher frequencies, the optical conductivity
behaves in a MFL way: σ ′(�) ∝ 1/�. This last behavior holds
up to frequencies on the order of the fermionic bandwidth.

In the next subsection, we present a brief summary of
the theoretical results for the optical conductivity near both
q = 0 and finite-q critical points, obtained without taking into
account composite scattering. Then, in Sec. I B, we summarize
our results and describe their relation to those by HHMS.

A. Optical conductivity near a QCP: Summary of prior results

1. Pomeranchuk QCP (q = 0)

A Pomeranchuk-like QCP separates two spatially uni-
form phases, e.g., a paramagnet and ferromagnet. This is
a continuous phase transition, and the correlation length of
long-wavelength order-parameter fluctuations diverges at the
critical point. Scattering of fermions by these fluctuations is
strong, but typical momentum transfers q̃ are small compared
to kF . For a generic FS [22], the optical conductivity is finite
even in the absence of umklapp scattering and disorder, and
is described by Eq. (1.1) with 1/τtr(�) that differs from
�′′(�) by the “transport factor” (q̃/kF )2. Critical scaling
implies that q̃ ∝ �2/z, where z = 3 is the dynamical exponent
for a Pomeranchuk transition [23]. As a result, scaling of
the conductivity is different from that of �′′, both in 3D
and 2D [22–25]. In 3D, both �′′(�) ∝ �D/z and m∗

tr/m =
1/Z = 1/| ln �| fit the MFL scheme, while the transport
scattering rate 1/τtr ∼ �′′(�)(q̃/kF )2 ∝ �′′(�)�2/z scales as
�5/3. Then the conductivity σ ′(�) ∼ �′′(�)Z2�

2
z
−2 scales as

1/�1/3 (modulo a logarithm), which is very different from
the MFL, 1/� form. In 2D, both �′(�) and �′′(�) scale as
�2/3 (modulo logarithmic renormalizations by higher-order
processes [26,27]). In this situation, the quasiparticle Z factor
is frequency dependent and scales as Z(�) ≈ (∂�′/∂�)−1 ∝
�1/3 for frequencies below some characteristic scale. As a
result, σ ′(�) ∼ �′′(�)Z2(�)�

2
z
−2 tends to a constant value

in the low-frequency limit, as in an ordinary FL. At higher
frequencies, when the Z factor is almost equal to unity,
σ ′(�) behaves as �′′(�)�2/z/�2 ∝ �−2/3. At even higher
frequencies, where q̃ ∼ kF , σ ′(�) scales as �−4/3.

2. Density-wave QCP (finite q)

A density-wave QCP separates a uniform disordered phase
and a spatially modulated ordered phase, e.g., a paramagnet
and spin-density wave (SDW). For definiteness, we consider
an SDW with ordering momentum qπ = (π,π,π ) in 3D and
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qπ = (π,π ) in 2D (the lattice constant is set to unity). Because
only a subset of points on the FS is connected by qπ , critical
fluctuations affect mostly the fermions near such “hot lines”
(in 3D) or hot spots (in 2D); see Fig. 1 for the 2D case. On the
rest of the FS, the interaction mediated by critical fluctuations
transfers a fermion from a FS point kF to kF + qπ , which is
away from the FS. The energy of the final state (measured from
the Fermi level) |εkF +qπ

| is finite, hence at frequencies smaller
than this scale quantum criticality does not play a role, and the
self-energy retains the same FL form as away from the QCP.

In 3D, the effective interaction between hot fermions,
mediated by critical fluctuations, yields �′′(�) ∝ � and
m∗

tr/m = 1/Z = 1/| ln �|, same as for a q = 0 QCP. Because
qπ is a large-momentum transfer, 1/τtr(�) is the same as
�′′(�). However, the width of the hot region [the distance
from the hot line where �′′(�) ∝ �] by itself scales as �1/2,
hence the conductivity σ ′(�) ∝ �′′(�)Z2(�)�1/2/�2 scales
as 1/�1/2, up to logarithmic corrections.

In 2D, the effective interaction mediated by critical fluc-
tuations destroys FL quasiparticles in hot regions, which is
manifested by a NFL form of the self-energy. At one-loop
level, �′′(�) ∼ �′(�) ∝ √

�, and Z(�) ∝ √
�. The width of

the hot region scales as �1/2, as in 3D, and the contribution to
the conductivity from hot fermions tends to a constant value
at vanishing �. Beyond one-loop level, this contribution is
further reduced by vertex corrections [21] and scales as �a

with a > 0, i.e., it vanishes at � = 0.
For � larger than the maximum value of |εkF +qπ

| the whole
FS is hot, i.e., �′′(�) is approximately the same at all points on
the FS. Parametrically, this holds only at rather high energies,
larger than the bandwidth (see Sec. III A below), but the scale
may be reduced by a small numerical prefactor. If the self-
energy still obeys the quantum-critical form in this regime,
σ ′(�) scales as 1/� in 3D, and either as 1/

√
� or 1/�3/2 in

2D, depending on whether Z in this regime still scales as
√

�

or has already saturated at Z = 1 [28].

B. Summary of the results of this paper

Following earlier work [21,27,28], we adopt the spin-
fermion model as a microscopic low-energy theory for a
system of 2D interacting fermions at an SDW instability. This

1

1

2
2

q

FIG. 1. (Color online) A two-dimensional Fermi surface with hot
spots denoted by 1, 1̄, 2, and 2̄. Hot spots 1 and 2 are connected by
the spin-density-waver ordering vector qπ = (π,π ). Hot spots 1̄ and
2̄ are the mirror images of hot spots 1 and 2, correspondingly.

model has two characteristic energy scales: the Fermi energy
EF ∼ vF kF and the effective spin-mediated four-fermion
interaction ḡ. To decouple the low- and high-energy sectors
of the theory, we choose the ratio ḡ/EF to be small. We
found that in this case the whole FS becomes hot only at
� > �max ≡ E2

F /ḡ > EF . At such high energies, results of
the low-energy theory can hardly be valid. To obtain a true
low-energy behavior, one then has to consider the situation
when only some parts of the FS are hot while the rest of it is
cold. In this case, σ ′(�) is given by an average over the FS:

σ ′(�) ∝
∮

dkF

1/τtr(kF ,�)

(�/ZkF
)2 + [1/τtr(kF ,�)]2 , (1.2)

where kF indicates a point on the FS and ZkF
= m/m∗

tr(kF ,�)
depends on the position of kF relative to the nearest hot spot.

Hot fermions have the largest self-energy but the smallest
ZkF

, and also the width of the hot region shrinks as �

decreases.
To two-loop order, the contribution from hot fermions to the

conductivity σ ′(� → 0) is a frequency-independent constant,
which simply adds up to FL-like, constant contributions from
the cold regions. Beyond two-loop order, this contribution is
further reduced by vertex corrections [21].

The issue we considered, following HHMS, is whether
fermions located away from the hot regions can give rise to
a NFL behavior of the optical conductivity at an SDW in-
stability. Phenomenological models that take into account the
interplay between the hot and cold regions in various transport
phenomena have been considered by many authors [29]. We
considered this interplay within a microscopic theory.

At first glance, the interaction between fermions located
away from the hot regions is unable to give rise to a NFL
behavior of σ ′(�). Indeed, the interaction peaked at qπ

moves a fermion away from the FS, into a region where
its energy (measured from the Fermi level) is finite. One
could then expect quantum criticality to be irrelevant, and the
corresponding contribution to σ ′(�) to approach a constant
value at T = 0, as in an ordinary FL. However, this reasoning
is oversimplified because because there also exist composite
processes involving an even number of critical bosonic fields
in addition to processes with momentum transfer qπ . These
composite processes have been introduced in Ref. [27] and
considered in detail by HHMS. (For more recent work, see
Ref. [30].) HHMS introduced a composite boson, with a
propagator made from two critical propagators of the primary
bosonic fields and two Green’s functions of intermediate
fermions (see Fig. 4). They found (and we confirmed their
result) that the imaginary part of the fermionic self-energy
from “one-loop” composite scattering (diagram a in Fig. 5)
scales as �′′

comp1
(�) ∝ �3/2 for any point on the FS. This

singular self-energy, however, does not crucially affect σ ′(�)
because the �3/2 term comes from small-momentum scattering
and, therefore, 1/τtr(�) is smaller than �′′(�) by power of �,
making this contribution smaller than a regular FL term.

A more interesting contribution to the self-energy comes
from “two-loop” composite scattering of lukewarm fermions
(Fig. 6). To be specific, a fermion located away from a hot spot
by distance δk along the FS is classified as “lukewarm” if δk is
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large enough for the self-energy to assume a FL form with � ∼
O(�) + iO(�2), yet small enough such that ∂�′(δk,�)/∂� >

1. The characteristic frequency separating the hot and luke-
warm regimes is �b ≡ (vF δk)2/ḡ, and the boundary between
lukewarm and cold regimes is |δk| ∼ ḡ/vF ; the lukewarm
behavior holds for kF (�ḡ/E2

F )1/2 < |δk| < ḡ/vF .
HHMS put a special emphasis on a particular two-loop

composite process (Fig. 6) in which intermediate fermions
belong to “lukewarm” regions near opposite hot spots located
at khs and −khs, e.g., spots 1 and 1̄ in Fig. 1. For a system with
a circular FS, such a process is often called a “2kF process”
and we will use this terminology here [31].

Our result for the self-energy of a lukewarm fermion
from both two-loop forward and 2kF composite processes is
FL-like at the smallest �, i.e., �′′ scales as �2; however, the
prefactor of the �2 term depends strongly on δk: �′′

comp2
(�) ∝

[ḡ2�2EF /(vF δk)4] ln3 �b

�
. This is parametrically (by a factor

of kF /|δk|) larger than �′′
qπ

∝ ḡ2�2/(vF δk)3 from direct
scattering by qπ [27,28,32]. The HHMS result for �′′

comp2
(�)

differs from ours: they found that �′′
comp2

(�) is the same as

�
′′
qπ

, up to a logarithmic factor. The difference is due to the
fact that we considered a 2D FS with finite curvature, of order
1/kF , while HHMS assumed that the curvature is zero at the
bare level but generated dynamically by the interaction. The
�2 behavior of �′′

comp2 holds up to a characteristic scale �b1 ≡
(vF δk)3/(ḡEF ) ∼ �b(δk/kF ) < �b (modulo logarithms). In
the frequency interval �b1 < � < �b, the curvature of the
FS becomes irrelevant, and composite scattering becomes
effectively a 1D process. In this regime, we confirmed the
HHMS result that the self-energy acquires a MFL-like form
with �′′

comp2
(�) ∝ ḡ�/(vF δk).

We extended the analysis to the region of larger � > ḡ

and vF |δk| > ḡ, not considered by HHMS, and obtained the
full forms of the self-energy due to one-loop and two-loop
composite scattering (see Figs. 7 and 8).

A substitution of these full forms into the current bubble
gives the “self-energy” contribution to the optical conductivity
σ ′

�(�), which does not take into account vertex corrections.
We found that σ ′

�(�) ∝ ln3 �/�1/3 at frequencies below
the lowest energy scale of the model, i.e., for � < �min ≡
ḡ2/EF < ḡ. The exponent 1/3 coincides with the HHMS
result to two-loop order. At higher frequencies �min < � < ḡ,
we found that two-loop composite scattering of lukewarm
fermions gives rise to a MFL-like conductivity: σ ′

�(�) ∝ 1/�.
The 1/� behavior extends to even higher frequencies, up to
�max ≡ E2

F /ḡ, at which scale the whole FS becomes hot.
In the range ḡ < � < �max, the dominant contribution to
conductivity comes from direct qπ scattering.

Indeed, the applicability of the low-energy spin-fermion
model at such energies is questionable, and at ��max our
results are valid only if this scale is still much smaller than
fermionic bandwidth due to numerical factors. In a generic
case when EF is of order bandwidth and �max > EF , we can
only expect that the 1/� behavior of σ ′

� , obtained within the
spin-fermion model, holds up to � � EF .

Whether σ ′
�(�) gives a good approximation for the

actual optical conductivity depends on the interplay
between self-energy and vertex-correction insertions into the
conductivity bubble. HHMS argued that the self-energy and

vertex-correction diagrams for 2kF scattering add up rather
than cancel each other because the current vertices in the
self-energy diagram are near the same hot spot, while the
current vertices in the vertex-correction diagram are near the
opposite hot spots. We obtained a somewhat different result.
Namely, we found that the ln3 �/�1/3 contributions to σ ′(�)
are canceled within each of the two groups of diagrams. The
first group contains the self-energy and vertex-correction
insertions (diagrams A and B in Fig. 12), while the second one
contains two Aslamazov-Larkin–type diagrams (diagrams C

and D in Fig. 13). HHMS considered only one diagram in
each group, and, consequently, did not find the cancellation.

We found, however, that the cancellation does not hold
beyond the logarithmic accuracy: after cancellations, σ ′(�)
still diverges at vanishing frequency as σ ′(�) ∝ 1/�1/3.
We also found that at higher frequencies � > �min, the
vertex corrections change the numerical prefactor but not the
functional form of the 1/� scaling, i.e., the the final result for
the conductivity in this range is σ ′(�) ∼ σ ′

�(�) ∝ 1/�.
The outcome of our analysis is that composite scattering of

lukewarm fermions does give rise to a NFL behavior of the
optical conductivity at an SDW instability, namely,

σ ′(�) ∝
{
�−1/3 for � < �min;
�−1 for �min < � < ḡ.

(1.3)

The 1/� behavior furthermore extends to even higher fre-
quencies, up to �max. At ḡ < � < �max it comes from hot
fermions. These are the key results of this paper.

