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Improved generalized gradient approximation for positron states in solids
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Several first-principles calculations of positron-annihilation characteristics in solids have added gradient
corrections to the local-density approximation within the theory by Arponen and Pajanne [Ann. Phys. (NY)
121, 343 (1979)] since this theory systematically overestimates the annihilation rates. As a further remedy, we
propose to use gradient corrections for other local-density approximation schemes based on perturbed hypernetted
chain and on quantum Monte Carlo results. Our calculations for various metals and semiconductors show that
the proposed schemes generally improve the positron lifetimes when they are confronted with experiment. We
also compare the resulting positron affinities in solids with data from slow-positron measurements.
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I. INTRODUCTION

The density functional theory (DFT) solves for the elec-
tronic structure of a condensed matter system in its ground
state so that the electron density ρ− is the basic quantity
[1]. The DFT can be generalized to positron-electron systems
by including the positron density ρ+ as well and it is then
called two-component DFT [2,3]. As a consequence of the
Hohenberg-Kohn theorem [1], the ground-state expectation
value of any operator ô is a functional of the electron and
positron densities denoted by O[ρ−,ρ+]. It can be shown [4]
that if the Hamiltonian Ĥ is augmented by the operator through
a scalar coupling η,

Ĥ = Ĥ(η=0) + ηô, (1)

and the exchange-correlation (XC) energy EXC[ρ−,ρ+](η) is
computed for small values of the field η, then the correction to
the expectation value calculated using the Kohn-Sham single-
determinant wave function is the derivative of the XC energy
with respect to the field η:

O[ρ−,ρ+] = O0[ρ−,ρ+] + d

dη
EXC[ρ−,ρ+](η)

∣∣∣∣
η=0

, (2)

where O0[ρ−,ρ+] is the expectation value of ô for a system of
noninteracting fermions moving in the effective field provided
by the Kohn-Sham formalism [1], EXC is the XC energy
functional. This general expression for O[ρ−,ρ+] generalizes
the Lam-Platzman theorem [4] and provides a formal scheme
to extract positron-annihilation characteristics from the two-
component DFT [5].

The local-density approximation (LDA) is the simplest
implementation of the DFT [1,3] and it provides an explicit
formula for EXC. The generalized gradient approximation
(GGA) gives a systematic improvement for first-principles
electronic calculations with respect to the LDA [6–10]. In
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the case of a positron impurity embedded in an electron gas,
the LDA based on the theory by Arponen and Pajanne [11]
underestimates systematically the positron lifetime and the
positron affinity, while for the GGA [7,8], the agreement
with the experiment in real materials improves since the
annihilation rate contains density gradient corrections which
reduce electron-positron correlation effects. This reduction is
important in the regions of core and semicore electrons and
largest interstitial spaces in semiconductors.

Nevertheless, the GGA correction to the LDA based on
the Arponen and Pajanne scheme does not completely cancel
the overestimation of the annihilation rate in Al [7]. Moreover,
other limitations of this GGA correction [12–14] have revealed
the need to develop new semilocal functionals. Therefore,
the goal of this paper is to study how the GGA for positron
states in solids could be improved by replacing the Arponen
and Pajanne LDA scheme with LDA parametrizations based
on perturbed hypernetted chain [15] (PHNC) and on recent
quantum Monte Carlo [16] (QMC) results. Preliminary results
of Boroński [14] have suggested that the GGA based on
PHNC is a right step towards an improved GGA scheme
for positron states in materials. Here, we report state-of-the-
art self-consistent all-electron calculation without any shape
approximation to the charge density or potential to check this
interesting hypothesis.

The calculations of positron-annihilation characteristics
are not only important to test various approaches to the
electron-positron correlation problem but are also useful for
other applications. For instance, positron annihilation is widely
used in condensed matter physics and in materials science to
study Fermi surfaces [17] and open volume defects [18] in
the bulk and at near-surface regions of materials. Accurate
calculations of positron characteristics are therefore needed
in order to reliably extract physically sound results from
experiments [19].

An outline of this paper is as follows. Section II deals with
the basic principles of LDA and GGA for positrons. In Sec. III,
we present the details of the electronic-structure and positron-
annihilation characteristics calculations. The results of the
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calculations are presented and compared with experimental
results in Sec. IV, and the conclusions are given in Sec. V.

II. LDA AND GGA FOR POSITRONS

The shape of the screening cloud around a positron in a
given material is similar to that of a positronium (Ps) atom
and it determines the positron lifetime through the positron-
electron contact density, which is enhanced by a factor γ with
respect to the unperturbed electron density. In the LDA, γ is
treated as a function of the local electron density. If the positron
is considered as an impurity, a useful LDA parametrization of
γ as a function of the electron gas parameter rs reads as

γ = 1 + 1.23 rs + p r2
s + r3

s /3. (3)

In Eq. (3), the factor p in front of the square term is the only
fitting parameter while the first two terms are fixed to reproduce
the high-density RPA limit and the last term the low-density
Ps atom limit [20]. The value p = −0.0742 parametrizes the
results by Arponen and Pajanne [7] (AP) while the value p =
−0.1375 fits the perturbed hypernetted chain approximation
[15] (PHNC). The recent quantum Monte Carlo data can be
fitted with p = −0.22 as shown in Fig. 1. Moreover, near
rs = 2 the Boroński-Nieminen method [2], the Jarlborg-Singh
model [21,22], the Sterne and Kaiser parametrization [23], and
the QMC enhancement predict almost the same result γ ≈ 4.
Increasing p within the LDA gives better agreement with the
experiment than the Arponen and Pajanne p = −0.0742 used
in the same type of approximation [14].

However, quite generally, the LDA underestimates
the positron lifetime of solids. In fact, one expects
that the strong electric field due to the inhomogeneity sup-
presses the electron-positron correlations in the same way
as the Stark effect decreases the electron-positron density
at zero distance for the Ps atom. In the GGA, the effects
of the nonuniform electron density are described in terms
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FIG. 1. (Color online) Enhancement factor γ as a function of rs .
The AP theory yields the higher enhancement, while PHNC and QMC
give lower values. All the enhancements factors are fitted with the
formula given by Eq. (3). The only fitting parameter is the coefficient
p of the square rs term.

of the ratio between the local length scale of the density
variations |∇ ln ρ−| and the local Thomas-Fermi screening
length 1/qTF. The lowest-order gradient correction to the
LDA correlation hole density is proportional to the parameter
ε = (|∇ ln ρ−|/qTF)2. This parameter is taken to describe also
the reduction of the screening cloud close to the positron. For
the homogeneous electron gas ε = 0, whereas in the case of
rapid density variations ε approaches infinity. At the former
limit, the LDA result for the induced screening charge is valid
and the latter limit should lead to the independent particle
model with vanishing enhancement. In order to interpolate
between these limits, one uses for the enhancement factor the
form

γGGA − 1 = (γLDA − 1) exp(−αε), (4)

where α is set so that the calculated and experimental lifetimes
agree as well as possible for a large number of different types
of solids. The corresponding electron-positron correlation
potential scales as [7]

V
ep

GGA = V
ep

LDA exp(−αε/3). (5)

For the Arponen and Pajanne LDA, α is 0.22 (Ref. [7]),
while for the PHNC the value must be renormalized to 0.10
(Ref. [14]). We will see that α = 0.05 in the case of LDA based
on QMC results.

