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Z2 index for gapless fermionic modes in the vortex core of three-dimensional paired Dirac fermions
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We consider the gapless modes along the vortex line of the fully gapped, momentum independent paired states
of three-dimensional Dirac fermions. For this, we require the solution of fermion zero modes of the corresponding
two-dimensional problem in the presence of a point vortex, in the plane perpendicular to the vortex line. Based
on the spectral symmetry requirement for the existence of the zero mode, we identify the appropriate generalized
Jackiw-Rossi Hamiltonians for different paired states. A four-dimensional generalized Jackiw-Rossi Hamiltonian
possesses spectral symmetry with respect to an antiunitary operator, and gives rise to a single zero mode only
for the odd vorticity, which is formally described by a Z2 index. In the presence of generic perturbations such
as chemical potential, Dirac mass, and Zeeman couplings, the associated two-dimensional problem for the odd
parity topological superconducting state maps onto two copies of generalized Jackiw-Rossi Hamiltonian, and
consequently an odd vortex binds two Majorana fermions. In contrast, there are no zero-energy states for the
topologically trivial s-wave superconductor in the presence of any chiral symmetry breaking perturbation in the
particle-hole channel, such as regular Dirac mass. We show that the number of one-dimensional dispersive modes
along the vortex line is also determined by the index of the associated two-dimensional problem. For an axial
superfluid state in the presence of various perturbations, we discuss the consequences of the Z2 index on the
anomaly equations.
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I. INTRODUCTION

The existence of zero modes for the Dirac fermions in
the presence of a topologically nontrivial configuration of an
order parameter or a gauge field is an interesting problem in
condensed matter and high energy physics. In a seminal paper,
Jackiw and Rebbi demonstrated the emergence of the fermion
zero modes for various defects in odd spatial dimensions [1].
In particular, they have showed the existence of zero mode for
a domain wall in one dimension, t’Hooft-Polyakov monopole
and dyon in three dimensions. The fermion zero modes due to
a solitonic defect can give rise to induced quantum numbers
and fractionalization [1,2]. The domain wall of a scalar order
parameter (Dirac mass) in one dimension binds single zero
mode, leading to the fractionalization of charge. Zero-energy
states bound to domain wall can be observed experimentally,
for example, in polyacetylene [3]. Interestingly, the edge and
the surface states of many gapped topological systems in
higher dimensions are also determined by one or multiple
copies of the one-dimensional Jackiw-Rebbi model. Some
specific examples are the edge states of the d + id [4] and
the p + ip [5,6] superconductors and the quantum spin Hall
state [7] in two dimensions, and the surface states of the three-
dimensional topological insulators and superconductors [8].
For these higher-dimensional problems, the domain wall
describes a boundary between topologically distinct vacua. It is
also interesting to note that the chiral surface states of gapless
Weyl semimetal and superconductors are also governed by
similar one-dimensional problem [9].

The point vortex and the line vortex of a U(1) symmetry
breaking order parameter respectively in two and three
dimensions, are also interesting topological defects. The point
vortices of the p + ip superconductor [5,10,11] and the
Kekule bond-density wave order in graphene [12] support
localized fermion zero modes. In contrast, the line vortex

of many three-dimensional paired states such as axial super-
fluid [13], axial superconductor [14], superfluid 3He-B [15],
the gapped superconducting states of three-dimensional Dirac
fermions [16–19] support one-dimensional gapless fermions
along the vortex core. If we consider, the line vortex along the
ẑ direction, the momentum kz is a conserved quantity, and the
dispersing states are localized in the x-y plane. Therefore, for
kz = 0, we indeed encounter a two-dimensional problem of the
fermion zero modes. Consequently, the number of dispersing
modes becomes equal to the number of fermion zero modes
of an effective two-dimensional problem in the presence of a
point vortex.