The rest of the paper is organized as follows. Section II
is devoted to the fermionic self-energy. We briefly review the
spin-fermion model near an SDW transition in Sec. II A and
discuss the fermionic self-energy for hot, lukewarm, and cold
fermions due to large-q scattering by a primary bosonic field
in Sec. II B. In Sec. II C, we consider small-q scattering by a
composite field made from two primary fields. In Sec. II D,
we summarize the results for the self-energy to two-loop
order and present the hierarchies of crossovers in � as a
function of � and δk. In Sec. II F, we analyze the effect of
higher-loop corrections. Section III is devoted to the optical
conductivity. In Sec. III A, we consider the contribution to the
conductivity obtained by inserting the fermionic self-energy
into the conductivity bubble. In Sec. III C 2, we show the self-
energy and vertex-correction diagrams mutually cancel each
other if one neglects the variations of the quasiparticle residue
over the FS. In Sec. III C 3, we show, however, that if this
variation is taken account, the NFL power-law singularities in
the conductivity [Eq. (1.3)] survive after cancellations between
the self-energy and vertex-correction diagrams. In Sec. III B,
we explain how this result can be understood in the framework
of the semiclassical Boltzmann equation. Our conclusions are
presented Sec. IV. For the readers’ convenience, the list of
notations is given in Table I.

II. SPIN-FERMION MODEL AND FERMIONIC
SELF-ENERGY

A. Spin-fermion model

The spin-fermion model has been discussed several times
in recent literature [21,27,28], so we will be brief. The model
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TABLE I. List of notations.

Notation Meaning Relation to other parameters

ḡ coupling constant of the spin-fermion model (in units of energy) −′′−
γ Landau damping coefficient γ = 4ḡ/πv2

F

kF arbitrary point on the Fermi surface
kh.s. location of the hot spot
qπ SDW wave vector qπ = (π,π )
k⊥ component of k along the normal to the Fermi surface
δk distance from the hot spot along the Fermi surface
m∗ effective mass defined by Eq. (2.23)
E∗

F effective Fermi energy EF = m∗v2
F /2

K (2 + 1) momentum K = (k,�)
KF (2 + 1) momentum on the Fermi surface KF = (kF ,�)
z dynamic scaling exponent
ZkF

= Zδk quasiparticle residue Eq. (2.12)
�(P,K; P ′,K ′) ≡ �(P,K; Q) composite vertex Eq. (2.18)
�qπ

self-energy due to scattering by a single SDW fluctuation Eq. (2.9)
�comp1

one-loop self-energy due to scattering by composite bosons Eqs. (2.20) and (2.21)

�comp2

two-loop self-energy in the 2D regime Eqs. (2.26) and (2.28)
two-loop self-energy in the 1D regime Eqs. (2.35) and (2.36)

�comp3
three-loop self-energy

�min lower boundary of the 1/� behavior of the conductivity ḡ2/EF

�max upper boundary of the 1/� behavior of the conductivity E2
F /ḡ

�b crossover between FL and NFL forms of the self-energy (vF δk)2/ḡ

k̄ dimensionless distance from the hot spot along the Fermi surface k̄ = vF δk/ḡ

�̄ dimensionless frequency �̄ = �/ḡ

�̄min dimensionless form of �min �̄min/ḡ = ḡ/EF

�̄max dimensionless form of �max �̄max/ḡ = (ḡ/EF )2

�̄b dimensionless form of �b �b/ḡ = k̄2

σ ′(�) real part of the optical conductivity at T = 0
σ ′

�(�) σ ′(�) obtained by taking into account self-energy insertions only

assumes that the low-energy physics near a SDW instability
in a 2D metal can be described via approximating the fully
renormalized fermion-fermion interaction by an effective
interaction in the spin channel. This interaction is mediated
by nearly-gapless antiferromagnetic spin fluctuations:

Hint =
∑
k...p′

V (k − p)c†k,αc
†
k′βck+k′−p,γ cp,δ σαδ · σβγ (2.1)

with

V (k − p) = ḡχ (k − p), (2.2)

where ḡ is the effective coupling (in units of energy), and

χ (q) = χ (q,� = 0) = 1

ξ−2 + |q − qπ |2 (2.3)

is proportional to the static spin susceptibility peaked near qπ .
The input parameters of the model are ḡ, the spin correlation

length ξ , and the Fermi velocity vF which, in general, depends
on the location along the FS. The coupling ḡ is assumed
to be smaller than the fermionic bandwidth, otherwise the
low- and high-energy sectors of the theory do not decouple.
Landau damping of spin fluctuations is generated dynamically,
as the bosonic self-energy, and is due to the same spin-fermion
coupling (2.1) that gives rise to the fermionic self-energy.

As in previous work, we consider a FS that crosses the
magnetic Brillouin zone boundary at eight points: the hot spots
(see Fig. 1). There are two hot spots in each quadrant of the

Brillouin zone, and four out of the eight hot spots are the mirror
images of the other four.

The Fermi velocities at the two hot spots connected by qπ

are given by vF (khs) = (vx,vy) and vF (khs + qπ ) = (−vx,vy),
where the local x axis is along the (π,π ) vector connecting the
two hot spots and y is orthogonal to it. Instead of vx and vy ,
it is more convenient to use vF = (v2

x + v2
y)1/2 and the angle θ

between vF (khs) and vF (khs + qπ ): θ = arccos (v2
x − v2

y)/v2
F .

The dependence of the self-energy on θ is not crucial as long as
θ is not too small. To shorten the formulas below, we assume
that θ = π/2 (i.e., vx = vy). This assumption holds when the
hot spots are located close to (0,π ) and symmetry-related
points.

For a FS of the type shown in Fig. 1, the fermionic
bandwidth is of the same order as the Fermi energy EF ∼
vF kF , where kF is the Fermi momentum averaged over the FS.
At the QCP, where ξ−1 = 0, we then have only two relevant
energy scales: EF and ḡ (we remind that ḡ is chosen to be
smaller than EF ). We will see that the frequency dependence
of the conductivity exhibits crossovers at two energies:

�min ≡ ḡ2

EF

and �max ≡ E2
F

ḡ
. (2.4)

The hierarchy of energy scales in the model is then

�min < ḡ < EF < �max. (2.5)
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Here and in the rest of the paper, we use weak inequalities (<
and >) instead of strong ones (� and �) because the actual
crossovers are determined not only by parameters but also by
numbers, which we do not attempt to compute in this paper.
Also, ∼ means “equal in order of magnitude” and ≈ means
“approximately equal”.

B. Self-energy due to qπ scattering

1. One-loop order

First, we consider the fermionic self-energy due to scat-
tering mediated by a single spin fluctuation peaked at qπ =
(π,π ). A self-consistent treatment of the fermionic and bosonic
self-energies shows [27,28,32] that close to criticality, i.e.,
when ξ ḡ/vF is larger than unity, the fermionic self-energy
depends much more strongly on the frequency than on the
momentum transverse to the FS. The self-energy is also the
largest at the hot spots because a fermion scattered from one
of the hot spots lands almost exactly on another hot spot. To
one-loop order, the bosonic self-energy (the Landau damping
term) is equal to γ�, where

γ = 4ḡ

πv2
F

(2.6)

is the Landau damping coefficient. The fermionic self-energy
right at the hot spot is given by

�qπ
(khs,�) = i

3ḡ

2πvF γ
(
√

−iγ� + ξ−2 − ξ−1). (2.7)

The one-loop bosonic self-energy can be absorbed into the
staggered spin susceptibility. Correspondingly, the effective
interaction becomes dynamic: V (q) → V (q,�), where

V (q,�) = ḡ

ξ−2 + (q − qπ )2 − iγ�
. (2.8)

As long as ξ is finite, �qπ
(khs,�) at the lowest � has a

canonical FL form, with �′
qπ

(khs,�) ∝ � and �′′
qπ

(khs,�) ∝
�2. Right at the QCP, ξ = ∞, and �qπ

(khs,�) has a NFL form:
�qπ

(khs,�) ∝ √
i�. In this case, �′

qπ
(khs,�) and �′′

qπ
(khs,�)

are of comparable magnitudes, and both are larger than the
bare � term in the fermionic propagator.

For a fermion located away from a hot spot, a FL behavior
holds even at criticality (ξ = ∞), but the prefactors of the FL
forms of �′

qπ
(kF ,�) and �′′

qπ
(kF ,�) depend crucially on the

distance from a hot spot along the FS, δk. At ξ = ∞,

�qπ
(kF ,�) = i

3ḡ

2πvF γ
(
√

−iγ� + (δk)2 − |δk|)

≡ �
3ḡ

4πvF |δk|S
(

ḡ�

(vF |δk|)2

)
, (2.9)

where

S(x) = iπ

2x

(√
1 − 4ix

π
− 1

)
(2.10)

with S(0) = 1 and S(x � 1) ≈ (iπ/x)1/2. Finite δk plays the
same role as finite ξ−1: both weaken a NFL behavior of the

fermionic self-energy. Expanding Eq. (2.9) in �, we obtain

�qπ
(kF ,�) = �

(
1

ZkF

− 1

)
+ 3

4π2

ḡ2

(vF |δk|)3
i�2 + . . . ,

(2.11)

where

1

ZkF

= 1 + 3ḡ

4πvF |δk| . (2.12)

A crossover between the FL and NFL regimes occurs at the
characteristic energy

�b ≡ (vF |δk|)2

ḡ
∼ �max

( |δk|
kF

)2

. (2.13)

At � < �b, the self-energy has a FL form [Eq. (2.11)], at
� > �b, �qπ

(kF ,�) scales as
√

�.
In the rest of the paper, we will be focusing on scaling

dependences while discarding numerical prefactors.

2. Classification of fermions as “cold,” “lukewarm,” and “hot”
in the presence of qπ scattering

It is convenient to measure energies in units of ḡ and
momenta in units of ḡ/vF . Accordingly, we define the
dimensionless energy and momentum as

�̄ ≡ �

ḡ
, k̄ ≡ vF δk

ḡ
. (2.14)

We also introduce dimensionless quantities

�̄max = �max

ḡ
=

(
EF

ḡ

)2

, �̄min = �min

ḡ
= ḡ

EF

,

�̄b = �b

ḡ
= k̄2. (2.15)

In these variables, a crossover between the FL and NFL
regimes occurs at �̄ ∼ �̄b = k̄2.

The behaviors of �′′
qπ

(k̄,�̄) ≡ �′′
qπ

(kF ,�) and Zk̄(�̄) ≡
ZkF

are shown in Fig. 2, as a function of �̄ at fixed k̄, and
in Fig. 3, as a function of k̄ at fixed �̄. The distinction between
cold, lukewarm, and hot behaviors depends on the energy and

1 

b = k 2

'' Z '' Z

b = k 21 1 

1 

k

lukewarm 

hot 
hot cold 

k < 1 k > 1

FIG. 2. (Color online) Imaginary part of the fermionic self-
energy from qπ scattering, �′′

qπ
(k̄,�̄) (left axis), and the quasiparticle

residue, Zk̄(�̄) (right axis), as a function of �̄. Left panel: k̄ < 1;
right panel: k̄ > 1. Dimensionless variables are defined according to
Eqs. (2.14) and (2.15).
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FIG. 3. (Color online) Imaginary part of the fermionic self-
energy from qπ scattering, �′′

qπ
(k̄,�̄) (left axis), and the quasiparticle

residue, Zk̄(�̄) (right axis), as a function of k̄. Left panel: �̄ < 1;
right panel: �̄ > 1. Dimensionless variables are defined according to
Eqs. (2.14) and (2.15).

is best seen in Fig. 3, where �′′
qπ

(k̄,�̄) and Zk̄(�̄) are plotted
as a function of k̄.

We define a fermion as “cold” if, at given �̄, �′′
qπ

(k̄,�̄)
has a FL, �̄2, form and Zk̄(�̄) ≈ 1. The cold regions are
indicated in the right panels of Figs. 2 and 3. With this
definition, cold fermions are described by a weak-coupling
FL theory, and thus contribute to the FL-like part of of the
conductivity. Next, we define a fermion as “lukewarm” if
�′′

qπ
(k̄,�̄) still has a FL form but Zk̄(�̄) is smaller than unity

and scales as k̄ for k̄ < 1. The corresponding regions are
shown in the left panels of Figs. 2 and 3. Finally, we define a
fermion as “hot” if �′′

qπ
(k̄,�̄) has a NFL form, i.e., �′′

qπ
∝

√
�̄

to one-loop order. With this last definition, the hot region
gradually extends with increasing frequency and, for �̄ > 1,
includes the range where the quasiparticle residue is close to
unity. In principle, one could separate this range from a truly
“hot,” NFL behavior at �̄ < 1, where not only �′′

qπ
(k̄,�̄) scales

as
√

�̄ but the quasiparticle residue is smaller than unity as
well. We will not do this, however, because our main goal
is to distinguish between the FL-and NFL-like forms of the
optical conductivity, which is determined primarily by �′′.
Besides, as we discuss in Sec. II E, the distinction between hot
and lukewarm fermions becomes more subtle once composite
scattering is taken into account.

With these definitions, at fixed |k̄| < 1 a crossover between
the lukewarm and hot regimes occurs at �̄ ∼ �̄b ∼ k̄2 < 1.
There is no range for the cold behavior in this case. At |k̄| > 1,
on the contrary, there is no range for the lukewarm behavior:
as the frequency increases, the crossover between the cold
and hot regimes occurs at �̄ ∼ �̄b ∼ k̄2 > 1. Again, we will
see in Sec. II E that the structure of crossovers changes once
composite scattering is included.

3. Higher-order terms and the accuracy of the perturbation theory

A peculiar feature of the spin-fermion model near criticality
is the absence of a natural small parameter, even if the coupling
ḡ is chosen to be small (compared with the Fermi energy).
Although the loop expansion goes formally in powers of ḡ, a
dimensionless parameter of the perturbative expansion is not

ḡ/EF but rather δ ≡ ḡv2
F /γ , where γ is the Landau damping

coefficient [Eq. (2.6)]. Because γ by itself scales as ḡ/v2
F ,

the spin-fermion coupling drops out, and δ ∼ 1, i.e., higher-
order terms in the loop expansion for the self-energy are of
the same order as the one-loop expression. The functional
forms of the leading terms in the higher-loop fermionic and
bosonic self-energies are then the same as the one-loop result.
On a more careful look, however, the two-loop terms contain
additional logarithmic factors (ln � or ln |δk|, depending on
the regime), and the powers of logarithms increase with the
loop order [27,28,32].