Further in the text, we shall use the following abbreviations
for various LDA and GGA positron approaches examined:
BN for the Boroński and Nieminen approach [2], GC for the
gradient correction with the AP theory and α = 0.22 (after
Ref. [7]), SL for the Stachowiak and Lach PHNC theory [15],
SG for the gradient correction with the SL approach and α =
0.10 (after Ref. [14]), DB for the Drummond et al. QMC
theory [16], and DG for the gradient correction with the DB
approach and α = 0.05.

III. COMPUTATIONAL METHODS

The electronic-structure calculations for selected crys-
talline solids, metals, and semiconductors were carried out
using the WIEN2K code [24]. This code implements the
augmented plane-wave plus local orbital (APW+lo) method
[25], which is considered to be one of the most accurate
methods to calculate electronic structure of solids, and is
based on the the linearized augmented plane-wave (LAPW)
method [26]. The recommended option to use the mixed
APW+lo/LAPW basis set was chosen in this work. The
WIEN2K program also performs full-potential calculations,
which impose no shape restrictions for the electron density and
potential. The LDA electron XC based on QMC simulations
by Ceperley and Alder [27] and parametrized by Perdew and
Zunger [28] was employed to perform the electronic-structure
calculations. The effects of the electron gradient corrections
were also tested with the GGA functional by Perdew, Burke,
and Ernzerhof [29] in several solids.

In order to obtain the positron wave function (ψ+) and
energy (E+), a computer code was developed based on a finite-
difference method [30,31] to solve the positron Schrödinger
equation (in Hartree atomic units)[− 1

2∇2
r − V c(r) + V ep(r)

]
ψ+(r) = E+ψ+(r) (6)
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for which the electron Coulomb potential (V c) and total
electron density (ρ−) needed to determine V ep are taken
from self-consistent WIEN2K electronic-structure calculations.
In particular, the positron potential and wave function are
calculated on a regular three-dimensional (3D) mesh, which
covers an appropriately chosen crystallographic unit cell of
the studied solid. Other computational details are given in the
Appendix (Sec. A1).

The positron lifetime (τ ) is calculated via the positron-
annihilation rate (λ) according to the formula [2]

1

τ
= λ = πr2

0 c

∫
d r ρ+(r) ρ−(r) γ [ρ−(r),ε(r)]

=
∫

d r λi(r), (7)

where r0 and c are the classical electron radius and speed
of light, respectively. The spatial integration proceeds over
the unit cell. The λi symbol denotes the integrand of the
annihilation rate. The positron density is obtained simply
as ρ+ = |ψ+|2 from the properly normalized positron wave
function since only the positron ground state is considered.

In addition to the positron lifetime, the positron affinity A+
is also an important bulk property of materials. The positron
affinity can be determined [3] as

A+ = μ− + μ+ = −(φ− + φ+) , (8)

where μ− and μ+ are the electron and positron chemical poten-
tials, respectively. Within the context of present calculations,
μ+ can be identified with the ground-state positron energy E+.
In the case of a semiconductor, μ− is taken from the position
of the top of the valence band. The comparison of measured
and calculated positron affinity values for different materials is
a good test for the electron-positron correlation potential V ep.
From the experimental viewpoint, the positron affinity can be
found by measuring the electron (φ−) and positron (φ+) work
functions, as also documented in Eq. (8). The positron affinity
(work function) is usually measured by positron reemission
spectroscopy [32,33]. Alternatively, the positron affinity can
be obtained using the positronium formation potential [32,34].
A method based on the examination of positron-induced
secondary electron spectra was suggested mainly for cases
with positive positron work function in Ref. [35], but to our
knowledge it has not been used in practice so far. Experimental
determination of the positron affinity requires the knowledge
of the electron work function. Such measurements are often
based on the contact potential difference method (e.g., Kelvin
probe) which has recently been doubted to be really related
to this difference for semiconductors [36]. This might lead to
the revision of some experimental results related to positron
affinity determination.

Qualitatively speaking, positron properties depend on the
average electron density and thereby on the unit-cell volume.
For instance, from Eq. (7) one can deduce that the positron
lifetime will increase with the decreasing average electron
density. In the case of Al, the numerical test shows that
increasing the lattice constant by 1% results in an increase of
the positron lifetime by 2.2%. It is therefore desirable to have
precise crystal structure parameters of investigated materials.

For the purpose of this study, we have considered room-
temperature lattice constants [37], except stated otherwise.

In order to assess the precision of our calculations, we
performed the check of various numerical parameters of the
WIEN2K code. The details of such checks are described in
the Appendix (Sec. A2) and the most important parameter
was found to be the basis-set cutoff. Thus, we present in the
next section well-converged positron lifetimes and affinities
with a numerical precision of the order of 0.1 ps and 0.01
eV, respectively. The statistical accuracy of experimental
counterparts is typically around 1 ps and 0.1 eV. Therefore,
a reliable comparison of our calculations with available
experimental data is warranted. Furthermore, our way of calcu-
lation, which avoids non-self-consistent atomic superpositions
[30,31] or shape approximations [38] to the charge density or
potential, allows us to assess with great precision the effects
of various LDA and GGA correlation schemes on the positron
characteristics without the perturbation from any numerical
approximations.

Regarding defect studies, we focused on positron trapped
at ideal monovacancy in Al, Si, and Cu. Therefore, the ions
neighboring the monovacancy are not allowed to relax from
their ideal lattice positions. This approximation is expected
to be a good one in metals, but in semiconductors the lattice
relaxation may depend strongly on the charge state of the
vacancy [8,39]. To calculate the electronic structure of defects,
we employed a supercell approach placing the vacancy in the
center of supercells. The supercells containing 107, 215, and
107 atoms for Al, Si, and Cu, respectively, were constructed
from the perfect fcc (Al, Cu) or diamond (Si) with 3 ×
3 × 3 cubic unit cells. Such supercell sizes are adequate
to obtain vacancy properties related to electronic structure
like the vacancy formation energy. On the other hand, there
exist problems [40] with the positron in vacancy supercell
calculations. One hundred atom or similar supercells are
usually too small for the accurate positron wave-function
determination using the periodic boundary condition which
is natural for supercell calculations. The point is that the
wave function is overly delocalized, which results in too
short positron lifetime and too small positron binding energy
compared to isolated vacancy. This is the effect of finite
supercell size. To approach isolated vacancy behavior would
therefore require much larger supercells, which might not be
computationally feasible.