The problem of zero-energy modes bound by a point
vortex in two dimensions has been considered by Jackiw and
Rossi [20,21]. The pertinent Hamiltonian is

HJR[a] =
∑
j=1,2

�j (−i∂j + i�3�4aj ) + �1�3 + �2�4, (1)

where ∂j ’s are the derivatives with respect to the spatial
coordinates, and �1,�2 are the components of a complex
order parameter. The four-dimensional Hermitian � matrices
satisfy the anticommuting algebra {�i,�j } = 2δij , where
i,j = 1,2,3,4. The gauge field corresponding to the broken
U(1) symmetry is denoted by aj , and the finite amplitude of
the order parameter gives rise to the Meissner effect for aj .
The point vortex of the order parameter is introduced as

�1 + i�2 = |�(r)| einφ, (2)

where n is the vorticity, and φ is the azimuthal angle, and
|�(r)| describes the radial variation of the amplitude. It
has been shown via a direct calculation [20] that there are
exactly n number of zero modes for vorticity n. Subsequently,
the correspondence between the vorticity and the number
of the zero-energy states has been expressed as a Z index
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theorem by Weinberg [22]. This is an index defined on the
open space [23] like Callias index theorem [24], unlike the
celebrated Atiyah-Singer index theorem [25], which is defined
on the compact manifold. There is an additional unitary
matrix �5 = �1�2�3�4, which anticommutes with HJR, and
ensures its spectral symmetry. All together the five mutually
anticommuting � matrices close the Clifford algebra of the
four-dimensional matrices [26]. As a consequence of the
spectral symmetry, the zero-energy states become eigenstates
of �5, with eigenvalues ±1. Therefore �5 defines the chirality
of the zero modes. The Z index theorem states that

N+ − N− = n, (3)

where N± are respectively the number of zero-energy
states with chirality ±1. In the Altland-Zirnbauer classifi-
cation scheme, this Hamiltonian (HJR) belongs to the class
BDI [27,28]. The presence of the gauge field is not important
for the number of zero modes or the associated index theorem.
However, the existence of the gauge field is of paramount
importance to realize deconfined vortices [21].

The Jackiw-Rossi Hamiltonian HJR[a] can describe both
insulating and superconducting states. For an insulator, aj ’s
are the components of the chiral gauge field. In contrast, for
a superconductor, aj ’s describe the physical electromagnetic
vector potential. For the insulating states of the charged
fermions, the electromagnetic U(1) symmetry is preserved and
the HJR[a] can be augmented by the electromagnetic vector
potential A, without altering the BDI chiral symmetry [29].
The modified Hamiltonian is

HJR[a,A] =
∑
j=1,2

�j (−i∂j + i�3�4aj + Aj )

+�1�3 + �2�4. (4)

The vector potential A only changes the wave functions of the
zero modes, without affecting its number [29,30]. In particular
for the insulators, when the vorticity is one (n = 1), there
exists single state at zero energy. This leads to the charge
fractionalization, which is relevant for the spinless fermions
on the honeycomb lattice with an underlying vortex of the
Kekule bond density wave order [12,31–33]. The axial/chiral
magnetic field (time-reversal preserving) can be introduced on
the honeycomb lattice, for example, by deliberate wrinkling
of the flake [34]. For graphene, due to the spinful nature of
the fermions, the charge fractionalization is lost. Instead, there
is a competing antiferromagnetic order in the Kekule vortex
core [35]. The fermion zero modes also occur for the vortices
of the easy plane antiferromagnetic and quantum spin Hall
orders, which respectively support bond density wave order
and s-wave pairing inside the vortex core [29,30,36].

The fermion zero mode for the s-wave pairing of the topo-
logical insulator’s surface states is also described by HJR[a]
(by ignoring the chemical potential and the Zeeman coupling).
Due to the BdG nature of the quasiparticles, the single zero-
energy mode corresponds to a Majorana fermion [37,38]. The
superconductivity on the helical surface states of a topological
insulator has been realized by the proximity effect [39], and the
possibility of realizing the Majorana zero mode is also being
actively pursued [40]. Similar considerations can be applied for
the superconducting states on the honeycomb lattice [41–44].