One can try to control the logarithmic series by extending
the model to N fermionic flavors and taking the limit N → ∞.
In this case, the Landau damping parameter becomes of
order N and the expansion parameter becomes small as 1/N .
However, it has recently been found that this procedure brings
the theory only under partial control because some perturbative
terms from n � 4-loop orders do not contain 1/N [26,27,32].
Having this in mind, we will keep N = 1 in our analysis
and check whether higher-order terms in the loop expansion
introduce a qualitatively new behavior, not seen at lower
orders. To be more specific, in the next section we discuss how
higher-loop terms affect the structure of the imaginary part of
the self-energy for a lukewarm fermion. At one-loop order,
�′′(kF ,�) ∝ ḡ2�2/(vF |δk|)3. It turns out that, beyond the
one-loop level, there are contributions that give parametrically
larger �′′(kF ,�), with a stronger dependence either on � or on
δk. To analyze these terms, we follow Ref. [21] and introduce
the notion of composite scattering.

C. Self-energy due to composite scattering

1. Composite scattering vertex

In a composite scattering process, a fermion located on the
FS undergoes an even number of scatterings by the primary
bosonic field with a propagator peaked at q = qπ [Eq. (2.8)].
At intermediate stages, the fermion can move far away from
the FS but it eventually comes back to the vicinity of the point
of origin.

Composite scattering processes can be viewed as 2n-loop
processes in terms of the original spin-fluctuation propagator.
However, it is more convenient to view them as separate
a subclass of processes, which involve small momentum
scattering governed by new composite vertices. The lowest-
order composite vertex involves two scatterings by momenta
qπ + q1 and qπ + q2, in which both q1 and q2 are small.
One can construct two vertices of this kind, with intermediate
processes in the particle-hole and particle-particle channels.
Such two vertices are depicted in panels A and B of Fig. 4,
correspondingly. Each vertex is a convolution of two spin-
fluctuation propagators with two propagators of intermediate
fermions.

As an example, we analyze the particle-hole vertex (panel A
in Fig. 4) for composite scattering between fermions with the
initial (2+1) momenta P = (p,�p) and K = (k,�), and final
momenta P ′ = P − Q and K ′ = K + Q, with Q = (q,�q).
To simplify calculations, we will first compute the composite
vertex and self-energy in Matsubara frequencies and then
perform analytical continuation. Neglecting spin indices for
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K

P

K '

P '

K

(a)

(b)

(c)

FIG. 4. (Color online) Composite vertex with intermediate pro-
cesses in the particle-hole (a) and particle-particle channel (b). Labels
1, 1̄, 2, and 2̄ correspond to hot spots in Fig. 1. The notation “P,1”
means that the 2D component of P = (p,�p) is near hot spot 1, and
similarly for other 2 + 1 momenta. In a forward-scattering event, the
initial and final states belong to the same hot spot, e.g., spot 1. A 2kF

event involves fermions from opposite hot spots, 1 and 1̄. Double solid
lines denote off-shell fermions at hot spots 2 (forward scattering) and
2̄ (2kF scattering). The total composite vertex (C) is a sum of vertices
A and B. The wavy line denotes the effective dynamic interaction
carrying a momentum close to qπ [Eq. (2.8)].

a moment, we have

�(P,K; Q) = ḡ2
∫

d3Q1

(2π )3
G(P + Qπ + Q1)

×G(K + Q + Qπ + Q1)χ (Qπ + Q1)

×χ (Qπ + Q1 + Q), (2.16)

where Qπ = (qπ ,0). We choose the initial states to be on the
FS with (2+1) momenta P = PF ≡ (pF ,�p) and K = KF ≡
(kF ,�) with small � and �p, and at distances δp and δk from
the corresponding hot spots. Later, we will choose pF and kF

to be either near the same hot spot, e.g., hot spot 1, or near
diametrically opposite hot spots, e.g, hot spots 1 and 1̄ in Fig. 1.

One can make sure that the largest contribution to
�(PF ,KF ; Q) at small Q comes from the range of integration
when all three components of Q1 are small. Such a scattering
event transfers fermions from the points pF and kF on the
FS to the intermediate states with 2-momenta about pF + qπ

and kF + qπ , while changing the frequencies only by a small
amount (of order �q). Since the energies of the intermediate
fermions εpF +qπ

and εkF +qπ
are large compared with their

frequencies �p + �q1 and � + �q + �q1 , the corresponding
fermionic Green’s functions can be approximated by their
static limits 1/vF δp and 1/vF δk, and taken outside the
integral. The remainder of �(PF ,KF ; Q) contains a product
of two spin propagators integrated over the 2 + 1 momentum

Q1 = (q1,�q1 ):∫
d2q1d�q1

(2π )3

1

q1
2 + γ

∣∣�q1

∣∣ 1

(q1 + q)2 + γ
∣∣�q1 + �q

∣∣ .
(2.17)

The integral diverges logarithmically at the lower limit and, to
logarithmic accuracy, yields (1/4π2γ ) ln[�2/(q2 + γ |�q |)],
where � ∼ min{|δk|,|δp|}. Using Eq. (2.6) for γ , one ob-
tains [21]

�(PF ,KF ; Q) = ḡ

16π

1

δkδp
ln

�2

q2 + γ |�q | . (2.18)

Notice that the vertex in Eq. (2.18) depends only on �q ,
although the original vertex in Eq. (2.16) depends in general on
all the three frequencies: �p, �, and �q . The dependence on
�p and � was eliminated by replacing the intermediate states’
Green’s functions by their static values. This circumstance
will be crucial for cancellations between diagrams for the
conductivity in Sec. III C.

The particle-particle vertex [Fig. 4(b)] differs from the
particle-hole one only in that the (2 + 1) momentum on the
double line is replaced by K − Q1 − Qπ . However, since
the intermediate fermions are again away from the FS, their
Green’s functions can also be replaced by their static values
1/vF δp and 1/vF δk, upon which the particle-particle vertex
becomes equal to the particle-hole one. The total vertex
(Fig. 4(c)] is equal to the sum of the particle-hole and
particle-particle ones.

It is instructive to compare the composite vertex with the
bare interaction V (k − p) in Eq. (2.2). First, we observe that
the composite vertex scales as ḡ rather than ḡ2 despite the
fact that it is formally of second order in the spin-fluctuation
propagator. One factor of ḡ is canceled out by the Landau
damping coefficient γ in the denominator. Next, for fermions
in the lukewarm region, V (k − p) ∼ ḡ/[(δk)2 + (δp)2]. For
comparable δk and δp, the original and composite vertices are
then both of order ḡ/(δk)2, but the composite vertex has an
additional logarithmic factor ln �2

q2+γ |�q | . This extra logarithm
gives rise to an additional factor of ln |δk| in the O(�) term in
the real part of the self-energy. In addition, the same logarithm
leads to two effects in the imaginary part of the self-energy. The
first one is a nonanalytic, �3/2 term due to one-loop composite
scattering, discussed in Sec. II C 2. The second one is the
enhancement of the prefactor in the self-energy due to two-loop
composite scattering, discussed in Sec. II C 3. We will consider
the one- and two-loop composite processes separately.

2. “One-loop” self-energy due to composite scattering

The lowest-order contribution to the self-energy due to
composite scattering is given by diagram (a) in Fig. 5. In
terms of the original interaction (wavy line), this diagram is
equivalent to diagram (b). Explicitly,

�comp1
(kF ,�) =

∫
d3Q

(2π )3
G(KF + Q)�(KF ,KF + Q; Q).

(2.19)

The intermediate fermion’s momentum is PF = KF + Q, i.e.,
if Q is small, PF should be close to KF . Integrating over the
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K + Q
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K + Q
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FIG. 5. (Color online) (a) One-loop self-energy due to composite
scattering. The hatched box is the composite vertex in Fig. 4(c). (b)
Equivalent representations of diagram (a) in terms of the original
interaction in Eq. (2.8). As in Fig. 4, a double line denotes an off-shell
fermion.

component of q transverse to the FS and then over �q , using
an explicit form of � from Eq. (2.18), and continuing to real
frequencies, we obtain

�′′
comp1

(kF ,�) ∼ ḡ

(vF δk)2
Im

[
i�

∫ ∞

0
dx ln

(
1 − i�

ḡ

x2

)]

∼ (ḡ)3/2�3/2

(vF δk)2
, (2.20)

where x = vF δq and δq is a component of q tangential to the
FS.

A nonanalytic, �3/2 dependence of �′′
comp1

(kF ,�) from
one-loop composite scattering was obtained by HHMS along
with a nontrivial logarithmic prefactor. Observe that, for the
lowest �, this form of �′′

comp1
(kF ,�) holds for all δk outside

the hot region. The only condition of validity of Eq. (2.20) is
the smallness of q2 ∼ γ�q ∼ γ� compared with (δk)2, i.e.,
� must be smaller than �b, where �b is defined by Eq. (2.13).
This is the same condition which separates lukewarm (or cold)
fermions from hot fermions for qπ scattering.

Comparing Eq. (2.20) to the �2 term in �′′
qπ

(kF ,�) due
to qπ scattering [Eq. (2.11)], we see that one-loop composite
scattering gives a larger contribution to the imaginary part of
the self-energy at frequencies � < �b, i.e., fermions outside
the hot regions are damped stronger by composite scattering
than by qπ scattering. At � > �b, Eq. (2.20) is no longer valid
because typical q ∼ √

γ� become comparable to δk, and the
logarithmic singularity in the composite vertex disappears. At
these frequencies, qπ scattering yields �′′(�) ∝ √

� and one-
loop composite scattering adds only additional logarithmic
factors to this dependence [27,28].

For comparison with other contributions, it is convenient
to rewrite Eq. (2.20) in terms of the dimensionless variables
from Eqs. (2.14) and (2.15), which yields

�′′
comp1

(k̄,�̄) ∼ ḡ
�̄3/2

k̄2
(2.21)

valid for �̄ < �̄b ∼ k̄2.

3. Two-loop self-energy due to composite scattering

(a) Main features of two-loop composite scattering. An-
other route to obtain a large imaginary part of the self-energy
is to make use of the singularities in the dynamic part of

K K + Q

P

P − Q

K

FIG. 6. (Color online) Two-loop self-energy due to composite
scattering. The hatched box is the composite vertex in Fig. 4(c).

the particle-hole polarization bubble both at small- and 2kF -
momentum transfers [33–39]. The polarization bubble behaves
as �/q for �/vF < q < kF , and as �θ (2kF − q)/

√
2kF − q

for q near 2kF . In a generic 2D FL liquid, both types of
singularities give rise to a nonanalytic form of the self-energy
�′′(kF ,�) ∝ �2 ln �, which differs from the canonical FL
form �2 by a “kinematic” logarithmic factor.

Similar singularities occur also in the two-loop self-energy
from composite scattering, shown in Fig. 6. In case of forward
scattering, all three internal fermions (with 2-momenta p − q,
p, and k + q) are near the same point on the FS as the initial
one (with 2-momentum k). In the case of 2kF scattering, one
of the internal momenta is near k while the remaining two
are near the diametrically opposite point, −k. In terms of
the composite vertex, �(P,K; Q) with 2-momentum transfer
q, both processes correspond to small q, with typical vF q ∼
�q ∼ �, while k is either near p (forward scattering) or near
−p (2kF scattering).

A special feature of composite scattering is an additional
logarithmic singularity of the composite vertex [cf. Eq. (2.18)].
For both forward and 2kF scattering, the vertex can be
approximated by

� ≡ �(PF ,KF ; Q) ∼ ḡ

(δk)2
ln

ZkF
vF |δk|
�

. (2.22)

Although the i�2 ln � term in the self-energy of a 2D FL
comes from processes in which all fermionic momenta are
either parallel or antiparallel to each other, it would be incorrect
to think that these processes occur as if the system were one
dimensional (1D). Indeed, the information about 2D geometry
of the FS is encoded in the prefactor of the �2 ln � term,
which contains the local curvature of the FS. Namely, if the
single-particle dispersion is parametrized as

εkF +q = vF q⊥ + (δq)2/2m∗, (2.23)

where q⊥ and δq are the components of q along the normal
and tangent to the FS, correspondingly, the prefactor of the
i�2 ln � term is proportional to m∗/v2

F and thus diverges in
the 1D limit, which corresponds to m∗ → ∞ at vF = const.
(Although m∗ does vary along the FS, we will not display this
dependence explicitly.)

In a generic FL, the 1D regime, in which the curvature can
be neglected, sets in only at energies above ∼ k2

F /m∗, which
is comparable to the bandwidth, and is thus of little interest
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unless the FS has nested parts with large m∗. In the model
considered in this paper, however, the 1D regime is realized
even in the absence of nesting and sets in at energies above
the characteristic scale which is smaller than the bandwidth by
the small parameter of the model, ḡ/EF . In the following two

sections, we consider the 2D and 1D regimes of composite
scattering.

(b) Two-dimensional regime. We begin with the 2D regime,
in which the FS curvature can not be neglected. The diagram
for the two-loop self-energy in Fig. 6 reads as

�comp2
(kF ,�) = −

∫
d�q

2π

∫
dδq

2π

∫
dq⊥
2π

∫
d�p

2π

∫
dδp

2π

∫
dp⊥
2π

1
i�p

Zp
− vF p⊥ − (δp)2

2m∗

1
i(�p−�q )

Zp−q
− vF (p⊥ − q⊥) − (δp−δq)2

2m∗

× 1
i(�+�q )

Zk+q
− vF q⊥ − (δk+δq)2

2m∗
�2(K,P ; Q), (2.24)

where it is understood that all the Z factors are evaluated on the FS. First, we integrate the product of two Green’s function in
the first line over p⊥ and redefine δp by absorbing the vF q⊥ term. We then integrate the Green’s function in the second line over
q⊥. These two steps give

�comp2
(kF ,�) = 1

2vF

∫
d�q

2π

∫
dδq

2π

∫
d�p

2π

∫
dδp

2π

sgn(�p − �q) − sgn(�p)
i�p

Zp
− i(�p−�q )

Zp−q
− δpδq

m∗ + (δq)2

2m∗
sgn(� + �q)�2(K,P ; Q). (2.25)

Next, we assume that relevant δq are much smaller
than δp ∼ δk, such that the (δq)2/(2m∗) in the denominator
of (2.25) can be neglected and Zp−q can be approximated
by Zp. Integrating now over δp and �p in (2.25), we obtain
the usual Landau-damping form of the dynamic particle-
hole bubble ∼ m∗|�q |/vF |δq|. The kinematic logarithm is
produced by integrating the 1/|δq| singularity of the particle-
hole bubble over δq:

∫ |δk
�/(vF Zk) dδq/|δq| = ln(ZkvF |δk|/�).