Korhonen et al. suggest [40] to perform a k-space inte-
gration for low-lying positron states to correct the positron
wave-function behavior in smaller supercells. Here, we use
another procedure to obtain the correct positron wave function
in supercell calculations. Following previous positron compu-
tational studies of defects (see, e.g., Ref. [41]) we add atoms
in the form of regular lattice at the sides of our supercells. The
electron density and the electron Coulomb potential for this
added lattice are taken from separate WIEN2K (bulk) calculation
and are continuously joined to those of the supercell. Further
details of this approach are explained in the Appendix (Sec.
A3). The determination of positron properties then proceeds in
the way similar to the bulk calculations: The positron lifetime
is computed using Eq. (7) and the positron binding energy
is obtained as a difference between the bulk and supercell
positron energies.
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TABLE I. Positron lifetimes (in ps) calculated according to various approaches: BN = Boroński and Nieminen [2], AP = Arponen and
Pajanne [11], GC = gradient correction with AP (α = 0.22), SL = Stachowiak and Lach [15], SG = gradient correction with SL (α = 0.10),
DB = Drummond et al. [16], DG = gradient correction with DB (α = 0.05). The 10th column gives experimental values taken from the
reference specified in the last column or Refs. [42–44] (see the text). In the comment column, FM and NM stand for ferromagnetic and
nonmagnetic states, respectively. The information about temperature is related to the positron measurement temperature and to structural data
used for calculations. The symbol τ means that only average lifetimes are available for α-Sn, α-Ce, and γ -Ce. Marks in columns GC and DG
evaluate the closeness of theory and experiment: A, deviation <5 ps; B, deviation <10 ps; and C, deviation >10 ps (see the text for details).

System Structure BN AP GC SL SG DB DG Experiment Comment Ref.

Elements
Li bcc 299.5 259.4 283.4 B 277.2 295.0 303.5 315.8 C 291 [45]
C diamond 92.8 86.7 102.3 A 90.5 98.1 94.6 98.8 A 98+ [46]
Ne fcc 234.2 218.2 531.5 C 229.4 370.8 242.4 312.0 C 430 ± 30 20 K [47]
Na bcc 328.1 290.7 338.6 A 309.9 341.6 342.8 364.2 C 338 [45]
Al fcc 165.0 146.1 154.8 B 154.6 160.1 161.3 164.5 A 160+
Si diamond 211.0 185.7 221.7 A 197.2 214.3 208.3 217.2 A 216+
Fe bcc 101.1 93.6 109.9 A 97.9 106.5 102.1 106.5 A 105+ FM
Cu fcc 106.4 98.4 120.3 B 102.9 114.4 107.3 113.2 A 110+
Zn hcp 137.1 124.3 149.8 A 130.7 144.2 136.4 143.6 B 145+
Ge diamond 214.2 189.8 240.8 C 201.2 225.2 212.8 225.2 A 219+
Nb bcc 121.4 110.5 123.4 A 116.1 122.7 120.9 124.3 A 120+
Ag fcc 123.1 112.7 140.4 B 118.2 131.9 123.4 130.5 B 130+
Sn diamond, α-Sn 257.4 227.8 296.3 B 242.1 273.8 258.3 274.9 C 289 τ [48]
Sn β-Sn (A5) 188.7 166.9 197.6 A 176.8 192.0 186.2 194.2 A 196+
Ce fcc, α-Ce 167.9 149.1 169.7 C 157.7 168.0 165.2 170.6 C 233 NM, 80 K, τ [49]
Ce fcc, γ -Ce 197.7 173.5 197.2 C 184.2 196.3 194.2 200.8 C 235 NM, τ [49]
Sm rhombohedral 201.5 177.0 204.8 B 187.8 202.3 198.5 206.4 B 199 NM [50]
Gd hcp 202.9 178.0 203.3 C 188.9 202.4 199.6 207.1 C 230 FM
W bcc 99.8 92.3 102.7 A 96.6 101.9 100.6 103.4 A 105
Pt fcc 96.1 89.4 105.2 A 93.4 101.1 97.4 101.3 A 99+
Pb fcc 188.9 167.2 202.3 A 177.1 194.4 186.7 195.9 A 200+

Compounds
MgO rock salt 117.8 108.7 145.4 C 113.8 131.8 119.0 128.4 A 130 [51]
SiC SiC-6H 136.1 123.4 145.2 A 129.9 140.3 135.5 140.9 A 140 [52]
Fe3Al D03 108.8 100.1 115.4 A 104.9 113.2 109.2 113.6 A 112+ FM [53]
ZnO wurtzite 143.9 131.6 183.3 C 138.2 162.3 144.6 156.9 B 151+ [41]
CdSe wurtzite 235.0 209.6 289.7 C 222.2 258.9 235.3 254.2 C 251, 275 [54]
PbSe rock salt 203.9 180.8 231.1 C 191.6 215.2 202.4 214.7 B 220 [55]

IV. RESULTS AND DISCUSSIONS

A. Bulk positron lifetime and affinity

The positron lifetime results are presented in Table I, while
Table II gives the affinities, both quantities being calculated
according to various approaches to electron-positron correla-
tions summarized above. The tables contain results for selected
elements including metals (alkalis, transition metals, sp metals,
lanthanides), semiconductors (group IV), and a solid inert gas
(Ne). As for compounds, most of them are semiconductors
(groups IV, II-VI, IV-VI) and one intermetallics. In our
opinion, this list of elements and compounds is well suited
to test our approach to electron-positron correlations based on
the gradient correction.

The positron lifetime is a fundamental characteristics which
determines how long in average the positron lives in the
material. This quantity depends on whether the positron
annihilates in the delocalized state (bulk annihilation) or in
a localized one (annihilation in a defect). In the former case,
the positron lifetime represents a bulk property, whereas the

lifetime corresponding to a defect is case dependent. The
positron lifetime (for defects and bulk) can be both measured
and calculated by using Eq. (7). Before discussing calculated
positron bulk lifetimes and their correspondence to measured
values, it is useful to mention some aspects of positron lifetime
experiments. Measuring positron lifetimes for real samples is a
well-established procedure [65]. However, there is a rather big
scatter between measured positron lifetimes reported in litera-
ture (see, e.g., Ref. [43]). Differences of the order of 10 ps for
bulk lifetimes are not rare, even when only recent and reliable
measurements are considered [13]. This problem complicates
the comparison of theory with experiment and raises questions
regarding the precision of lifetime measurements although the
statistical precision of bulk lifetime measurements is typically
around 1 ps only. Standard positron lifetime experiments use
the so-called sandwich setup in which the positron source
(usually based on the 22Na isotope) is “wrapped” in a thin foil
and is surrounded by two identical pieces of the samples to
be examined. The source is the origin of additional lifetime
components, which appear in the lifetime spectrum of the

155111-4



IMPROVED GENERALIZED GRADIENT APPROXIMATION . . . PHYSICAL REVIEW B 89, 155111 (2014)

TABLE II. Positron affinities (in eV) calculated according to various approaches (their designation is the same as in Table I). The last
column gives experimental values when available. If no reference is given, the value was taken from Refs. [56–58] (see also Ref. [59]). In
columns GC and DG, an evaluation of closeness of calculated and experimental values is given: A, difference �0.2 eV; B, difference �0.5 eV;
C, difference > 0.5 eV.