However, the minimal representation of spinful Dirac fermions
in graphene is eight-dimensional and to accommodate the
pairings, the Nambu’s doubled representation becomes 16-
dimensional. In this context, the associated Hamiltonian is a
direct sum of multiple copies of the four-dimensional Jackiw-
Rossi Hamiltonian, shown in Eq. (1). The existence of multiple
zero-energy modes even with n = 1, ruins the possibility of
realizing Majorana fermions [45]. Nevertheless, the presence
of the zero modes leads to an interesting interplay of various
competing order parameters inside the vortex core [35].

So far, we have been ignoring the effects of the finite
chemical potential and the Zeeman coupling on the zero
modes in a superconductor. Due to the inevitability of these
couplings in a real system, it becomes important to ask
which generalization of H JR[a] still supports zero modes.
At least for a single vortex (i.e., n = 1), Herbut and Lu
have provided the answer to this question [46]. It has been
argued that one can introduce two additional parameters to
the original Jackiw-Rossi Hamiltonian in Eq. (1), which
together can support zero-energy mode, when n = 1 in
Eq. (2). The generalized Jackiw-Rossi Hamiltonian then takes
the form

H JR
gen = HJR[a] + i�3�4λ + i�1�2χ. (5)

It has been shown in Ref. [46] that there exists an antiunitary
operator (A), which anticommutes with the total Hamiltonian
H JR

gen, guaranteeing its spectral symmetry. In the same work
authors have showed that a point vortex of vorticity ±1
can bind one zero-energy state only if �2

0 + λ2 > χ2, where
�0 = |�(r → ∞)|. In this work we search for the zero-energy
states in the spectrum of H JR

gen for arbitrary vorticity, and report
an index theorem connecting the vorticity and number of zero
modes. The physical meaning of the parameters (λ,χ ) are
again representation dependent. For example, if we consider
spinless fermions in monolayer graphene, λ corresponds to a
chiral chemical potential, whereas χ to the Haldane anomalous
mass [47]. On the other hand, for s-wave paring of the surface
states of topological insulator, they respectively correspond to
the ordinary chemical potential and the Zeeman coupling [48].
It has been argued recently that the generalized Jackiw-Rossi
Hamiltonian with χ = 0 can support a single zero-energy
mode only if the vorticity is odd [49], and all the states are at
finite energies for the even vorticity (except at λ = ±χ [50]). A
semiclassical treatement to this problem has also suggested the
possibility of realizing zero modes only for odd vorticity [51].
Since the spectral symmetry with respect to �5 (unitary) is
now lost, the concept of chirality and Z index becomes moot.
Therefore, the generalized Jackiw-Rossi Hamiltonian has a
Z2 index for the generic parameters (λ �= ±χ ), which can be
stated as

N = 1
2 (1 − (−1)n) 	

(
�2

0 + λ2 − χ2
)
, (6)

where N and n are, respectively, the number of zero modes
and the vorticity. A similar Z2 index also emerges for the
two-dimensional p + ip superconductors [11,52,53], which
has been argued to be a nonrelativistic limit of the H JR

gen [50,54].
The index for the zero modes in the spectrum of generalized
Jackiw-Rossi Hamiltonian, N , can also be presented as N =
(1 − C2D

1 ), where C2D
1 is the first Chern number in two spatial
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dimensions, given by [50]

C2D
1 =

{
0 when �2

0 + λ2 > χ2,

1 when χ2 > �2
0 + λ2.

(7)

Therefore the zero-mode index N can only be nonzero, when
the first Chern number vanishes.

In this paper, we will mainly focus on the time reversal
symmetric, fully gapped, momentum independent supercon-
ducting states of three-dimensional Dirac fermions, which are
realized in many narrow gap and gapless semiconductors. In
particular, there has been a surge of interest in the supercon-
ducting states of, e.g., copper intercalated bismuth selenide
CuxBi2Se3 [55], indium doped tin telluride Sn1−xInxTe [56].
Apart from the regular s-wave pairing, the three-dimensional
Dirac nature of the quasiparticle also allows the possibility of
a fully gapped topologically nontrivial odd-parity pairing [57].
When the time reversal symmetry of the system is present the
odd-parity pairing belongs to class DIII of Altland-Zirnbauer
classification [27,28]. Even though the pairing symmetry in
these materials has not been established [58], it is known that
the paired state is fully gapped and of type-II nature. This
motivates us to study the possible dispersive modes along the
vortex core in the mixed phase of these materials, and for
concreteness, we restrict ourselves in the dilute vortex limit
(close to Hc1).