Finally, the integral over �q gives a FL-like factor of �2. While
performing all the integrations indicated above, the factor of
�2 can be taken outside the integral. Collecting all the factors
together and performing analytic continuation, we obtain for
the imaginary part of the self-energy

�′′
comp2

(kF ,�) ∼ m∗�2

v2
F

ln
ZkvF |δk|

�
�2

∼ �2 ḡ2

(vF δk)3

E∗
F

vF δk
ln3 ZkvF |δk|

�
, (2.26)

where � is given by Eq. (2.22) and the effective Fermi energy
is defined as

E∗
F ≡ 1

2m∗v2
F . (2.27)

In dimensionless variables of Eqs. (2.14) and (2.15), Eq. (2.26)
is expressed as

�′′
comp2

(k̄,�̄) ∼ ḡ
�̄2

k̄4

E∗
F

ḡ
ln3 Zk|k̄|

�̄
. (2.28)

Equations (2.26) and (2.28) are valid as long as the logarithmic
factor is parametrically large, i.e., as long as �̄/Zk < |k̄|. For
|k̄| < 1, Zk ∼ |k̄| and hence the condition above reduces to
�̄ < �̄b = k̄2, which is the same as the condition to be outside
the hot region. For |k̄| > 1, Zk ≈ 1 and the condition is �̄ <

|k̄| = (�̄b)1/2.
Note that Eq. (2.26) describes both the forward- and

2kF -scattering contributions; indeed, the result is the same
regardless of whether one considers the case of p ≈ k or
p ≈ −k. In this regard, the case of an anisotropic FS with
the Z factor varying rapidly around the hot spots, considered

in this paper, differs from that of an isotropic FS with
Z = const, considered in previous studies of forward and 2kF

contributions to the self-energy [34,35]. In the latter case, the
forward-scattering part of the self-energy has a singularity
on the mass shell, which is regularized by resumming the
perturbation theory and taking into account the curvature of
the fermionic dispersion, whereas the 2kF part is regular on
the mass shell.

In the case considered here, even the forward-scattering part
is regular on the mass shell. This is so because the mass shell of
the external fermion � = Zk[vF k⊥ + (δk)2/2m∗] contains a
local value of the Z factor, corresponding to a point k on
the FS. On the other hand, the mass shell of the internal
fermion contains the Z factor at the point k + q, where q
is the running variable in the integral for the self-energy. As
a result, the external and internal mass shells do not coincide
and the “resonance,” which leads to the mass-shell singularity
in the isotropic case, is absent.

Two-loop composite scattering was considered by HHMS
for the case of |k̄| < 1. Equation (2.26) is reproduced if one
inserts finite curvature into Eq. (5.18) of Ref. [21]. However,
the form of �′′

comp2
(kF ,�) ∝ �2 in Eqs. (5.36) and (5.37) of

Ref. [21] has an extra small factor of |δk|/kF � 1 compared
with Eq. (2.26). The reason for the discrepancy is that HHMS
considered the case when the FS curvature is absent at the
bare level but generated dynamically by the interaction [40].
In this case, E∗

F /ḡ by itself scales as k̄ and �′′
comp2

(kF ,�̄) in
Eq. (2.26) scales as 1/|k̄|3.

(c) One-dimensional regime. Equation (2.26) [or (2.28)] is
not the full story, however. Indeed, our reasoning leading to
Eq. (2.26) is valid provided that one can integrate over δp in
Eq. (2.25) in infinite limits. In reality, internal |δp| and |δq|
are bounded from above by external δk. At larger δp and δq,
the composite vertex falls off quickly. The largest value of the
δpδq/m∗ and (δq)2/2m∗ terms in Eq. (2.25) is then of order
(δk)2/m∗. On the other hand, the internal frequencies �p and
�q are on the order of the external one �. Integration over
δp in infinite limits can then be justified if � < Zkδk

2/m∗ or
�̄ < �̄b1 , where �̄b1 ≡ k̄2Zk̄(ḡ/E∗

F ). For |k̄| < 1, Zk̄ ∼ k̄ and
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thus �̄b1 ∼ |k̄|3(ḡ/EF ); for |k̄| > 1, Zk̄ ≈ 1 and thus �̄b1 =
|k̄|2(ḡ/EF ). In both cases, �̄b1 < �̄b = k̄2, i.e., the condition
�̄ < �̄b1 is valid only for a subset of fermions outside the hot
regions.

For the remaining fermions with frequencies in the interval
�̄b1 < �̄ < �̄b, the energy associated with the FS curvature
is the smallest energy scale in the problem, and we are
thus in the effectively one-dimensional regime. Had we been
considering a real 1D system, the self-energy would have
exhibited two characteristic features. First, the self-energy due
to scattering of fermions from the same hot spot (forward
scattering) would have had a pole on the mass shell, indicating
the “infrared catastrophe” [41,42]. Second, the imaginary part
of the self-energy due to scattering of fermions from the
opposite hot spots (2kF scattering) would have vanished on
the mass shell, indicating the absence of relaxational processes
in a 1D system with linearized dispersion. (To obtain finite
relaxation rate in 1D, one needs to include the curvature of
the dispersion [43].) What makes our system different from
a real 1D one is again the variation of the Z factor along the
FS. Even if we neglect (as we will) the curvature term in the
fermionic dispersion, the variation of the Z factor prevents
either of the two characteristic 1D features described above to
develop. The resulting self-energy is finite on the mass shell
both for forward and 2kF cases and, at fixed position on the
FS, scales with frequency in a MFL way: � ∝ � ln �.

To see this explicitly, we neglect the curvature terms in
Eq. (2.24) and take into account that the velocities corre-
sponding to the momenta k and p are near each other for
the forward-scattering case and opposite to each other for the
2kF -scattering case. Then the self-energy in the 1D regime can
be written as

�±
comp2

(δk,k⊥,�)

= −
∫

d�q

2π

∫
dδq

2π

∫
dq⊥
2π

∫
d�p

2π

∫
dδp

2π

∫
dp⊥
2π

× 1
i�p

Zp
∓ vF p⊥

1
i(�p−�q )

Zp−q
∓ vF (p⊥ − q⊥)

× 1
i(�+�q )

Zk+q
− vF (k⊥ + q⊥)

�2(K,P ; Q), (2.29)

where ± corresponds to forward/2kF scattering. In contrast to
the regimes considered in the previous sections, the self-energy
in the 1D regime depends on the momentum across the FS
(k⊥), and we made this dependence explicit in Eq. (2.29).
Integrating the product of two Green’s functions in the first line
of Eq. (2.29) first over p⊥ and then over �p, we obtain objects
which play the role of the (dynamic) polarization bubbles of
1D fermions

�±
1D = 1

2πvF

1

Z−1
δp − Z−1

δp−δq

ln

i�q

Zδp
± vF q⊥

i�q

Zδp−δq
± vF q⊥

. (2.30)

For a momentum-independent Z factor, Eqs. (2.30) reduce to
familiar expressions for the polarization bubbles of fermions
of the same (+) and opposite (−) chiralities:

�±
1D = 1

2πvF

i�q

i�q

Z
± vF q⊥

. (2.31)

Both characteristic features of the self-energy in 1D are related
to the fact that the imaginary part of the 1D bubble is a
δ function centered on the bosonic mass shell: subsequent
convolution of Im�±

1D with the remaining fermionic spectral
function produces either a δ function singularity or zero in
the imaginary part of mass-shell self-energy for forward and
2kF cases, correspondingly. We will see later on, however, that
δp ∼ δq ∼ δk in our case, which implies that Zδp ∼ Zδp−δq

but Zδp �= Zδp−δq . In our case, we have for the imaginary part
of the bubble on the real frequency axis

Im�± = 1

2vF

1

Z−1
δp − Z−1

δp−δq

×
[
θ

(
∓vF q⊥ − �q

Zδp

)
− θ

(
∓vF q⊥ − �q

Zδp−δq

)]
.

(2.32)

Again, a purely 1D case is recovered in the limit Zδp → Zδp−δq

by using an identity limε→0 θ (x + ε) = θ (x) + εδ(x).
We continue Eq. (2.29) to real frequencies, project the self-

energy onto the 1D-like mass shell (vF k⊥ = �/Zδk), and in-
tegrate over q⊥. These steps yield for the imaginary part of the
self-energy on the real frequency axis

Im�±,R
comp2

(δk,k⊥ = �/vF Zδk,�) = �

16v2
F π2

∫ ∫
dδ qd δp

�2(K,P ; Q)

Z−1
δp − Z−1

δp−δq

∫ 0

−1
dx

{
θ

[
±

(
1

Zδk+δq

− 1

Zδk

)
± x

(
1

Zδk

∓ 1

Zδp

)]

− θ

[
±

(
1

Zδk+δq

− 1

Zδk

)
± x

(
1

Zδk

∓ 1

Zδp−δq

)]}
, (2.33)

where x = �q/�. In deriving Eq. (2.33), we neglected the
dependence of �(K,P ; Q) on �q which is permissible in
the leading logarithmic approximation. The integrals over
the tangential components of the momentum (δp and δq)
are effectively cut at δp ∼ δq ∼ δk because the vertex de-
creases at larger δp and δq. This implies that all the Z

factors in Eq. (2.33) are of order of Zδk . The range of
integration over x is max{−1,x1} � x � min{0,x2}, where
x1,2 are constraints imposed by the θ functions. Since all

the Z factors inside the θ functions are of the same order,
|x1,2| ∼ 1, and the integral over x produces a number of
order one. The vertex �(K,P ; Q) can then be approximated
by its value at δp ∼ δq ∼ δk, i.e., by ḡ/(δk)2, and taken
out of the integral [note that the logarithmic factor in
Eq. (2.18) is of order one to this accuracy]. The remaining
integrals over δp and δk give a factor of (δk)2. Collect-
ing all the approximations mentioned above, we obtain an
order-of-magnitude estimate for the imaginary part of the
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self-energy

�′′
comp2

(δk,�) ∼
(

ḡ

vF δk

)2

Zδk�. (2.34)

Since the forward and 2kF contributions to the self-energy
happen to be of the same order, we suppress the superscript ±
from now on.

Restoring the real part of the self-energy via the Kramers-
Kronig relation, we obtain

�comp2
(δk,�) ∼ i

(
ḡ

vF δk

)2

Zδk� ln
vF |δk|Zδk

�
(2.35)

or, in dimensionless variables,

�comp2
(k̄,�̄) ∼ iḡ

�̄Zk̄

k̄2
ln

|k̄|Zk̄

�̄
. (2.36)

Equation (2.36) is valid for �̄ < |k̄|Zk̄ . At larger �̄, the
logarithmic factor in Eq. (2.36) disappears, and the self-energy
becomes regular and small.

Equations (2.35) and (2.36) imply that, in a certain range
of frequencies, the self-energy near an SDW instability
in 2D is of a MFL form. This is a much desired result
because the phenomenological assumption about the MFL
behavior [18] allows one to explain the key experimental
results for the cuprates. We emphasize, however, that the
prefactor of the � ln � term depends strongly on δk and, in
this respect, the result of the microscopic theory [Eq. (2.35)]
differs from the MFL phenomenology [18], which assumes
that the self-energy does not vary along the FS.

Equation (2.36) along with the crossover scale �̄b1 were
obtained by HHMS for |k̄| < 1, when Zk̄ ≈ |k̄|. We found that
� ln � form also holds for |k̄| > 1, where Zk̄ ∼ 1. Explicitly,
we have

�′′
comp2

(k̄,�̄) ∼
{

ḡ �̄

|k̄| , |k̄| < 1;

ḡ �̄

|k̄|2 , |k̄| > 1.
(2.37)

As we see, the prefactor in the |k̄| > 1 region falls off rapidly
(as 1/k̄2) with k̄. This will be important for the analysis of the
optical conductivity in Sec. III.

Comparing the imaginary parts of the two-loop self-
energies in the 2D and 1D regimes [Eqs. (2.26) and (2.37),
correspondingly], we see that they match at �̄ ∼ �̄b1 =
k̄2Zk̄(ḡ/EF ) (modulo a logarithm). At �̄ < �̄b1, the curvature
plays the dominant role and scattering is of the 2D type; at
�̄ > �̄b1, the curvature can be neglected and the self-energy is
of the 1D type. The upper boundary of the 1D regime depends
on the position on the FS relative to the hot spot, specifically,
on whether |k̄| is larger or smaller than unity.

D. Fermionic self-energy: Summary of the results

We now collect the contributions to the self-energy from
all the scattering mechanisms considered so far: qπ scattering,
and one- and two-loop composite scattering. Each of the three
forms represents a different physical process, e.g., one-loop
scattering captures physics associated with the logarithmic sin-
gularity of the composite vertex at small-momentum transfers,
while the two-loop composite contribution represents physics

associated with forward and 2kF processes, and also with 1D
scattering in the regime when the curvature of the FS can be
neglected.

In dimensionless units, the imaginary part of the self-energy
from qπ scattering is

�′′
qπ

(k̄,�̄) ∼
{

ḡ �̄2

|k̄|3 for �̄ < k̄2,

ḡ
√

�̄ for �̄ > k̄2.
(2.38)

The self-energy from one-loop composite scattering is

�′′
comp1

(k̄,�̄) ∼ ḡ
�̄3/2

k̄2
for �̄ < k̄2. (2.39)

The form of self-energy from two-loop composite scattering
depends on whether |k̄| < 1 or |k̄| > 1 because the quasipar-
ticle residue behaves as Zk̄ ∼ min{k̄,1}. For |k̄| < 1,

�′′
comp2

(k̄,�̄) ∼
⎧⎨
⎩

ḡ �̄2

|k̄|4
E∗

F

ḡ
ln3 k̄2

�̄
for �̄ < |k̄|3 ḡ

E∗
F

;

ḡ �̄

|k̄| for |k̄|3 ḡ

E∗
F

< �̄ < k̄2,

(2.40)

while for |k̄| > 1,

�′′
comp2

(k̄,�̄) ∼
⎧⎨
⎩

ḡ �̄

k̄2 for k̄2 ḡ

E∗
F

< �̄ < k̄2;

ḡ �̄2

|k̄|4
E∗

F

ḡ
ln3 k̄

�̄
for �̄ < k̄2 ḡ

E∗
F

.