System BN GC SG DB DG Experiment

Elements
Li −7.65 −7.42 −7.52 −7.13 −7.06
C −2.84 −1.64 B −2.08 −2.68 −2.15 B −1.5, −2.0a

Ne −18.94 −16.11 −17.43 −18.28 −17.53
Na −7.68 −7.34 −7.50 −7.06 −6.96
Al −4.55 −4.38 B −4.46 −4.22 −4.17 A −4.1
Si −7.08 −6.50 B −6.81 −6.65 −6.52 B −6.2b

Fe −4.31 −3.74 B −4.03 −4.12 −3.98 C −3.3
Cu −4.89 −4.20 A −4.55 −4.68 −4.50 A −4.3
Zn −5.34 −4.78 −5.07 −5.06 −4.91
Ge −7.08 −6.38 −6.75 −6.63 −6.47
Nb −3.99 −3.62 A −3.81 −3.75 −3.65 A −3.8
Ag −5.70 −4.96 B −5.34 −5.45 −5.26 A −5.2
Sn-α −7.77 −7.07 −7.44 −7.24 −7.08
Sn-β −6.46 −5.99 −6.24 −6.08 −5.97
Ce-α −4.76 −4.36 −4.57 −4.42 −4.33
Ce-γ −5.94 −5.58 −5.77 −5.56 −5.47
Sm −6.07 −5.68 −5.88 −5.68 −5.58
Gd −6.11 −5.75 −5.94 −5.72 −5.63
W −2.10 −1.72 A −1.91 −1.91 −1.82 A −1.9
Pt −3.93 −3.31 B −3.64 −3.77 −3.61 A −3.8
Pb −6.42 −5.88 B −6.16 −6.03 −5.91 A −6.1c

Compounds
MgO −7.11 −5.99 C −6.56 −6.86 −6.58 C −4.2,−2.4d

SiC-6H −5.51 −4.88 B −5.22 −5.22 −5.07 C −4.4e

Fe3Al −4.10 −3.62 −3.86 −3.88 −3.76
ZnO −8.39 −7.27 −7.85 −8.05 −7.79
CdSe −9.21 −8.28 −8.77 −8.69 −8.48
PbSe −7.93 −7.20 −7.59 −7.50 −7.34

aReferences [60,61].
bReferences [34].
cReferences [62].
dReferences [63].
eReferences [64].

measured samples [44,66,67]. The elimination/subtraction of
such source components (even if their intensities are not
large) is generally a nontrivial task and various approaches
for this procedure can be taken [44,66–68]. In general, source
lifetimes’ admixtures are the origin of uncertainty in life-
time measurements. For example, McGuire and Keeble [67]
have shown that using three different wrap foil materials for
the source results in differences up to 6 ps in bulk lifetimes of
Al, Ni, Zr, and Pb and up to 9 ps for vacancy lifetimes in these
same materials. Moreover, in materials where the source and
the sample lifetimes are close, further complications affect
the data analysis and make it prone to systematic errors.
Lifetime measurements with positron beams may circumvent
the source correction problem, however, the lifetime resolution
function of current positron beam spectrometers is usually
worse compared to standard setups. Finally, another issue for
measurements of bulk lifetimes is that samples may contain
a small amount of defects, even if the samples are “well
annealed,” which can not be detected as separate lifetime

components in experiments. The amount of such defects
(dislocation lines, stacking faults, impurity related defects,
etc.) is not normally checked with other methods. Therefore,
a broader effort in the positron experimental community,
such as the collective lifetime study [69] by 12 Japanese
positron laboratories, might be necessary to tackle these
problems.

There are several publications [42–44,65] which review
and summarize experimental bulk and sometimes also mono-
vacancy lifetimes. We shall use these review articles as a
background for the comparison of our calculated positron
lifetimes with the measured ones. We will also discuss some
specific cases in more detail. Our choice of experimental
lifetimes for elements to be compared with the present
calculations follows to some extent the compilation presented
by Campilo Robles et al. [13]. Table I contains in the last
column the references where the corresponding lifetimes
were taken from. If no reference is explicitly specified, we
took values from Refs. [42–44]. Except for the alkali metals
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and solid neon, we have considered only data after 1975
since the evaluation of experimental data has become more
reliable after this period [13]. In Table I, we give some
measured lifetime values in the form “X+”, where X is
the minimum bulk lifetime detected since the bulk lifetime
can appear slightly longer because of the possibility of
incomplete source corrections and the fact that the bulk lifetime
to be measured is usually shorter than the source lifetime
components [70].

Table I shows that the AP theory underestimates system-
atically the positron lifetime in real materials. The BN, SL,
and DB enhancement factors reduce the overestimation of
annihilation rates obtained with AP. Our AP and BN lifetimes
are in excellent agreement with the corresponding LDA values
calculated by Takenaka and Singh within the all-electron
linearized augmented plane0wave method [71]. The BN, SL,
and DB enhancement factors reduce the overestimation of
annihilation rates obtained with AP. Therefore, the effect of
the gradient correction turns to be smaller for SG [14] and for
DG. In the case of the DG approach, the overall agreement
between experiment and the GGA is very good when α =
0.05, particularly when considering that the calculated values
result from a self-consistent, full-potential, and all-electron
approach. One of the best result is given by Al which was
problematic in the old GGA scheme [7]. Transition metals and
semiconductors also give excellent results within the new GGA
scheme. However, some disagreement between the QMC (DG)
and experiment is exhibited by the alkali metals. Nevertheless,
lifetime experiments in the alkali metals are rather old and new
measurements are needed in order to confirm these discrep-
ancies. Another problem is the long positron thermalization
time [72] which complicates the lifetime analysis in the alkali
metals. In order to evaluate the deviation of calculations
and experiment, we give in columns GC and DG a measure
expressed by characters A, B, and C. This measure is based on
the root-mean-square deviations determined using available
experimental data where we considered rather newer than
older data removing also unrealistic results. A, B, and C
mean, respectively, a deviation smaller than 5 ps, a deviation
between 5 and 10 ps, and a deviation larger than 10 ps. The
DG approach compares somewhat better to experiment than
the original gradient scheme although one should be aware of
experimental uncertainties, as discussed above.

Table II presents the calculated positron affinities. The DB
V ep correlation potentials reduce the overestimation of the
electron-positron correlation obtained with AP and give very
good agreement between experiment and theory, particularly
for Al, Cu, Nb, Ag, W, Pt, and Pb at the LDA level. For
the DG case, the GGA positron correction in these metals
becomes comparable to the experimental error bars of the
order of 0.1 eV since α has been reduced to 0.05. The level of
correspondence between experimental and calculated values
(GC and DG results) is also evaluated and specified in Table II
by A, B, and C letters. One can see that the DG approach
provides slightly better agreement with experiment compared
to GC. It should be also taken into account that the uncertainty
of some experimental values can be quite large.