Now we provide a synopsis of our main findings in this
paper.

(1) For the H JR
gen, we explicitly demonstrate the algebraic

reason for the absence of the zero modes in the case of even
vorticity. In addition, we reconfirm the existence of the single
zero mode for odd vorticity.

(2) We first consider the pairing of three-dimensional
massless Dirac fermions in the absence of the chemical poten-
tial and all other fermion bilinears in the particle-hole channel.
When projected to the x-y plane (kz = 0), the Hamiltonians
for both s-wave and the topological odd parity pairings map
to two copies of HJR[0]. Therefore the Z index theorem of
HJR[0] governs the number of Majorana zero modes.

(3) When we incorporate the chemical potential, the
Hamiltonian for both pairings map onto two copies of H JR

gen.
Consequently, a pair of Majorana zero modes are only found
for odd vorticity. In addition, if we introduce the Dirac mass
and the Zeeman couplings, only the odd parity topological
pairing still leads to two copies of H JR

gen. On the other hand,
the effective Hamiltonian for the s-wave pairing falls outside
the paradigm of H JR

gen in the presence of any chiral symmetyry
breaking perturbations in the particle-hole channel (for
example, scalar Dirac mass). Consequently, the zero modes
are absent for s-wave pairing under generic perturbations. In
contrast, the zero modes for the topological superconductors
are more robust.

(4) For the topological superconductor, kz causes mixing
between the two Majorana modes and converts them into
a dispersing complex fermions. We provide a symmetry
argument to explain why kz does not cause any mixing
between the zero modes and the finite energy Caroli-de
Gennes-Matricon states. Due to this reason, the degenerate
perturbation theory for kz in the zero-energy subspace provides
an exact answer for the dispersion relation. Consequently, the

Z2 index associated with the number of zero modes bound to
a point vortex in two-dimensions also dictates the index of the
gapless modes along the line vortex. We also demonstrate this
through some exact solutions.

(5) In the concluding sections, we consider the general-
ization of the zero-mode problem in the context of axial
superfluid. We show that the fermion zero modes can be
found in the presence of the axial chemical potential and the
third component (along the vortex line) of the axial vector, for
odd vorticity. This leads to an interesting modification of the
Callan-Harvey mechanism of anomaly cancellation.

The rest of the paper is organized as follows. In Sec. II,
we demonstrate the Z2 index associated with the generalized
Jackiw-Rossi Hamiltonian. In Sec. III, we explicitly present
the mapping of the three-dimensional Dirac Hamiltonian with
fully gapped pairings to two copies of the generalized Jackiw-
Rossi Hamiltonian under appropriate conditions. Section IV
is devoted to establish the invariance of zero-energy subspace
under the influence of the momentum along the vortex line. In
Sec. V, we exemplify this claim by computing the dispersive
modes with energies E = ±kz, as well as the vortex zero-
energy modes for particular choice of parameters. There we
show that the dispersive modes can indeed be constructed
from two-dimensional zero-energy modes by performing a
perturbation calculation in terms of kz. In Sec. VI, we summa-
rize our main findings regarding the Z2 index of H JR

gen and its
consequences for superconducting states of three-dimensional
Dirac fermions. In addition we propose a generalization of the
Callan-Harvey model of axial superfluid and discuss the con-
sequences Z2 index on anomaly equations. Additional details
of the derivation of Z2 index for the generalized Jackiw-Rossi
Hamiltonian are presented in Appendix A. We relegate the
details of the zero-mode calculations at the special points λ =
±χ to Appendix B. Appendix C contains some details on the
exact evaluation of gapless dispersive modes with underlying
topological and s-wave pairings in three dimensions.