(2.41)

Each of the asymptotic forms in Eqs. (2.38)–(2.41) repre-
sents the dominant contribution to �′′(k̄,�̄) in some range of k̄

and �̄. Comparing Eqs. (2.38)–(2.41) and selecting the largest
contribution, we obtain the imaginary part of the full fermionic
self-energy, shown schematically as a function of �̄ at fixed k̄

in Fig. 7, and as a function of k̄ at fixed �̄ in Figs. 7–9.
In each case, there is a sequence of crossovers around

which the functional form of �′′(k̄,�̄) changes. At fixed k̄,
the sequence of crossovers of �′′(�̄) as a function of �̄ is
different in the following three regions of k̄:

(i) |k̄| < 1,
(ii) 1 < |k̄| < (E∗

F /ḡ)1/2, and
(iii) (E∗

F /ḡ)1/2 < |k̄| < E∗
F /ḡ.

The behavior of �′′ as a function of �̄ is sketched in the
three panels of Fig. 7. Abbreviations of the asymptotic regimes
along with the corresponding forms of �′′ are given in Table II.
At |k̄| > E∗

F /ḡ, the entire FS becomes hot, and our model is
no longer applicable.

Similarly, the sequence of crossovers in �′′ at fixed �̄

depends on whether �̄ is in one of the following four regions:
(i) �̄ < (ḡ/E∗

F )2,
(ii) (ḡ/E∗

F )2 < �̄ < ḡ/E∗
F ,

(iii) ḡ/E∗
F < �̄ < 1, and

(iv) 1 < �̄ < (E∗
F /ḡ)2.

The behavior of �′′ as a function of k̄ is sketched in Fig. 8
[for �̄ in regions (i) and (ii)] and 9 [for �̄ in regions (iii) and
(iv)]. At �̄ > (E∗

F /ḡ)2 the entire FS becomes hot.
The dominant contribution to the real part of the self-energy

in all the regimes comes from qπ scattering:

�′
qπ

(k̄,�̄) ∼
{

ḡ
√

�̄ for |k̄| <
√

�̄,

ḡ �̄

|k̄| for |k̄| >
√

�̄.
(2.42)

The quasiparticle residue Zk̄ = [1 + ḡ−1∂�′(k̄,�̄)/∂�̄]−1 as
a function of k̄ is sketched in Figs. 8 and 9 (dashed lines).
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FIG. 7. (Color online) A sketch of the imaginary part of the self-
energy, �′′(k̄,�̄), as a function of the dimensionless frequency, �̄ =
�/ḡ, at fixed (dimensionless) distance from the hot spot, k̄ = δkvF /ḡ.
Abbreviations of the asymptotic regimes and asymptotic forms of �′′

are given in Table II.

E. Classification of fermions as “cold,” “lukewarm,” and “hot”
in the presence of composite scattering

The classification of fermions as “hot,” “cold,” and “luke-
warm” in Sec. II B 2 was based on the behavior of the self-

FIG. 8. (Color online) A sketch of the imaginary part of the self-
energy, �′′(k̄,�̄) (solid line), and quasiparticle residue, Z (dashed
line), as functions of the dimensionless distance from the hot spot, k̄ =
δkvF /ḡ, at fixed (dimensionless) frequency, �̄ = �/ḡ. Abbreviations
of the crossover regimes and asymptotic forms of �′′ are given in
Table II.

energy with only qπ scattering taken into account. In particular,
fermions were classified as “hot” if their �qπ

scales as
√

�

(and is independent of δk); as “cold” if their �qπ
has a FL form

and is small compared to bare �; and, finally, as “lukewarm”
if their �qπ

had a FL form but the quasiparticle residue was
smaller than unity. In this classification scheme, the boundary
between the hot and lukewarm regimes is at �̄ ∼ k̄2 (with
the hot behavior corresponding to higher �̄). With composite
scattering taken into account, this classification scheme still
holds for �̄ > k̄2. However, the behavior of �′′ for �̄ < k̄2

becomes more complex. First, we see from the top panel
of Fig. 8 that, for k̄ < 1, the region of �̄ < k̄2 which was
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FIG. 9. (Color online) A sketch of the imaginary part of the self-
energy, �′′(k̄,�̄) (solid line), and quasiparticle residue, Z (dashed
line), as functions of the dimensionless distance from the hot spot, k̄ =
δkvF /ḡ, at fixed (dimensionless) frequency, �̄ = �/ḡ. Abbreviations
of the crossover regimes and asymptotic forms of �′′ are given in
Table II.

identified before as “lukewarm” now contains subregions of a
conventional FL[�′′(�) ∝ �2], unconventional FL[�′′(�) ∝
�3/2], and MFL[�′′(�) ∝ �] behavior.

Second, for |k̄| > 1, the region of �̄ < k̄2 was earlier
classified as “cold” because �′′

qπ
∝ �2 and and Zk̄ ≈ 1 in

this region. However, we see from the middle panel of Fig. 9

that, with composite scattering taken into account, the region
�̄ < k̄2 also contains subregions of both conventional and
unconventional FL behaviors, as well as a MFL subregion.

To streamline the terminology, we will still be classifying
fermions in the region �̄ < k̄2 as “lukewarm” for |k̄| < 1
and as “cold” for |k̄| > 1 because in all three cases the FL
criterion that � + �′(�) must be larger than �′′(�) is satisfied.
Nevertheless, there are clear differences between the behaviors
obtained with only qπ scattering and both qπ and composite
scattering taken into account.

F. Higher-loop orders in composite scattering

A natural question is whether higher-loop orders in com-
posite scattering modify the results of the previous section. We
begin with the regime of the smallest �, when �′′

comp2
(δk,�̄) ∝

�2�2 ln(�̃/�), where � ∝ [ḡ/(δk)2] ln(�̃/�) is the compos-
ite vertex and �̃ ∼ (vF δk)2/ḡ.

In an ordinary 2D FL, the prefactor of the �2 ln � term
in the imaginary part of the self-energy is the sum of
the fully renormalized backscattering and forward-scattering
amplitudes [34]. The forward-scattering amplitude approaches
a constant value at zero frequency, hence the corrections
from higher orders do not change the second-order result, at
least qualitatively. The backscattering amplitude contains the
series of logarithms from the Cooper channel [37,44]. In our
case, the situation with higher-order corrections from Cooper
channel is somewhat different: integration over the internal
momentum eliminates the logarithm in the vertex entering
the three-loop Cooper diagram [Fig. 10(a)] but brings in an
additional Cooper logarithm, so that the renormalized vertex
has the same logarithmic factor as the original one.

To see this, we recall that the argument of the logarithmic
factor in � is actually (δk)2/(q2 + γ |�q |), where q is the
transferred momentum [see Eq. (2.18)]. Suppose now that
we consider the three-loop composite self-energy as the
two-loop self-energy with one-loop vertex correction. The
vertex correction part involves two vertices and two fermionic
Green’s functions. Integrating the product of the two Green’s
functions over q⊥, we obtain the vertex correction as

�̃ ∼
∫

dδ q

∫
�

d�q

�2(δq,�q)Zδq

|�q | , (2.43)

where integration over δq is restricted to |δq| < |δk|. Sub-
stituting Zδq = vF |δq|/ḡ and � ∼ [ḡ/(δk)2 ln(δk)2]/[(δq)2 +
γ |�q |], we find that the integral over δq comes from the region
|δq| ∼ |δk|, and the renormalized vertex is

�̃ ∼ ḡ

(δk)2

∫ �

�

d�q

|�q | ∼ �. (2.44)

TABLE II. Asymptotic forms of �′′.

Abbreviation Dominant scattering process �′′/ḡ

qπ qπ scattering
√

�̄

1LC 1-loop composite scattering �̄3/2/k̄2

2LC/1D 2-loop composite scattering/1D regime for k̄ < 1 �̄/k̄

2LC/1D∗ 2-loop composite scattering/1D regime for k̄ > 1 �̄/k̄2

2LC/2D 2-loop composite scattering/2D regime (E∗
F /ḡ)(�̄2/k̄4) ln3(min{k̄2,1}/�̄)
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FIG. 10. (Color online) Examples of the three-loop self-energy
diagrams. (a) Particle-particle (Cooper) channel. (b) Particle-hole
channel. The hatched box is the composite vertex in Fig. 4.

We see that the renormalized vertex is of the same order as the
bare one, hence the three-loop self-energy �comp3

(δk,�) is of
the same order as �comp2

(δk,�).
A somewhat different result is obtained for particle-hole

three-loop diagram in Fig. 10(b). The contribution to this
diagram from a 2kF process, in which the momenta on the
closed fermionic loop are almost opposite to the external
momentum, has a higher power of frequency (�5/2, see below)
but, at the same time, more singular dependence on δk. As
result, the three-loop diagram, evaluated for � and δk relevant
for the conductivity, happens to be of the same order as the
two-loop one.

For an estimate of the diagram in Fig. 10(b), we replace
the actual vertices by a constant [= � from Eq. (2.22)] and
take them out of the integral. In addition, we replace the actual
Z factors entering the diagram by some average value 〈Z〉.
Integrating over the (2 + 1) momenta P and L, we then obtain

�comp,3(δk,�) ∼ �3
∫

P ′
G(P ′)�2

2kF
(P ′ − K)

= �3
∫

Q

G(K + Q)�2
2kF

(Q), (2.45)

where �2kF
(Q) is the 2kF part of the polarization bubble.

Unlike the two-loop self-energy, the three-loop one can not
be rewritten in terms of the q = 0 part of the bubble, and we
need to use an explicit form of �2kF

(Q). The singular part of
�2kF

(Q) is given by

�2kF
(Q) = m∗〈Z〉

4π

[
−q̃vF + √

(q̃vF )2 + (�q/〈Z〉)2

E∗
F

]1/2

,

(2.46)

where q almost coincides with the chord of length 2kF , which
connects two diametrically opposite hot spots, and q̃ ≡ 2kF −
q. A singular, �2 ln � contribution from 2kF scattering to
the two-loop self-energy of a 2D FL comes from the region
of q̃ > |�q |/vF 〈Z〉 > 0 (see, e.g., Appendix A in Ref. [34]),
where �2kF

(Q) can be approximated by

�2kF
(Q) = m∗

4π

|�q |√
2E∗

F q̃
. (2.47)

Assuming that the singular part of the three-loop self-energy
comes from the same region, we substitute Eq. (2.47) into the
last line of Eq. (2.45) and write the internal Green’s function
as G(K + Q) = [i(� + �q)/〈Z〉 + vF q̃ − 4E∗

F θ2]−1, where
θ is a (small) angle between q and the chord. For q̃ in the
interval specified above, we have∫

dθ G(K + Q) = iπ
sgn(� + �q)√

vF q̃
. (2.48)

The factor of sgn(� + �q) confines the integral over �q to the
interval (0,�), and we obtain for the Matsubara self-energy

�comp,3(δk,�) ∼ i�3 kF (m∗)2

(vF E∗
F )3/2

∫ �

0
d�q�

2
q

∫ ∞

|�q |
〈Z〉vF

dq̃

q̃3/2

∼ i
(m∗�)3〈Z〉1/2

(E∗
F )3/2

�5/2. (2.49)

A nonanalytic, �5/2 scaling of the Matsubara self-energy
implies that, on the real frequency axis, �′

comp,3 ∼ �′′
comp,3 ∝

�5/2. In dimensionless variables and on using Eq. (2.22) for
�, we find

�′′
comp,3(k̄,�̄) ∼ ḡ

(
E∗

F

ḡ

)3/2 〈Z〉1/2�̄5/2

k̄6
ln3 〈Z〉k̄

|�̄| . (2.50)

Although the �5/2 dependence of �′′
comp,3 is subleading to

the �2 dependence of �′′
comp,2 in Eq. (2.26), the three-loop

self-energy in Eq. (2.50) has a more singular dependence on
the distance to the hot spot (δk), and can thus compete with
the two-loop one. Using Eq. (2.28) for �′′

comp,2, we find for the
ratio

�′′
comp,3(k̄,�̄)

�′′
comp,2(k̄,�̄)

∼
(

E∗
F

ḡ

�̄〈Z〉
k̄4

)1/2

. (2.51)

In Sec. III, we will see that the two-loop self-energy gives
the dominant contribution to the conductivity (σ ′ ∝ �̄−1/3)
if �̄ < ḡ/E∗

F , and that the relevant values of k̄ in this
regime are k̄∗ ∼ (�̄E∗

F /ḡ)1/3 < 1. Recalling that 〈Z〉 ∼ k̄

for k̄ < 1 and substituting k̄∗ for k̄ into Eq. (2.51), we
find that, for � and δk relevant for the conductivity, the
2kF three-loop composite self-energy is of the same order as
the two-loop self-energy. Combining this result with that for
the three-loop self-energy in the Cooper channel, we conclude
that, as far as the conductivity is concerned, �′′

comp,3 ∼ �′′
comp,2.

It can be readily checked that the same is true also for
higher (n � 4) orders, and also for the forward-scattering case.
Therefore, an expansion in powers of the composite vertex is
not, strictly speaking, controlled, but it also does not generate
stronger singularities. In reality, convergence of the series
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is determined by the numerical prefactors which we do not
attempt to compute here.

We now turn to the 1D regime, where �comp,2 scales
as ḡ� ln � [Eq. (2.36)]. In true 1D, higher-order diagrams
produce terms of the type λn� lnn(�/�), where λ is the
dimensionless coupling constant and � is the ultraviolet
cutoff of the theory. The perturbation theory breaks down
at the energy scale �LL ∼ � exp(−1/λ), below which the
Luttinger-liquid behavior emerges. Computing the three-loop
self-energy in the 1D regime, we obtain

�′′
comp,3 = ḡ

〈Z〉2

k̄3
�̄ ln

〈Z〉k̄
�̄

. (2.52)

In our case, the 1D regime exists only at sufficiently high
energies, namely, for �̄ > (ḡ/E∗

F ) min{k̄2,k̄3}. As we will see
in Sec. III, the conductivity in this regime is controlled by
the region k̄ ∼ 1. At k̄ ∼ 1, the effective coupling constants in
both two-loop and three-loop self-energies is of order one, and
their ratio contains only a logarithmic factor:

�′′
comp,3(k̄ ∼ 1,�̄)

�′′
comp,2(k̄ ∼ 1,�̄)

∼ ln
1

�̄
. (2.53)

At the lowest frequency marking the beginning of the 1D
regime (�̄ ∼ ḡ/E∗

F < 1), the logarithm in Eq. (2.53) is large,
indicating that MFL form exists only at the two-loop order,
while the actual form of �′′ contains an anomalous dimension:
�′′ ∝ �̄−(1+α) with α �= 0. A computation of α requires
nonperturbative methods, e.g., multidimensional bosonization,
and is beyond the scope of this paper.