We shall now comment on some materials in more detail.
In Table I we also report the positron lifetime in solid Ne.
This material can be used as a moderator for producing slow

positron beams [73]. The efficiency of such moderator is
superior to the standard moderator based on tungsten. The
positron lifetime measurement in solid neon performed by
Liu and Roberts [47] in 1963 was performed with a rather
poor resolution. Nevertheless, it shows some discrepancy with
the present GGA theory which could support the hot-positron
model [73,74]. In fact, our theory considers a positron wave
function in the lowest-energy state while in the hot-positron
model, most positrons do not thermalize and are in excited
states. We should also mention that some DFT failures in
correctly describing the positron correlation potential can
contribute to the lifetime discrepancy as well [75]. The
positron affinity of neon shown in Table II is a large negative
number compared to the positron affinities for metals and
semiconductors as in Ref. [75], but the GGA corrects some
exaggerated correlations effects present in the LDA.

Elemental semiconductors (C, Si, and Ge) exhibit a good
agreement of measured and calculated lifetimes for the new
GGA scheme, especially for C and Si. Concerning positron
affinities, positron reemission from the (100) surface of
diamond has been extensively studied by Brandes and Mills
[60]. The experimental affinity values given in Table II were
determined on the basis of this work considering also electron
work functions of clean and monohydride (100) diamond sur-
faces as determined by Diederich et al. [61] taking into account
corresponding (100) band bendings of IIa-type (N-doped)
diamond examined in Ref. [60]. The agreement of gradient
corrected values with experimental ones is encouraging.

The calculated positron affinity (GC, DB, and DG) values of
silicon agree relatively well with the recent experimental study
of the Si(100) surface by Cassidy et al. [34], where its positron
work function φ+ = 0.8 eV was determined using positronium
formation potential measurement. It is worth noting that φ+
[for (100) surface] is positive in contrast to most of the other
materials, which is probably related to rather loose atomic
arrangement of Si, resulting in quite a low positron level with
respect to vacuum. Earlier measurements carried out on Si
provided negative [76] and nearly zero [32] values of φ+ for
(100) and (111) surfaces, respectively. In any case, determining
the positron affinity for semiconductors is a difficult task
that can be affected by various surface effects including
reconstruction. An accurate measurement of the electron work
function is also necessary, which is demonstrated by somewhat
different results of early [77] (4.9 eV) and recent [78] (5.4 eV)
experiments. A positron beam study [79] on a metal-oxide
system with a silicon substrate indicated a value of about 5 eV.

Positron lifetime allows us to study an important phase
transition in tin at Tc = 13.2 ◦C (Ref. [48]). The two different
phases of tin are the white metallic β-tin with tetragonal (A5)
structure and the gray, semiconducting α-tin with diamond
structure. The α-tin has recently attracted particular interest
because in the presence of uniaxial strain, it can become a
strong topological insulator [80]. The transition β to α is also
accompanied by a large increase in volume of about 27 %
which results in an increase of lifetime of about 90 ps. As
shown in Table I, the present GGA scheme gives the best
agreement with the experiment.

Table I shows that the calculated positron lifetime could
be also sensitive to the α–γ -transition in fcc Ce. However,
the experimental lifetime does not change much and it is
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closer to the new GGA scheme lifetime for γ -Ce. This is
probably an indication that positrons always annihilate in
patches of γ -Ce embedded in α-Ce although only the mean
lifetimes are available for both phases [49]. This hypothesis
is in fact validated by Table II, which shows that patches
of γ -Ce embedded in α-Ce produce potential wells with a
depth larger than 1 eV. The new GGA scheme gives the
best overall agreement with the rare-earth metals. However,
the accuracy of the theory could be improved by considering
temperature-dependent DFT calculations in which vibrational,
electronic, and magnetic free energies are taken into account
[81]. When partially filled f orbitals are involved, the ground
state predicted by the DFT clearly places the f electrons
in narrow bands piled at the Fermi energy EF , interacting
only weakly with other electrons. In sharp contrast, however,
signatures of f bands are often found in spectroscopic
measurements not at EF , as band theory predicts, but several
eV above or below the EF depending on the nature of the
spectroscopy [82]. Thus, it is interesting to examine the extent
to which f electrons in the ground state can contribute to
Fermi-surface-related properties. Interestingly, if f electrons
are at or near the Fermi level, positron annihilation can detect
them [83].

Concerning oxide materials, we have focused on MgO and
ZnO, which are involved in several promising nanotechnology
applications [84,85]. MgO has been examined many times by
positrons (see, e.g., Ref. [51] and references therein). Early
investigations have been challenged by the following puzzle:
measured MgO lifetimes were over 150 ps, whereas calculated
bulk lifetimes yield much shorter values. This problem has
been explained by showing that unintentional MgO doping
[86] (e.g., by Ga) causes creation of Mg vacancies, which
increases the lifetime. Currently, the accepted bulk positron
lifetime for MgO is 130 ps and it agrees very well with
the SG and DG values presented in Table I. The positron
affinity of MgO has been estimated from the positronium
formation potential by van Huis et al. [63]. As shown by
Table II, the reported values are too small in magnitude
compared to calculated ones. ZnO is perhaps even more
interesting since its bulk positron lifetime is still debated in the
positron community. The situation might be somewhat similar
to that for MgO. Unintentional doping with H (Ref. [41])
and Li (Ref. [87]) could play an important role. The present
calculations following the SG and DG approaches suggest that
the ZnO bulk lifetime is close to 160 ps.

Among technological relevant composite materials,
silicon carbide is a wide-band-gap semiconductor used
for high-temperature applications [88], which exhibits
polytypism. Probably the most frequently studied polytype is
the 6H one for which we have performed positron calculations.
The positron lifetime is sensitive to the gradient correction
in a smaller extent compared to oxides discussed above. All
gradient-corrected lifetimes agree reasonably well with the
experimental value ∼140 ps (Ref. [52]). The experimental
positron affinity of SiC-6H reported in Ref. [64] also matches
satisfactorily calculated counterparts, the gradient-corrected
values being closer. It is also instructive to discuss Si and C
(diamond) results in relation to SiC. The Si (C) lifetime is
apparently longer (shorter) than the SiC value due to a looser
(more compact) atomic arrangement of Si (C) atoms although

atomic arrangement type is similar for Si, C, and SiC. The
positron affinity for C, SiC, and Si follows the lifetime trend:
the magnitude of A+ increases in this series as the atomic
arrangement becomes looser, which, roughly speaking,
corresponds to the positron level getting deeper through the
series.