II. Z2 INDEX OF GENERALIZED JACKIW-ROSSI
HAMILTONIAN

Upon setting set λ = χ = 0 in Eq. (5), the resulting
Hamiltonian conforms to the one studied originally by Jackiw
and Rossi for point vortices [20]. It was shown in Ref. [20,22]
that for arbitrary vorticity (n) of the point vortex, there
exists precisely n number of zero-energy states. This problem
belongs to class BDI in the Altland-Zirnbauer classifica-
tion [27,28]. The generalized Jackiw-Rossi Hamiltonian in
Eq. (5), which on the other hand belongs to class D, may
as well support states at zero energy depending on the
vorticity and the relative strength of the parameters λ and
χ and the asymptotic value of the order parameter as r → ∞
(�0). Possible existence of the zero-energy mode necessarily
requires a spectral symmetry of the Hamiltonian, H JR

gen. Such
symmetry of H JR

gen is generated by an antiunitary operator,
namely, A = UK , where U is the unitary operator and K is
complex conjugation [46,59]. Without any loss of generality,
one can commit to a representation in which �1,�2 are real
and �3,�4 are imaginary [26,60]. In that representation, U is
the identity operator, and the antilinear operator A is simply
the complex conjugation. Furthermore, if there exists any state
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at precise zero energy in the spectrum of H JR
gen, it needs to be

an eigenstate of A with eigenvalue ±1.

A. Spectral symmetry and zero modes

Let us now focus on the zero-energy modes of the
Hamiltonian H JR

gen, in Eq. (5). Since all the four-dimensional
representations of mutually anticommuting matrices are uni-
tarily equivalent, for our convenience we choose to work
with [61]

�1 = −σ3 ⊗ σ1, �2 = σ0 ⊗ σ2, �3 = σ1 ⊗ σ1,
(8)

�4 = σ2 ⊗ σ1, �5 = �1�2�3�4 = σ0 ⊗ σ3.

Let us define a four component spinor as

ψ�(�x) = (u1,v1,u2,v2)(�x), (9)

and here we wish to solve

H JR
gen ψ(�x) = 0. (10)

In this representation, the antilinear operator, which anticom-
mutes with H JR

gen and ensures its the spectral symmetry is

A = i�2�3 K = (σ1 ⊗ σ3) K. (11)

This antiunitary operator leaves the zero-energy subspace in-
variant. Hence, the zero-energy state needs to be an eigenstate
of the operator A, with eigenvalue either +1 or −1, implying

⎛
⎜⎝

u1

v1

u2

v2

⎞
⎟⎠ (�x) = ±

⎛
⎜⎜⎝

u∗
2

−v∗
2

u∗
1

−v∗
2

⎞
⎟⎟⎠ (�x). (12)

Upon imposing the constraint on the spinor components with
the + sign in the last equation, the four coupled differential
equations for the zero-energy mode reduce to only two, which
read as

(−i)eiφ

(
∂r + i

r
∂φ

)
v∗

2 + �re
−inφv2 + (λ + χ )u∗

2 = 0,

(13)

(i)e−iφ

(
∂r − i

r
∂φ

)
u∗

2 + �re
−inφu2 − (λ − χ )v∗

2 = 0.

For the ease of calculation, we here chose to work with an
underlying antivortex. Our discussion is equally applicable
for point vortex. The above set of equations has been derived
for a = 0. However, the structure of these equations are not
qualitatively affected by a, and we will explicitly account for
the gauge field in the subsequent sections. From the above
equations, the imaginary factor can be removed by redefining
the spinor components as

v∗
2 (�x) = ei π

4 V ∗(�x), u∗
2(�x) = e−i π

4 U ∗(�x). (14)

Next we find the zero-mode solution of the generalized Jackiw-
Rossi Hamiltonian, shown in Eq. (10), with underlying point
antivortex of even and odd vorticities. One may have taken the
zero-energy state, as an eigenstate of A with eigenvalue −1.
However, this corresponds to a phase rotation by exp(i π

4 �5),
which is not an observable [62].