III. OPTICAL CONDUCTIVITY AT A QUANTUM
CRITICAL POINT

In this section, we discuss the optical conductivity. Our
analysis is presented in the following order. First, in Sec. III A,
we discuss only the self-energy contribution to the conductivity
in the various frequency regimes, while neglecting entirely
the vertex corrections. In Sec. III B, we present qualitative
arguments, based on the Boltzmann equation, which explain
why vertex corrections play a relatively insignificant role
in our problem. This conclusion is confirmed in Sec. III C,
where we compute vertex corrections diagrammatically and
show that they change at most the logarithmic factors in the
results of Sec. III A, while the power-law scaling forms of the
conductivity remain intact.

A. Self-energy contribution to the optical conductivity

In this section, we calculate only the self-energy contribu-
tion to the real part of the optical conductivity σ ′

�(�), while
neglecting the vertex part. The conductivity σ ′

�(�) is obtained
by convoluting two Green’s functions in the current-current
correlator. For a quasi-2D system with lattice spacing c in
the z direction and in-plane tetragonal symmetry, the in-plane
conductivity is given by

σ ′
�(�) = e2

�c

∫ 0

−�

dω

π

∮
dkF

(2π )2

∫
dk⊥v2

kImGR(k,ω + �)

× ImGR(k,ω), (3.1)

where dkF is an element of the FS contour and GR(k,ω) is
the retarded Green’s function. Except for the regime of 1D-
like two-loop composite scattering, which will be discussed
separately, the self-energy of our problem depends very weakly
on k⊥. If this dependence is neglected, one can integrate
Eq. (3.1) over k⊥. In addition, we make use of the fact that
σ ′

�(�) is controlled by the narrow regions near the hot spots,
where the bare Fermi velocity, vF , varies slowly, and thus can
be taken out of the integral. The integral over kF can then
be replaced by that over δk around each of the Nhs hot spots.
(Nhs = 8 for the FS in Fig. 1). With these simplifications,
σ ′

�(�) is cast into the following form:

σ ′
�(�) = e2vF Nhs

4π2c

∫ �

0

dω

�

∫
dδ k

× �′′(δk,� − ω) + �′′(δk,ω)(
�

Zδk

)2 + [�′′(δk,� − ω) + �′′(δk,ω)]2
. (3.2)

For an order-of-magnitude estimate, one can replace∫ �

0 dω[�′′(δk,� − ω) + �′′(δk,ω)] by �′′(δk,�) and neglect
�′′ in the denominator of Eq. (3.2). Introducing the nominal
conductivity

σ0 ≡ e2Nhs

4π2c
(3.3)

and using the dimensionless variables defined by Eq. (2.14),
we obtain

σ ′
�(�) ∼ σ0

�̄2

∫
dk̄ Z2

k̄

�′′(k̄,�̄)

ḡ
. (3.4)

Now, we substitute �′′(k̄,�̄) and Zk̄ found in the previous
section into Eq. (3.4) and select the largest contribution to the
integral.

In the frequency interval 0 < �̄ < ḡ/E∗
F , which includes

both the top and bottom panels of Fig. 8, the largest
contribution to σ ′

�(�̄) comes from the region 2LC/2D
(two-loop composite scattering in the 2D regime), where
�′′ ∼ ḡ(E∗

F /ḡ)(�̄2/k̄4) ln3(k̄2/�̄) and Zk̄ ∼ k̄. Because the
integrand falls off rapidly (as k̄−2) with k̄ in this regime,
the upper limit of integration can be extended to infinity,
while the lower limit coincides with the lower boundary
of the 2LC/2D regime, i.e., k̄ ∼ (�̄E∗

F /ḡ)1/3. Substituting
expressions for �′′ and Z into Eq. (3.4), we obtain

σ ′
�(�) ∼ σ0

�̄2

E∗
F

ḡ

∫ ∞

(�̄E∗
F /ḡ)1/3

dk̄
�̄2

k̄2
ln3 k̄2

�̄

∼ σ0

(
E∗

F

ḡ

)2/3 1

�̄1/3
ln3

[(
E∗

F

ḡ

)2 1

�̄

]

= σ0

[
(E∗

F )2

ḡ�

]1/3

ln3 (E∗
F )2

ḡ�
. (3.5)

As we see, σ ′
�(�) in this regime exhibits a NFL behavior, i.e.,

an �−1/3 divergence at �̄ → 0 (modulo a logarithmic factor).
For ḡ/E∗

F < �̄ < 1 (Fig. 9, top panel), the dominant
contribution comes from the regions 2LC/1D and 2LC/1D∗
(two-loop composite scattering in the 1D regime for k̄ < 1 and
k̄ > 1, correspondingly). As we said at the beginning of this
section, the self-energy in this regime depends both on � and
vF k⊥; thus Eq. (3.4), derived from the Kubo formula for the
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case of k⊥ independent self-energy, is not, strictly speaking,
applicable. However, following the same steps that led us to
Eq. (2.33), it can be readily shown that the mass-shell and
FS values of the self-energy are of the same order and given
by Eq. (2.37). It is thus permissible to use Eq. (2.37) for an
estimate of the conductivity. We recall that Zk̄ ∼ k̄ in the
2LC/1D region and Zk̄ ≈ 1 in the 2LC/1D∗ region. Since
the integral over k̄ in the 2LC/1D region converges at k̄ → 0,
its lower limit (

√
�̄) can be set equal to zero. Likewise, the

integral over k̄ in the 2LC/1D∗ region converges at k̄ → ∞ so
that its upper limit [(�̄E∗

F /ḡ)1/2] can be extended to infinity.
Combining these two contributions, we find

σ ′
�(�) ∼ σ0

�̄2

(∫ 1

0
dk̄ k̄2 �̄

k̄
+

∫ ∞

1
dk̄

�̄

k̄2

)

∼ σ0

�̄
= σ0

ḡ

�
. (3.6)

The integrals in both terms in the first line of Eq. (3.6) come
from the region k̄ ∼ 1, which separates the 2LC/1D and
2LC/1D∗ regimes.

Finally, we come to the interval 1 < �̄ < (E∗
F /ḡ)2 (Fig. 9,

bottom panel). The dominant contribution to conductivity
in this case comes from the hot region (0 < k̄ <

√
�̄),

where �′′(k̄,�̄) ∼ ḡ
√

�̄. At lower frequencies, the hot-region
contribution to the conductivity is reduced due to a small value
of the Z factor. At �̄ > 1, however, the Z factor is almost equal
to unity and does not affect the conductivity, which is given by

σ ′
�(�) ∼ σ0

�̄2

∫ √
�̄

dk̄
√

�̄ ∼ σ0

�̄
= σ0

ḡ

�
, (3.7)

which is the same scaling as in Eq. (3.6). Therefore, the
MFL, 1/� scaling of σ ′

� spans over a wide frequency region:
ḡ/E∗

F < �̄ < (E∗
F /ḡ)2 [or ḡ2/E∗

F < � < (E∗
F )2/ḡ], although

the prefactor changes between the regions of ḡ2/E∗
F < � < ḡ

and ḡ < � < (E∗
F )2/ḡ.

Summarizing, σ ′
�(�) is given by

σ ′(�) ∼ σ0

×
{[ (E∗

F )2

ḡ�

]1/3
ln3 (E∗

F )2

ḡ�
for 0 < � < ḡ2/E∗

F ,

ḡ/� for ḡ2/EF < � < (E∗
F )2/ḡ.

(3.8)

B. Vertex corrections: Boltzmann equation

The estimates for the conductivity in the previous section
[Eqs. (3.5)–(3.7)] were obtained by taking into account only
the self-energy contribution to the current-current correlation
function while neglecting all types of vertex corrections,
including Aslamazov-Larkin diagrams. In certain cases, the
vertex corrections reduce the self-energy contribution signif-
icantly, and even cancel it out entirely (for the case of a
Galilean-invariant system). At first glance, one may expect
a strong cancellation between the self-energy and vertex
contributions to occur in our case as well. Indeed, all the
relevant processes, considered in Sec. II, involve fermions
with either almost parallel or almost antiparallel momenta.
Had we been dealing with a generic FL, a contribution of
such processes to the transport relaxation rate would have

been much smaller than that to the self-energy. We will
show, however, that the cancellation between the self-energy
and vertex-correction contributions for our case, which is a
strongly anisotropic and strongly correlated FL/NFL, turns out
to be much less dramatic: the self-energy result overestimates
the actual conductivity by at most a logarithmic factor, while
a power-law singularity of σ ′ remains intact.

To see this result qualitatively, we recall that, within the
Boltzmann-equation approach, a contribution to the jj compo-
nent of the conductivity tensor from a four-fermion interaction
process contains a “current-imbalance factor” [24,25]

� ≡ [vj (k) + vj (p) − vj (k′) − vj (p′)]2, (3.9)

averaged with the scattering probability over the FS. It is the
presence of � that makes the transport scattering rate to be, in
general, different from the quasiparticle decay rate. The role of
� is to ensure gauge invariance and time-reversal symmetry.
Gauge invariance implies that there is no contribution to the
conductivity from strictly forward scattering, when k′ = k and
p′ = p (or k′ = p and p′ = k) in which case � = 0. Time-
reversal symmetry guarantees that there is also no contribution
from scattering in the Cooper channel, when p + k = 0 =
k′ + p′ and hence the total currents carried by the incoming and
outgoing fermions are equal to zero. A 2kF scattering process,
as defined in this paper, is a subcase of the Cooper process with
additional constraints k′ ≈ k and p′ ≈ p, and hence � = 0 in
this case as well. The question now is how strongly do these
constraints reduce the transport scattering rate of lukewarm
and hot fermions compared to the quasiparticle decay rate.

For a forward-scattering process, all four lukewarm
fermions are near the same hot spot, i.e., k = khs + δk,
p = khs + δp, k′ = khs + δk + δq, and p′ = khs + δp − δq,
where all the “δ vectors” are tangential to the FS. For a 2kF

scattering process, two out of the four fermions are near the
same the hot spot, while the other two are near the opposite
spot, e.g., k = khs + δk, p = −khs + δp, k′ = khs + δk + δq,
and p′ = −khs + δp − δq. Obviously, � vanishes in the limit
of δq → 0 for both types of scattering.

If the quasiparticle velocity varies smoothly along the
FS, the velocities entering Eq. (3.9) can be expanded near
the corresponding hot spots as v(khs + δk) ≈ v(khs) + (δk ·
∇)v(khs) + O(δk2), and similarly for other terms in �. The
linear terms of the expansion then cancel out, and the
contribution to the conductivity is reduced by a factor of
� ∝ δk4. Such a situation would be encountered in a generic
FL (in which case khs is to be understood as just an arbitrary
point on the FS rather than a hot spot). However, the situation
is very much different for a FL near SDW criticality, in which
case the (renormalized) quasiparticle velocity varies rapidly
around the hot spot. Using the definition of the Z factor
from Eq. (2.11) and assuming that the bare velocity v0(k)
varies smoothly along the FS, we can rewrite the velocities in
Eq. (3.9) as v(khs + δk) = v0(khs)Zδk , etc. [45]. Consequently,
the current-imbalance factor is reduced to

� = [
v0

j (khs)
]2

[Zδk ± Zδp ∓ Zδk+δq ± Zδp−δq ]2, (3.10)

where ± corresponds to forward/2kF scattering. The com-
bination of the four Z factors form a scaling function of
δk, δp, and δq. In the lukewarm regime, for example, this
function is obtained by substituting Eq. (2.12) into Eq. (3.10).
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While the deviations from the hot spots δk and δp, as well
as the momentum transfer δq, are small compared with kF ,
the momentum transfer is not small compared with δk and
δp; instead, δq ∼ δk ∼ δp. Therefore, one can not expand
the combination of the four Z factors any further, and � is
small only as the square of the Z factor itself, e.g., only as
δk2 in the lukewarm regime. This smallness has already been
taken into account in the “naive” estimate for the conductivity;
indeed, the Z factor in the denominator of Eq. (1.2) accounts
for velocity renormalization [46].

In the 2LC/2D regime, the transport rate is smaller than
the quasiparticle decay rate only by a logarithmic factor
present in the latter [cf. Eq. (2.26)]. Indeed, a cube of the
logarithm in Eq. (2.26) comes from two sources. Two out of
three logarithms come from the logarithmic singularity of the
composite vertex in the regime of δq < min{δk,δp}. However,
in processes relevant for the conductivity δq ∼ δk ∼ δp, and
thus the logarithmic singularity of the vertex is replaced by
a number of order one. The third logarithm comes from the
1/δq singularity of the integrand in the self-energy but this
singularity is canceled by the vanishing of � at δq = 0.
The remainder of the self-energy comes from the region
δq ∼ δk ∼ δp and has no logarithms.

The power-law singularity of the conductivity σ ′(�) ∝
1/�1/3 comes from the 1/(δk)4 singularity of the self-energy,
which is not affected by the factors described above. One
should then expect the actual low-frequency form of the
conductivity to be

σ ′(�) ∼ σ0

[
(E∗

F )2

ḡ�

]1/3

(3.11)

for 0 < � < ḡ2/E∗
F .