In the case of II-VI compound semiconductors, the atomic
spherical approximation (ASA) used in the linear muffin-
tin orbital (LMTO) method [38] influences the calculated
positron lifetime. For instance, the positron lifetime for CdSe
calculated within the ASA (Ref. [54]) is few ps shorter than
the corresponding result without shape approximations given
in Table I. The lifetime of positrons implanted into bulk CdSe
with 2 keV has been measured and an experimental value
of 275 ps has been found, while the corresponding lifetime
measured in the 6-nm CdSe sphere was 251 ps (Ref. [54]).
The latter value is in better agreement with the new GGA
schemes reported in Table I. The positron affinity can be
studied as well and the ASA error is of the order 1 eV. Using
the experimental electron work function of 6.62 eV (Ref. [89])
and the theoretical positron affinity of 8.12 eV based on our
calculations, the positron work function can be deduced to
the order of 1.5 eV indicating that positron can be trapped
inside the nanocrystal. However, the positron potential well
may deepen near the surface of the sample and the positron
can therefore form surface states [90].

CdSe has a wurtzite structure while PbSe adopts a rock-salt
crystal structure and has a more ionic nature. As a result, the
positron affinity is smaller in amplitude in PbSe compared
to CdSe as shown in Table II. Our calculations based on the
new GGA scheme reveal a positron lifetime for bulk PbSe of
215 ps, which is in good agreement with the experimental value
220 ps (Ref. [55]). Moreover, positron lifetimes ranging from
340 and 380 ps observed at PbSe nanocrystals demonstrate the
existence of positron surface states [91]. Therefore, positron
annihilation can be used as an advanced characterization tool
to unravel many novel properties associated with the surface
physics and chemistry of nanocrystals.

In order to complement the calculations for composite semi-
conductors, we have also computed positron characteristics for
intermetallic compound Fe3Al. To the best of our knowledge,
the positron affinity for this material has not been measured.
The experimental positron lifetime (∼112 ps; Ref. [53]) agrees
well with all calculated gradient-corrected values.

We have also examined the influence of the choice of the
XC potential for electrons. The XC functional used in the
electronic-structure calculations to produce Tables I and II
was within the LDA as in Ref. [7] to facilitate comparisons
with existing literature. If the LDA XC potential is replaced by
the GGA potential [29], the positron lifetime in Table I does
not change significantly (usually less than 1 ps). However, the
situation is different for the positron affinity, where the gradient
correction on the XC potential can produce shifts as large as
0.5 eV. Nevertheless, usual applications of the positron affinity
consist in finding the affinity difference between two phases
(e.g., a matrix and an embedded cluster [92]), thus the affinity
shifts due to the electron GGA mostly cancel. Interestingly,
refined experimental affinities values could be also very useful
to better understand adequacy and known deficiencies of the
electron LDA and GGA XC functionals [93].
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B. Details of positron gradient correction

The effect of positron GGA at the microscopic level will
be now illustrated for Si and Na, which are examples of a
semiconductor and a metal having open and close-packed
structures, respectively. Figure 2 shows one-dimensional (1D)
profiles of several electron and positron quantities of interest
together with the influence of the gradient corrections. The
DB and DG approaches were employed for LDA and GGA
positron calculations, respectively. In Fig. 2(a), the total,
WIEN2K self-consistent electron density is plotted along the
[100] direction. The plot shows the density on a line connecting
two Si atoms located at the positions 0 and 10.26 a.u. This
line goes through the center of large interstitial space located
between atoms at line ends. Purely atomic orbital densities are
added to the plot to illustrate where these orbitals yield the
dominant contribution to the total density. In particular, the
1s orbital dominates close to the nucleus while farther from
the atom, 2s and 2p orbitals become important and, finally,
beyond a distance of about 1.6 a.u. from the nucleus, the 3s and
3p orbitals prevail but lose their atomic character because of
strong charge transfer and hybridization effects. These atomic
shells are rather well delineated by the ε parameter as shown
in Fig. 2(c). This parameter has clear maxima in 1s and 2s+2p

regions. There are also smaller maxima in the 3s+3p region,
but these features are more related to the interstitial charge than
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FIG. 2. (Color online) One-dimensional profiles of (a) the elec-
tron density, (b) the positron density and enhancement factor, and (c)
the ε parameter and λ integrand along the [100] direction in Si for
DB and DG approaches.

to particular atomic orbitals. The enhancement factors for the
DB and DG approaches are presented in Fig. 2(b). The DB
enhancement exhibits a reduction in the regions of ε maxima
(except in part in the 1s region where the enhancement is close
to 1 since the rs parameter is very small). Consequently, the
DG λ integrand [shown in Fig. 2(c)] is reduced compared to the
DB one. This effect results in a smaller positron-annihilation
rate for the DG case and thus a longer lifetime as expected. The
positron density [Fig. 2(b)] remains almost unaffected by the
gradient correction. Thus, the present Si example demonstrates
the importance of the gradient correction in the interstitial
space of open structures, in addition to core electron regions.
Some noticeable jumps of ε shown in Fig. 2 may lead to
sharp features in the electron-positron correlation potential
V ep, which are absent in a nonlocal density approach called
weighted density approximation [94] (WDA). Stachowiak and
Boroński have noticed that the WDA better describes some of
such inhomogeneities [95].

The positron gradient correction for the core electrons is
further illustrated with the example of Na shown in Fig. 3. The
plot of the self-consistent electron density and of the atomic
orbitals [Fig. 3(a)] closely resembles the corresponding Si plot
in Fig. 2(a). We note that the line along which the density is
plotted connects two atoms along the [100] direction. The
differences between Si and Na are that Na has no 3p electrons
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FIG. 3. (Color online) One-dimensional profiles of (a) the elec-
tron density, (b) the positron density and enhancement factor, and
(c) the ε parameter and λ integrand along the [100] direction in Na
for DB and DG approaches.
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FIG. 4. (Color online) Left: plots of the positron density [lower plane, yellow (light) color], enhancement factor [middle plane, cyan
(medium) color], and annihilation rate integrand [upper plane, blue (dark) color] obtained using the DG approach for Na (bcc structure). Atoms
are represented by violet (dark) spheres. The right picture shows the corresponding relative changes due to the gradient correction [e.g., for the
positron density the change is defined as (ρ+

DB − ρ+
DG)/ρ+

DB)]. The ranges of relative changes are as follows: ρ+ (−1.5%, +12.1%), γ (0.0%,
+42.8)%, andλi (−1.5%, +34.1%).

and that the total electron density is rather flat in the interstitial
region dominated by the 3s delocalized, conduction electrons.
Both Si and Na have similar minimum electron densities in
the interstitial space. The maxima of the parameter ε of Na
correspond (as in the case of Si) to 1s and 2s+2p electrons [see
Fig. 3(c)]. There are, however, no ε maxima in the interstitial
space because of the almost constant electron density in this
region. Thus, one can expect that there will be no enhancement
reduction in the interstitial space. Indeed, the enhancement
factor plot in Fig. 3(b) confirms this behavior. On the other
hand, there is a strong reduction of the enhancement factor in
the 2s+2p region, which is also reflected by the λi quantity
in Fig. 3(c). This trend yields a large reduction of the
annihilation rate and consequently leads to a prolongation of
the positron lifetime (by 21 ps) due to the gradient corrections.