B. Even vorticity: n = 2s

Let us first consider even vortex, i.e., n = 2s, where s is
a positive integer. With even vorticity, single-valued solutions
of the zero modes can only be found assuming [41,62]

V (�x) = eilφf1(r) + eimφg1(r),
(15)

U (�x) = eipφf2(r) + eiqφg2(r),

where l,m,p,q are restricted to be integers. The consistent
solutions of Eq. (10), with the above ansatz can be obtained
upon imposing the following constraints over the angular
momenta:

l + m = 2s + 1; p + q = 2s − 1; p = l − 1; q = 2s − l,

(16)

which we obtain here by matching the phase factors in Eq. (13).
One should notice that the above constraints among different
angular momenta channels of V and U arise only when λ

and/or χ are nonzero. Otherwise, U and V are decoupled
from each other, same as in the original work by Jackiw and
Rossi [20].

Finding closed form solutions of the radial functions in
Eq. (15) is an involving task. Nevertheless, possible existence
of the zero modes can be established by studying the
asymptotic structure of these functions. We here only present
the final outcome of our analysis. Additional details of this
calculation can be found in Appendix A. In the vicinity of the
origin (r → 0), as �r → 0

f <
1 (r) = Cl J√

l[r ζ ], g<
1 (r) = C̃l J√

2s−l+1[r ζ ], (17)

if λ > χ , whereas

f <
1 (r) = Cl I√

l[r ζ ], g<
1 (r) = C̃l I√

2s−l+1[r ζ ], (18)

for λ < χ , with a constraint l = 0,1, . . . ,(2s − 1). Therefore,
with even vorticity (n = 2s), there may exist n number of
zero-energy states. Here, we denote all the radial functions in
the vicinity of the origin as X<(r), where X = f1,f2,g1,g2.
Cl , C̃l are arbitrary constants, and ζ =

√
λ2 − χ2. Jk and Ik

are, respectively, the Bessel and the modified Bessel functions
of first kind of order k. The remaining two functions for small
r go as

f <
2 (r) = −

(
1

λ + χ

) (
∂r + l

r

)
f <

1 (r),

(19)

g<
2 (r) = −

(
1

λ + χ

) (
∂r + 2s + 1 − l

r

)
g<

1 (r).

Therefore all the four radial functions close to the origin is
defined in terms of one(1) arbitrary constant.

Far from the origin (r → ∞), as �r → �0(constant), these
functions take the form

f >
1 (r) = g>

1 (r) = E1

2
[C+ exp(αF

+r) + C− exp(αF
−r)],

(20)

f >
2 (r) = g>

2 (r) = E2

2
[C+ exp(αF

+r) − C− exp(αF
−r)],

if χ2 < λ2 and consequently χ2 − λ2 < �2
0. C± are arbi-

trary constants, E1 = 1, E2 = √
(χ − λ)/(χ + λ), and αF

± =
−�0 ±

√
χ2 − λ2. The radial functions far away from the
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origin are denoted by X>(r), where X = f1,f2,g1,g2. If, on
the other hand, χ2 − λ2 > �2

0,

f >
j (r) = Ej

2
[C+ exp(αF

+r) − (−1)j C̃− exp(αF
−r)],

(21)

g>
j (r) = Ej

2
[C+ exp(αF

+r) + (−1)j C̃− exp(αF
−r)],

for j = 1,2, where C̃− is also a arbitrary constant and αG
± =

�0 ±
√

χ2 − λ2. Therefore irrespective of the mutual strength
of λ,χ and �0, the radial part of the zero-mode solutions far
away from the origin is always defined by two (2) arbitrary
constants.