At higher frequencies [ḡ2/E∗
F < � < (E∗

F )2/ḡ], the self-
energy contribution to the conductivity contains no logarithmic
factors [cf. Eqs. (3.6) and (3.7)], and thus σ ′(�) differs from
σ ′

�(�) by at most a number of order one, i.e.,

σ ′(�) ∼ σ0
ḡ

�
. (3.12)

The conductivity as a function of � is sketched in Fig. 11.
To two-loop order, Eq. (3.11) was obtained by HHMS who

argued, however, that a singular behavior of the conductivity

g 2

E*
F

Ω

σ '

EF
*( )2

g

Ω−1/3

Ω−1

FIG. 11. (Color online) The real part of the conductivity as a
function of frequency.

comes only from 2kF scattering, while the forward-scattering
contribution is canceled by vertex corrections. Our analysis
does not reveal major differences between forward and 2kF

scattering to two-loop order.
We should point out, however, that the reasoning based on

the Boltzmann equation is not precise. While the canonical
form of the Boltzmann equation is valid only to second order
in a static interaction (or else for an effective interaction
obtained in the random phase approximation) [47], scattering
at composite bosons corresponds to fourth order in the dynamic
interaction, the staggered spin susceptibility. Our situation,
however, is simplified by the fact that the intermediate
fermions are far off their mass shells. As a result, the four-leg
vertex, which should a priori depend on all three fermionic
frequencies (the fourth one is fixed by energy conservation),
actually depends only on the frequency transfer. For such a
vertex, cancellations between the diagrams occur in the same
way as predicted by the Boltzmann equation. In the next
section, we will present a detailed analysis of the diagrams
for the conductivity which confirms the qualitative arguments
given in this section.

C. Diagrams for the conductivity

1. Terminology and notations

We use the Kubo formula for the conductivity at finite
frequency σ ′

jj (�) ∝ ImPjj (�)/�. The current-current corre-
lator Pjj (�) ≡ P(�) is given by a particle-hole bubble with
zero-momentum transfer and frequency transfer �, and with
velocities of internal fermions v(p) at the vertices.

The two diagrams for the current-current correlator P(�)
with self-energy insertions are shown in Fig. 12(a). Other
contributions to P(�) are the vertex-correction diagram
[Fig. 12(b)] and two Aslamazov-Larkin diagrams (Fig. 13)
(see, e.g., Ref. [48]). Depending on whether the momenta on
the solid and dashed lines are near the same or opposite hot
spot, we are dealing with a forward- or 2kF -scattering process,
correspondingly.

(b)

(a)

P,1

P − Q0,1

P,1

K ,1 1( )
K ',1(1)

P ',1

P − Q0,1

P,1 P,1

K ,1(1)

K ',(1)

P ',1

P + Q0,1 P '+ Q0,1

P ',1

K ,1 1( )K ',1 1( )

FIG. 12. (Color online) Diagrams for the conductivity. Labels 1
and 1̄ correspond to hot spots in Fig. 1. Q0 = (0,�) is the (2 + 1)
momentum of the external electric field. (a) Self-energy diagrams.
(b) Vertex-correction diagram.
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(a) (b)

P + Q0,1

P,1

P ',1 K ',1 1( )

K '+ Q0,1 1( )

K ',1 1( )

P + Q0,1

P,1

K + Q0,1 1( )

K ,1(1)

P ',1K ,1 1( )

FIG. 13. (Color online) Aslamazov-Larkin diagrams for the con-
ductivity. Notations are the same as in Fig. 12.

Before we proceed further, a brief remark on terminology
is in order. We believe that the diagram identified by HHMS
as a “vertex correction” is actually the first of the two
Aslamazov-Larkin diagrams [Fig. 13(a)], while the actual
vertex-correction diagram [Fig. 12(b)] was not considered by
HHMS. We will use this terminology throughout the rest of
this section.

Our analysis proceeds in two steps. First, in Sec. III C 2, we
show that diagrams (a)and (b) in Fig. 12, as well as diagrams
(a) and (b) in Fig. 13, cancel each other if one neglects the
variations of the Z factor around the FS. Next, in Sec. III C 3,
we show that allowing for the variation of the Z factor prevents
complete cancellation and does lead to power-law singularities
in the conductivity, as announced in Eqs. (3.11) and (3.12).

2. Cancellation of diagrams under the conditions of strict forward
and 2kF scattering

It is convenient to consider mutual cancellations between
the diagrams in Figs. 12 and 13 separately.

As before, we use (2 + 1) notations for the energy and
momentum, such that P = (p,�p), etc. The external (2 + 1)
momentum has only the frequency component: Q0 ≡ (0,�),
where � is the frequency of the external electric field (chosen
to be positive for convenience.)

(a) Self-energy and vertex-correction diagrams. First, we
discuss the diagrams in Figs. 12(a) and 12(b), whose contri-
butions to the current-current correlator are given by

PA = −
∫

P

v2
j (p) [G(P − Q0)G(P ) + G(P )G(P + Q0)]

×G(P )�(P ), (3.13a)

PB =
∫

P ...K ′
vj (p) · vj (p′)G(P )G(P + Q0)

×G(P ′)G(P ′ + Q0)G(K)G(K ′)��Q0,1, (3.13b)

where

� ≡ �(P,K; P ′,K ′), (3.14a)

��,1 ≡ �(P + Q0,K; P ′ + Q0,K
′), (3.14b)

while the self-energy reads as

�(P ) = −
∫

P ′,K,K ′
�2G(P ′)G(K)G(K ′). (3.15)

For the time being, we are not specifying a particular
form of the interaction vertex. The only requirement we
impose is that the vertex satisfies the microscopic reversibility
condition: �(P,K; P ′,K ′) = �(P ′,K ′; P,K), which we have
already used in Eq. (3.15). Note that the velocities v(p) and

v(p′) in Eqs. (3.13a) and (3.13b), as well as all velocities
in the formulas below, are the bare ones [49]. Velocity
renormalization by the interaction is accounted for by the Z

factors which occur explicitly in the Kubo formalism.
The Green’s functions in diagrams 12(a) and 12(b),

and 13(a) and 13(b), are renormalized by qπ scattering,
which determines the Z factor. Therefore, the “bare” Green’s
functions in the diagrams 12(a) and 12(b) and 13(a) and 13(b)
are of the form

G(P ) =
(

i�p

Zp
− εp

)−1

, (3.16)

with Zp given by Eq. (2.12). Green’s functions of the
form (3.16) satisfy the following identity:

G(P )G(P + Q0) = Zp

i�
[G(P ) − G(P + Q0)] . (3.17)

Splitting the products of the Green’s functions in Eq. (3.13a)
with the help of this identity, we rewrite PA as

PA = 1

i�

∫
P

v2
j (p)Zp [�(P )−�(P+Q0)] G(P )G(P+Q0).

(3.18)

As we saw in Sec. III A, diagram 12(a) by itself produces
singular terms in the conductivity, given by Eqs. (3.5)
and (3.6). By construction, the momenta along both the top
and bottom lines of the composite vertex �(P,K; P ′,K ′) are
close to each other, i.e., k′ ≈ k and p′ ≈ p, and so are the
velocities in diagram 12(b): v(p) ≈ v(p′). To see if the singular
contributions from diagrams Figs. 12(a) and 12(b) cancel each
other, we first neglect the differences between v(p) and v(p′),
and also between Zp and Zp′ . The first constraint corresponds
to either strict forward scattering, when the momenta on the
solid and dashed lines are near the same hot spot, or to strict
2kF scattering, when these momenta are near the opposite hot
spots. The constraint Zp = Zp′ will be relaxed in Sec. III C 3.
Imposing these constraints and applying identity (3.17) to the
product G(P ′)G(P ′ + Q0) in diagram 12(b), we rewrite PB as

PB = 1

i�

∫
P ...K ′

v2
j (p)Zp[G(P )G(P + Q0)G(P ′)���,1

−G(P )G(P + Q0)G(P ′ + Q0)���,1]G(K)G(K ′).

(3.19)

Next, we rewrite ���,1 entering the first and second terms
in the square brackets of Eq. (3.19) as ���,1 + �2 − �2 and
���,1 + �2

�,1 − �2
�,1, correspondingly. Then PB can be rep-

resented as a sum of three terms:PB = P1
B + P2

B + P3
B , where

P1
B = 1

i�

∫
P ...K ′

v2
j (p)Zp

[
�2G(P ′) − �2

�,1G(P ′ + Q0)
]

×G(P )G(P + Q0)G(K)G(K ′), (3.20a)

P2
B = 1

i�

∫
P ...K ′

v2
j (p)Zp�[��,1 − �]

×G(P ′)G(P )G(P + Q0)G(K)G(K ′), (3.20b)

P3
B = 1

i�

∫
P ...K ′

v2
j (p)Zp��,1[��,1 − �]

×G(P ′ + Q0)G(P )G(P + Q0)G(K)G(K ′).

(3.20c)
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Using the self-energy from Eq. (3.15), we rewrite P1
B as

P1
B = 1

i�

∫
P

v2
j (p)Zp [�(P + Q0)−�(P )] G(P )G(P + Q0).

(3.21)

Comparing this result with PA in Eq. (3.18) we see that this part
of diagram 12(b) cancels out entire diagram 12(a):PA + P1

B =
0.

If � were an arbitrary dynamic vertex, each of the two
remaining terms P2

B and P3
B would, in general, be of the same

order as PA. Our case, however, is special in the sense that,
within the approximation adopted for the composite vertex
in Sec. II C 1, the frequency dependence of �(P,K; P ′,K ′)
involves only one variable: the difference of the frequencies
of the initial and final states

�(P,K; P ′,K ′) = F (|�p − �p′ |; p − p′,p,k′), (3.22)

where an explicit form of the function F can be read off from
Eq. (2.18). Since ��1 differs from � only by a shift of the initial
and final frequencies by � [see Eqs. (3.14a) and (3.14b)], it
follows from Eq. (3.22) that ��,1 = �, and thusP2

B = P3
B = 0.

Therefore, the sum of diagrams 12(a) and 12(b) is equal to zero.
(b) Aslamazov-Larkin diagrams. We now turn to

Aslamazov-Larkin diagrams (a) and (b) in Fig. 13. The
corresponding contributions to the current-current correlator
are

PC =
∫

P ...K ′
vj (p) · vj (k′)G(P )G(P + Q0)G(K ′)

×G(K ′ + Q0)G(P ′)G(K)��,2�, (3.23a)

PD =
∫

P ...K ′
vj (p) · vj (k)G(P )G(P + Q0)G(K)

×G(K + Q0)G(P ′)G(K ′)��,3��,4 , (3.23b)

where � is given by Eq. (3.14a), and

��,2 ≡ �(P + Q0,K; P ′,K ′ + Q0), (3.24a)

��,3 ≡ �(P,K + Q0; P ′,K ′), (3.24b)

��,4 ≡ �(P + Q0,K; P ′,K ′). (3.24c)

In each vertex, the sum of the incoming momenta/
frequencies is equal to the sum of the outgoing ones. For
a forward-scattering process, all momenta in diagrams 13(a)
and 13(b) are close to each other, i.e., p ≈ p′ ≈ k ≈ k′. For
a 2kF process, the momenta are related to each other as
p ≈ p′ ≈ −k ≈ −k′. Accordingly, the current vertices can be
simplified as

vj (p) · vj (k) = vj (p) · vj (k′) = ±v2
j (p), (3.25)

where the + (−) sign corresponds to forward (2kF ) scat-
tering. As it was done for diagrams 12(a) and 12(b),
we also set all the Z factors to be equal to Zp for
the time being. Applying identity (3.17) to the prod-
ucts of the first four Green’s functions in Eqs. (3.23a)
and (3.23b), we represent both PC and PD as a sum of four
terms:

PC = ± 1

�2

∫
P,P ′,K,K ′

{
v2

j (p)Z2
p[G(P )G(K ′) + G(P + Q0)G(K ′ + Q0) − G(P )G(K ′ + Q0) − G(P + Q0)G(K ′)]

×G(P ′)G(K)���,2
}
, (3.26a)

PD = ± 1

�2

∫
P,P ′,K,K ′

{
v2

j (p)Z2
p [G(P )G(K) + G(P + Q0)G(K + Q0) − G(P )G(K + Q0) − G(P + Q0)G(K)]

×G(P ′)G(K ′)��,3��,4
}
. (3.26b)

Shifting the momenta by the external momentum Q0, we reduce the sum of Eqs. (3.26a) and (3.26b) to the following form:

PC + PD = ± 1

�2

∫
P,P ′,K,K ′

v2(p)Z2
pG(P )G(K ′)G(P ′)G(K)G(P,K,P ′,K ′,Q0), (3.27)

where G(P,K ′,P ′,K,Q0) is a bilinear combination of the vertices given by

G(P,K,P ′,K ′,Q0) = �(P,K; P ′,K ′)[�(P + Q0,K; P ′,K ′ + Q0) − �(P + Q0,K − Q0; P ′,K ′)]

+�(P,K; P ′,K ′)[�(P − Q0,K; P ′,K ′ − Q0) − �(P − Q0,K + Q0; P ′,K ′)]

+�(P − Q0,K; P ′,K ′)[�(P,K − Q0; P ′,K ′) − �(P,K; P ′,K ′ + Q0)]

+�(P + Q0,K; P ′,K ′)[�(P,K + Q0; P ′,K ′) − �(P,K; P ′,K ′ − Q0)]. (3.28)

Again, if � were an arbitrary vertex, G would be nonzero. However, for our form composite vertex, the vertices in each of the four
square brackets in Eq. (3.28) cancel each other. For example, in the first line of Eq. (3.28) we have �(P + Q0,K; P ′,K ′ + Q0) =
F (|�p + � − �p′ |,p − p′,p,k) and �(P + Q0,K + Q0; P ′,K ′) = F (|�p + � − �p′ |,p − p′,p,k), i.e., the two vertices are
equal. Likewise, the remaining three lines in Eq. (3.28) also vanish. Therefore, G = 0 and PC + PD = 0.
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To summarize, if one focuses on strict forward and 2kF

scattering and neglects the variation of the Z factor along the
FS, the contributions to the conductivity from all the diagrams
cancel each other.