Sodium thus represents an example of material where the
positron gradient correction is important only in the region
of core electrons.

The above considerations are helpful to understand the
positron gradient correction, but are based on one-dimensional
profiles cutting through the crystal of examined materials.
Therefore, we further discuss by showing the quantities of
interest on two-dimensional crystal planes. Figures 4 and 5
show the plot of the positron density, enhancement factor, and
the integrand of the annihilation rate (λi) in several planes
cutting the bcc Na and diamond Si structures, respectively.
The relative changes due to the gradient correction are also
shown in the right panel of the figures. In both figures, the
positron density exhibits nearly zero values close to the nuclei
and reaches its maximum in the interstitial region. This is the

FIG. 5. (Color online) Plots of ρ+, γ , and λi and their relative changes for Si (diamond structure). The organization of the figure is the
same as for Fig. 4. The ranges of relative changes are as follows: ρ+ (−0.5%, +5.2%), γ (0.0%, +29.7)%, andλi (−0.5%, +24.9%).
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expected behavior since positrons are strongly repelled from
positively charged nuclei. Besides, the enhancement factor is
slightly above 1 near nuclei [see Eq. (3)] since the electron
density is very large here (and rs is thereby small). In the inter-
stitial region, where the electron density is low, γ is reaching
its maximum (>10). These trends correlate well with those
illustrated in Figs. 2(b) and 3(b). The 2D plots of λi identify
which parts of the crystal contribute to the annihilation rate.
For sodium, the largest local contribution λi is from regions
near nuclei while in the case of silicon, the largest contribution
to the annihilation rate originates from the interstitial space
(this trend is also consistent with the picture that positrons
reside and annihilate primarily in the interstitial regions).

The Na case illustrated in Fig. 4 exhibits large relative
changes due to the gradient correction around atoms (in the
core region), but there is almost no change in the interstitial
space far from atoms, as one can see from the enhancement
plot. Thus, the lifetime change caused by the gradient
correction is mainly due to the core electron enhancement
change, as we already discussed above, and also confirmed
by the λi plot. The relative change of the positron density
is rather small compared to the changes of γ and λi and the
largest modification occurs in the core region. In contrast to Na
behavior, the enhancement changes in Si, shown in Fig. 5, are
important in the whole unit cell though some large effects still
occur in the core region. The behavior of λi confirms that the
effect of the gradient correction is important in the whole cell.
Moreover, like for Na, the relative changes of the positron den-
sity are rather small and the main changes are in the core region.
These conclusions for Si thus also confirm those made above
when discussing the one-dimensional profiles shown in Fig. 2.

C. Vacancy calculations

In addition to bulk positron characteristics computations,
we have calculated positron-annihilation rates and binding
energies for monovacancies in Al, Si, and Cu. At this stage,
we do not consider lattice relaxations due to the defect itself
and due to positron induced forces, but it is well known that
these two effects compensate to quite a large extent [39]. More
precisely, positrons localizing at vacancies can influence the
electron density [2,31,96,97]. Nevertheless, since we consider
here vacancies which trap the positron only moderately, we
will neglect the modifications of the electronic structure in
the defect due to the positron. The results of positron lifetime
calculations are presented in Table III for all approaches to
electron-positron correlations examined above. The table also
contains positron binding energies to defects.

When our self-consistent results are compared with those
of Campillo-Robles et al. [98], the main effect of the
full-potential calculation is to decrease the value of the
positron lifetime obtained within the ASA. The reason for
the differences between the full potential and the ASA can
be understood as follows. Within the ASA, a vacancy is
approximated by an empty sphere. The localization of the
positron wave function in the empty sphere is stronger than in
the actual interstitial region. Therefore, this stronger positron
localization increases the positron lifetime. All our LDA values
are systematically lower than the corresponding experimental
values, but the agreement with the experiment is improved
with GGA and could be further improved by considering
appropriate lattice relaxations mentioned above.

Experimental lifetime values given in Table III are mostly
based on the review in Ref. [43]. We selected experimental re-
sults with the source correction subtracted. As in the case of the
bulk positron lifetime, vacancy lifetimes are scattered to some
extent (except for Cu) and depend on experimental setup and
data evaluation procedure (including the source correction).
In the case of the Si vacancy, the situation is complicated by
the possibility of its various charge states which might exist in
measured samples [99,100]. In our calculations, we considered
the neutral charge state only. Furthermore, vacancy-impurity
complexes introduced by either unintentional or intentional
doping of Si (e.g., Czochralski-grown samples contain oxygen
atoms) can modify the lifetime spectrum, as discussed, e.g., in
Ref. [99]. Regarding the studied fcc metals Al and Cu, the sit-
uation can be complicated by the existence of dislocations and
stacking faults. These lattice imperfections can bind single va-
cancies and therefore can affect the measured lifetimes as well.

The positron binding energy to defects is a very important
quantity, but it is hardly accessible experimentally. So far, only
defects which exhibit positron detrapping were investigated
experimentally in order to evaluate their positron binding
energy (see, e.g., Ref. [101]). On the basis of Table III we
can see that a positron traps quite weakly in the Si vacancy
in contrast to metallic vacancies both in Al and Cu where
the binding energies are about 2.5 times higher. Calculations
of binding energies for various defects allow us to determine
whether positrons may ever get trapped in such defects. For
instance, oxygen vacancies in oxides are often found not to
trap positrons [41].

V. CONCLUSION

We have calculated positron characteristics in selected, rep-
resentative solids based on reliable DFT electronic-structure

TABLE III. Positron lifetimes (τ ) and positron binding energies (Eb) calculated according to various approaches to electron-positron
correlations for a single vacancy in Al, Si, and Cu. Eb’s for the BN approach are identical with the corresponding AP and SL ones (the same
V ep is used). The last column gives experimental lifetime values extracted from the collection of lifetime data in Ref. [43].

BN AP GC SL SG DB DG Experiment

τ Eb τ τ Eb τ τ Eb τ Eb τ Eb τ

Element (ps) (eV) (ps) (ps) (eV) (ps) (ps) (eV) (ps) (eV) (ps) (eV) (ps)

Al 234.1 1.03 204.1 222.3 0.91 217.2 227.0 0.98 228.3 0.91 233.6 0.89 237–244
Si 241.8 0.36 211.2 253.5 0.42 224.8 245.0 0.39 238.5 0.32 249.1 0.34 270–273
Cu 162.7 0.94 146.7 183.9 1.01 154.6 173.5 0.98 158.7 0.79 168.7 0.81 180 ± 5
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calculations taking into account highly precise electronic
charge transfers due to an electron self-consistent full potential.
The positron energetics has been monitored by calculating the
positron affinities. The new LDA scheme based on accurate
QMC simulations [16] improves systematically the affinities
obtained with the other LDA schemes. However, the LDA
does not take into consideration charge inhomogeneities
due to nonmetallic charge distribution and the effect of the
electron-nuclear interaction which is disrupting the pileup
of electronic charge around the position of the positron.
Therefore, we show that gradient corrections to the LDA are
still needed in such circumstances despite their intensity is
reduced in comparison to the original GGA scheme [7]. Our
study has used well-converged electronic structures without
any shape approximations for the charges and the potentials,
controlling also important numerical parameters of the WIEN2K

calculations performed, and has confirmed preliminary results
of Boroński [14] suggesting that the GGA-PHNC was a
right step towards an improved GGA scheme for positron
states in materials. Especially the positron lifetime is a very
sensitive measure of any GGA scheme for positrons as it is
determined directly from the electron density. At the moment,
it is difficult to decide, by making comparisons with available
experimental positron lifetime and affinity data, which is the
best GGA approach among the GGA-PHNC (SG) and the
GGA-QMC (DG). Thus, more precise experiments are needed
to sort out this important matter. The present GGA scheme
could be further improved by extracting the parameter α from
many-body physics. This more accurate determination of α

may also reveal a gentle dependence of the local density, thus
α could become function of the local rs . A new WDA scheme
based on QMC data could be also another route to capture
nonlocal effects of the density.
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APPENDIX: COMPUTATIONAL DETAILS

1. Positron calculations

The solver of Eq. (6) uses a numerical procedure based
on the conjugate gradient method and it has been previously
used within a non-self-consistent atomic superposition scheme

[31]. Equation (6) is solved for the ground state only since
positrons generally thermalize very quickly [18] in a material
and only one positron is present in the material under normal
experimental conditions. In principle, it is also possible to
implement positron state calculations into WIEN2K and other
similar codes [38,71,102,103]. On the other hand, the fact
that positrons overlap only slightly with core and other
more localized electrons indicates that the representation of
the positron wave function on dense radial meshes inside
muffin-tin spheres is not necessary and a regular 3D mesh
in the unit cell describes properly the positron behavior.
Indeed, the results of detailed numerical tests with varying 3D
mesh spacing show that a spacing of 0.10–0.15 a.u. (for each
direction) is usually enough to obtain numerically accurate
results for the positron characteristics. The exceptions are very
light elements such as Li, which require two or three times
denser meshes because of their very small core electron radii.
Thus, our computational scheme employs a real-space method
for positron calculations, whereas the electronic-structure
calculations make use of the mixed APW+lo/LAPW basis
set. Our finite-difference approach for the positron fully suits
the needs of this study and it can be further optimized as
suggested by Sterne et al. [104].

In the case of the GGA for positrons, an accurate calculation
of the gradient of the electron density is required. The ε

parameter, when expressed fully in terms of the electron
density, can be written as follows:

ε = π |∇ρ−|2
4(ρ−)2(3π2ρ−)

1
3

, (A1)

which includes the gradient size on the 3D mesh. In practice,
the gradient calculation is done separately for core and valence
(including semicore) electrons. The core electron density is
represented on a radial logarithmic mesh inside the muffin-tin
spheres. Therefore, a radial derivative of such densities is first
calculated which is then projected1 as a true gradient on the 3D
mesh. In the case of valence electrons, a seven-point formula
[105] is used to calculate the gradient directly on the 3D mesh.
Both gradients are summed up and resulting gradient size is
determined.

2. Controlling WIEN2K parameters

The WIEN2K code enables us to control important numerical
parameters of electronic-structure calculations. These include
muffin-tin radius Rmt , number of points in the radial muffin-tin
mesh, the energy parameters of radial basis functions [25], the
cutoff of the basis set characterized by the product RmtKmax

with Kmax being the maximum size of the K vectors in the
reciprocal lattice, the cutoff of the lattice harmonics expansion
of the electron density and potential in the muffin-tin spheres,
an analogous cutoff for the density, and potential plane-wave
expansion in the interstitial space, etc. As for muffin-tin radius,
we use the values recommended by the WIEN2K program (for

1The direction of the density gradient is either inward or outward
the corresponding nucleus.
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example, Rmt = 2.5 a.u. for Al) and the numerical values of
calculated lifetimes are not very sensitive with respect to Rmt

unless neighboring muffin-tin spheres are almost touching.
Other mentioned WIEN2K parameters also cause very small
changes in calculated positron characteristics if their values
are close to defaults. The only exception is the basis set cutoff
RmtKmax, which needs to be usually somewhat increased to 8
(or 9) from its default value 7 (especially when the positron
gradient correction is applied) in order to obtain precise
results.

Concerning the k-point mesh, we kept the product of the
number of atoms in the unit cell and the number of k points in
the whole Brillouin zone constant at a value of ∼3000, which
appears to be appropriate for positron calculations. The level
of self-consistency expressed in terms of charge convergence2

was normally 0.00001 or better.

3. Defect calculations

When doing positron defect calculations, the Coulomb
potential in the supercell requires a slight adjustment (constant

2The charge convergence parameter is defined approximately as
the root mean square of the electron density difference in muffin-tin
spheres between two subsequent iterations.

shift) because of different Coulomb potential reference levels
in the WIEN2K calculations for the bulk and corresponding su-
percell. We evaluated shifts to be −0.06, −0.05, and −0.13 eV
for Al, Si, and Cu supercells, respectively, by aligning3 the
positron Coulomb potential minima at the bulk and supercell
faces. This potential adjustment affects the calculated lifetime
almost negligibly (by 0.1–0.2 ps), but it causes an increase
of the positron binding energy to vacancy defects by a non-
negligible amount. Hence, one can use appropriate supercell
sizes for accurate positron calculations, whereas supercells
employed in electronic-structure calculations can be much
smaller. In particular, our supercells for Al, Si, and Cu positron
calculations contained 499, 1727, and 863 atoms, respectively,
with the convergence with respect to the supercell size being
checked for each material.

For defect calculations, we also note that the positron
results appear to be less sensitive to WIEN2K parameters
such as RmtKmax, and the spacing of the 3D mesh can be
somewhat smaller compared to bulk calculations, probably
due to smaller overlap of the positron wave function and
localized electron ones.

3The supercells are constructed in the way that there is an atomic
plane at their faces (of {100} type). The same applies to the
corresponding bulk cells. Positrons tend to have the largest probability
density at the minima of the positron potential, which in our cases
correspond to the minima of the Coulomb potential acting on
positrons. Then, it is plausible to shift the supercells’ Coulomb
potential in the way that the Coulomb potential minima are aligned
at the supercell faces and at the bulk.
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Wagner, P. G. Coleman, M. J. Puska, and T. Korhonen, Phys.
Rev. B 54, 2512 (1996).
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