3. Absence of cancellation of the power-law singularity
in the conductivity

We are now relaxing the constraints of strict forward and
2kF scattering by taking into account that the Z factors of
fermions with different, albeit close, momenta are different.
The bare fermionic velocities will be still taken at either the
same or opposite; however, as explained in Sec. III B, the
renormalized velocities which, in our model, differ from the
bare ones by the Z factors, vary rapidly near the hot spots.
Since allowing for such a variation will be already sufficient
for eliminating the cancellation of the diagrams even for the
special form of the composite vertex in Eq. (3.22), we initially
restrict our analysis to that form of vertex. Consequently,
the vertices entering diagrams 12(a) and 12(b), and 13(a)
and 13(b), are related to each other as

��,1 = ��,3 = �; ��,4 = ��,2. (3.29)

With these constraints on the vertices and also with vj (p) =
vj (p′), the sum of the diagrams 12(a) and 12(b) is reduced to

PA + PB = 1

i�

∫
P ...K ′

v2
j (p)G(P )G(P + Q0)G(K)G(K ′)

×�2(Zp′ − Zp)[G(P ′) − G(P ′ + Q0)]. (3.30)

We define the “auxiliary self-energy” as

�Z(P ) ≡ −
∫

P ′,K,K ′
�2G(P ′)G(K)G(K ′)

Zp′

Zp
, (3.31)

which differs from the usual self-energy [Eq. (3.15)] by the
ratio of the Z factors under the integral. Defining also the
difference of the usual and auxiliary self-energies, ��(P ) ≡
�(P ) − �Z(P ), we rewrite Eq. (3.30) as

PA + PB = 1

i�

∫
P

v2
j (p)Zp [��(P ) − ��(P + Q0)]

×G(P )G(P + Q0). (3.32)

Now, the sum of diagrams 12(a) and 12(b) has a form similar
to that of diagram 12(a) itself [Eq. (3.18)], except for the usual
self-energy in Eq. (3.18) is replaced by �� in Eq. (3.32).
Therefore, to compare Eqs. (3.18) and (3.32), we only need to
compare the two-loop self-energy with

��(K) = −
∫

P,P ′,K ′
�2G(P )G(P ′)G(K ′)

Zk − Zk′

Zk
.

(3.33)

In what follows, we consider explicitly only the 2D regime of
two-loop composite scattering with the self-energy given by
Eq. (2.26). When evaluating the usual self-energy in Eq. (2.24),
we integrated over p⊥ and then over q⊥, which led us to
Eq. (2.25). Performing the same integrations in Eq. (3.33) and
using an explicit form of the Z factor from Eq. (2.12), we
arrive at

��comp2
(δk,�k) = 1

2vF

∫
d�q

2π

∫
dδq

2π

∫
d�p

2π

∫
dδp

2π

sgn(�p − �q) − sgn(�p)
i�p

Zp
− i(�p−�q )

Zp−q
− δpδq

m∗ + (δq)2

2m∗
Zδk,δqsgn(�k + �q)�2(K,P ; Q),

(3.34)

where Zδk,δq ≡ 1 − |δk + δq|/|δk|. Since Zδk,δq vanishes as
δq at δq → 0, the 1/|δq| singularity of the particle-hole bubble
is eliminated. In the absence of the 1/δq singularity, the
internal momenta are of order of the internal one: δq ∼ δp ∼
δk. Therefore, the logarithmic factor in the vertex [Eq. (2.18)]
is replaced by a number of order one, whereas the third
(kinematic) logarithm simply does not occur. As a result,
�� contains no logarithmic factors. However, Zδk,δq ∼ 1 at
relevant δq ∼ δk and thus does not affect power counting of
the rest of the result, which reads as

��′′ ∼ �2 ḡ2

(vF δk)3

E∗
F

vF δk
. (3.35)

Therefore, the combined contribution of diagrams 12(a)
and 12(b) differs only by a logarithmic factor from the
self-energy contribution [the diagram 12(a)].

The imaginary parts of the self-energies due to two-loop
composite scattering in the 1D regime [Eq. (2.35)] and from
qπ scattering of hot fermions [Eq. (2.9) with δk = 0] contain
no logarithmic factors. Since Zδk,δq ∼ 1 in these cases as well,
the combined contribution of diagrams 12(a) and 12(b) differs
from that of diagram 12(a) only by a number of order one.

We now turn to diagrams 13(a) and 13(b). Using con-
straints (3.29) for the interaction vertices and (3.25) for the
current vertices but keeping the momentum dependence of the
Z factors, we obtain for the sum of diagrams 13(a) and 13(b)

PC + PD = ± 1

i�

∫
P ...K ′

v2
j (p)���,2 (Zk − Zk′)

× [G(K)G(K ′+Q0)G(P ′)−G(K)G(K ′)G(P ′)]

×G(P )G(P + Q0). (3.36)

[In deriving this result, we also used properties (3.17)
and (3.22).] In general, Eq. (3.36) can not be expressed via
the self-energy because it contains a product of different
interaction vertices � and ��,2, whereas the self-energy
contains �2, and also because the external frequency enters
the first term in the square brackets in a different way as
compared to the self-energy diagram. In our case, however,
these differences are immaterial. Indeed, Eq. (3.24a) shows
that ��,2 differs from � only in that the first and last fermionic
frequencies are shifted by the external frequency �. Since
the composite vertex in Eq. (2.18) depends on the frequency
only logarithmically, the difference between � and ��2 is
not important to logarithmic accuracy. If we identify � with

155126-21



CHUBUKOV, MASLOV, AND YUDSON PHYSICAL REVIEW B 89, 155126 (2014)

��,2, the second term in the square brackets, taken without the
(Zk − Zk′) factor, reduces to �(P ). As it was the case for the
sum of diagrams 12(a) and 12(b), the role of the (Zk − Zk′)
factor is to regularize the 1/δq singularity of the particle-hole
bubble. After this regularization, the second term in the square
brackets gives the same contribution to the conductivity as the
self-energy diagram without an extra logarithm.

In the first term, the frequency of the fermion K ′ is shifted
by the external frequency. Denoting again K ′ = K + Q and
P ′ = P − Q, it is easy to see that this shift changes the
frequency of the particle-hole bubble formed by fermions K

and K + Q + Q0, such that instead of |�q |/|δq| we now have
|�q + �|/|δq|. The change has the same effect as shifting the
frequency of the incoming fermion from �p to �p + �: the
(Zk − Zk′) factor again removes one of the logarithms.

We thus see that the combined contribution of dia-
grams 13(a) and 13(b) is of the same order as that of
diagrams 12(a) and 12(b). The two groups of diagrams cancel
each other to leading logarithmic order. Beyond this order,
however, the vertices in diagrams 13(a) and 13(b) differ
from those in 12(a) and 12(b), and thus a cancellation can
not happen. We therefore conclude that the sum of the four
diagrams differs from the self-energy diagram by at most a
logarithmic factor, and the conductivity does indeed scale as
announced in Eqs. (3.11) and (3.12).

4. Subleading nonsingular terms in the optical conductivity

For completeness, we also analyze the form of the sub-
leading terms in the optical conductivity, which are present
even under the assumptions adopted in Sec. III C 2, i.e.,
strict forward and 2kF scattering and constant Z factor. These
subleading terms appear because the diagrams for the conduc-
tivity do not cancel each other if the frequency dependence
of the composite vertex is taken into account. Indeed, when
deriving Eq. (2.18) we approximated the fermionic propagator
G(K + Qπ ) by its static form (−1/vF δp), and similarly for the
second propagator G(P + Qπ ). The full fermionic propagator
depends on the frequency via the �k/Zk term. All internal
frequencies in the diagrams for P are of order �, hence
the extra terms which distinguish between, e.g., ��,1 and �,
come in powers of �/ZkvF δk ∝ �/δk|δk|, where we used
that Zk ∝ |δk| for lukewarm fermions. The first-order term
again vanishes by parity, and the leading term in ��,1 − �

scales as ��2/(δk)4. In the 2D regime of composite scattering,
typical |δk| ∝ �1/3, hence the extra term is of order �2/3,
and the corresponding contribution to conductivity scales as
�1/3, i.e., σ ′(�) ∼ O(�−1/3) + O(�1/3). This dependence is
nonanalytic yet subleading to a constant, FL term in the
conductivity. In the 1D regime, typical δk are frequency
independent, hence the correction to the conductivity scales
as �2, i.e., σ ′(�) ∼ O(�−1) + O(�2).

IV. CONCLUSIONS

In this paper, we considered the T = 0 optical conductivity
of a clean two-dimensional metal near a spin-density-wave
instability with momentum qπ = (π,π ). It is well established
by now that critical magnetic fluctuations destroy fermionic
coherence in hot regions, but coherent quasiparticles survive

on the rest of the FS. Recent analysis by HHMS (Ref. [21])
has demonstrated that the contribution to the conductivity
from hot fermions is reduced by vertex corrections, and is
subleading to a constant, Fermi-liquid contribution from cold
fermions. These authors also argued that composite scattering
between lukewarm fermions (which behave as Fermi-liquid,
albeit strongly renormalized, quasiparticles) gives a singular
contribution to the conductivity because the diagrams with
self-energy and vertex-correction insertions do not cancel each
other.

We found that the imaginary part of the fermionic
self-energy from two-loop composite scattering scales as
�′′(kF ,�) ∝ �2/δk4 ln3 |vF δk/�| for � below some charac-
teristic scale and as � min{vF δk/ḡ,1}/δk2 above that scale.
The conductivity obtained by inserting such a self-energy
into the current-current correlator exhibits a NFL, singular
dependence on �: σ ′

�(�) ∝ ln3 �/�1/3 and σ ′
�(�) ∝ 1/�

for � below and above �min = ḡ2/EF , correspondingly. At
the high-frequency end, the 1/� scaling of σ ′

�(�) extends
all the way up to the bandwidth, above which the low-energy
theory becomes inapplicable.

We showed that the vertex-correction and Aslamazov-
Larkin diagrams cancel out a part of but not all the self-energy
contribution. Namely, the low-frequency form of the full
conductivity loses the logarithmic prefactor but retains a power
law �−1/3 singularity, whereas the high-frequency 1/� form
remains intact (up to a number). The full conductivity behaves
as specified by Eq. (1.3).

As a word of caution, Eq. (1.3) is only a two-loop result.
As shown in Sec. II F, corrections to the self-energy from
higher loops are of the same order as the two-loop result at
lower frequencies and are formally larger than the two-loop
result by a logarithmic factor at higher frequencies. This
means, in particular, that the scaling form of the conductivity
in the high-frequency regime should acquire an anomalous
exponent: σ ′(�) ∝ 1/� → σ ′(�) ∝ 1/�1+β . A calculation
of β requires nonperturbative methods and is beyond the scope
of this paper.

We emphasize that nonanalytic terms in the conductivity,
considered in this paper, are different from the ones in the
presence of impurities [50]. In the latter case, nonanalytic
terms appear as corrections to a constant Drude term due
to impurity scattering and predominantly come from hot
fermions. We caution, however, that a computation of the
conductivity in near-critical dirty systems requires special
care [51].

Strictly speaking, the range for the 1/� scaling of σ ′(�) is
well defined only under the assumption that the spin-fermion
coupling is weak, i.e., ḡ < EF . The actual behavior of σ ′(�)
is determined by the numerical coefficients which are hard to
calculate in a consistent way. It is still encouraging, however,
to see that a microscopic model predicts a 1/� scaling in a
(at least formally) wide frequency range, which is consistent
with the behavior observed in the cuprates [10]. The scale
�min ∼ ḡ2/EF is parametrically smaller than the scale of the
superconducting Tc ∼ ḡ, hence, 1/�1/3 behavior is likely to
be masked by superconductivity (or finite T > Tc).

An interesting question to be addressed elsewhere is
whether there is �/T scaling of the conductivity and, in
particular, whether the 1/� behavior of the conductivity
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at T = 0 is paralleled by a the linear-in-T behavior of the
resistivity in a similarly wide temperature range.
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Wölfle for fruitful discussions and C. Reeg for proofreading
the manuscript. We are particularly thankful to M. Metlitski

for critical comments on the first version of the manuscript.
This work was supported by the Department of Energy via
Grant No. DE-FG02-ER46900 (A.V.C.), National Science
Foundation via Grant No. DMR-1308972 (D.L.M.), and
Russian Foundation for Basic Research via Grant No. 12-02-
00100 (V.I.Y.). D.L.M. and A.V.C. thank the Aspen Center
for Physics and MPIPKS (Dresden) for hospitality during
the work on this project. The Aspen Center for Physics is
supported by the National Science Foundation via Grant No.
PHYS-1066293.

[1] N. E. Hussey, R. A. Cooper, Xiaofeng Xu, Y. Wang,
I. Mouzopoulou, B. Vignolle, and C. Proust, Philos. Trans. R.
Soc. A. 369, 1626 (2011).

[2] See J. A. N. Bruin, H. Sakai, R. S. Perry, and A. P. Mackenzie,
Science 339, 804 (2013), and references therein.

[3] R. Mahajan, M. Barkeshli, and S. A. Hartnoll, Phys. Rev. B 88,
125107 (2013).

[4] See, e.g., A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshin-
ski, Methods of Quantum Field Theory in Statistical Physics
(Dover, New York, 1963); D. Pines and P. Nozieres, The Theory
of Quantum Liquids (Addison-Wesley, Menlo Park, 1966).

[5] L. Taillefer, Annu. Rev. Condens. Matter Phys. 1, 51 (2010);
M. A. Tanatar, N. P. Butch, K. Jin, K. Kirshenbaum, R. L.
Greene, and J. Paglione, Proc. Natl. Acad. Sci. USA 109, 8440
(2012).

[6] A similar behavior with ρ(T ) ∝ T 3/2 observed in the helimagnet
MnSi under pressure [38] is unlikely to be associated with
quantum criticality, as the T 3/2 behavior is seen in a wide range
of pressures above the critical one.

[7] G. Oomi, T. Kagayama, and Y. Onuki, J. Alloys Compd.
271–273, 482 (1998); M. Nicklas, M. Brando, G. Knebel,
F. Mayr, W. Trinkl, and A. Loidl, Phys. Rev. Lett. 82, 4268
(1999); P. G. Niklowitz, F. Beckers, G. G. Lonzarich, G. Knebel,
B. Salce, J. Thomasson, N. Bernhoeft, D. Braithwaite, and
J. Flouquet, Phys. Rev. B 72, 024424 (2005).

[8] T. Timusk and B. Statt, Rep. Prog. Phys. 62, 61 (1999); D. N.
Basov, R. D. Averitt, D. van der Marel, M. Dressel, and
K. Haule, Rev. Mod. Phys. 83, 471 (2011).

[9] Recent experiment in the pseudogap region did find a
max{�2,T 2} behavior of the optical scattering rate, reminiscent
of a FL; see S. I. Mirzaei, D. Stricker, J. N. Hancock, C. Berthod,
A. Georges, E. van Heumen, M. K. Chan, X. Zhao, Y. Li,
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