Boundary conditions: To obtain self-consistent solutions of
the zero-energy states, the spinor components need to satisfy
the boundary conditions at a particular point r = ξ (say).
Since the solutions in the asymptotic regions are obtained
by solving a second-order differential equations, for each
functions, we need to match values and the first derivatives of
X<(r) and X>(r) at r = ξ , where X = f1,g1,f2,g2. However,
for example, when we impose these boundary conditions
over f2(r), they remove the arbitrariness from two out of the
three constants, either (C+,C−,Cl) or (C−,C̃−,Cl), depending
on whether χ2 − λ2 < 0 or χ2 − λ2 > �2

0, respectively. In
either situation, such elimination immediately removes the
arbitrariness of the constants in the solution of g>

1 (r) as
well. Therefore, with two fixed constants in g>

1 (r) and one
arbitrary constant in the definition of g<

1 (r), it is impossible
to satisfy two of its boundary conditions. Similarly, upon
imposing the boundary conditions over f1(r), two out of
either (C+,C−,Cl) or (C−,C̃−,Cl) get fixed, depending on
χ2 − λ2 < 0 or χ2 − λ2 > �2

0, respectively. In terms of those
fixed constants it is once again impossible to satisfy both the
boundary conditions for g2(r). Hence one can conclude that
for generic parameters (λ �= ±χ ), there exists no zero-energy
mode for H JR

gen, when the vorticity is even.

C. Odd vorticity: n = 2s + 1

Next we consider point vortex with odd vorticity, and take
n = 2s + 1, where s � 0 is an integer. The single valuedness
and the consistency of the zero-mode solutions immediately
imply that out of 2s + 1 possible choices for the zero modes,
there is precisely one solution for which we can choose

V (�x) = eilφf (r); U (�x) = eipφg(r), (22)

and obtain the following relation between the angular momenta
l and p as

l = s + 1 = p + 1, (23)

from Eqs. (10) and (13). Even though we can exactly solve
these two coupled differential equations, it is worth analyzing
the existence of the zero-mode solutions with the above
ansatz, from their asymptotic behaviors. Later, we will present
the complete solution and show that these two approaches
complement each other. In the vicinity of the origin (r → 0),
upon dropping the contribution from �r , we find that

f <(r) = f <
1 (r), g<(r) = − 1

λ + χ

(
∂r + l

r

)
f <(r). (24)

On the other hand, far from the origin (r → ∞), the solutions
are

g>(r) = E2

∑
σ=±

σCσQσ (�0,χ,λ,r),

(25)
f >(r) =

∑
σ=±

CσQσ (�0,χ,λ,r),

only when χ2 < λ2, where

Qσ (�0,χ,λ,r) = exp(−�0r + iσ
√

λ2 − χ2). (26)

Therefore, upon imposing the boundary conditions, we men-
tioned in the previous subsection (say at r = ξ ), two out
of three arbitrary constants for each function get fixed, while
the remaining one is then set by the normalization condition.
If the parameters are such that �2

0 + λ2 < χ2, there is only
one exponentially decaying solution, ∝ Q−. Therefore each
function is defined in terms of only one arbitrary constant
at large distances. Therefore we have two arbitrary constants
and two matching conditions to satisfy. After satisfying the
matching conditions, there is no more arbitrary constant is left
to set the overall normalization. Hence we can have at least
one normalizable zero mode of H JR

gen for odd vorticity and

�2
0 + λ2 > χ2. (27)

Next, we show that this condition can also be obtained from
the exact solution of the zero-energy mode.

The exact solution of the zero-energy states can be found
upon assuming

f (r) = f̃ (r)e− ∫ r

0 �r′ dr ′
, g(r) = g̃(r)e− ∫ r

0 �r′ dr ′
. (28)

The solution of f̃ (r) for arbitrary r is identical to f <(r),
and therefore to f <

1 (r), whereas g(r) = −(λ + χ )−1(∂r +
l/r)f (r). However, at large distances, the modified Bessel
functions grow exponentially:

I√
l(ar) ∝ ear

r
√

a
. (29)

Therefore normalizable zero-energy modes can only be found
when �2

0 + λ2 > χ2, identical to the one we found in Eq. (27)
by analyzing the asymptotic solutions. On the other hand,
when λ > χ , f̃ (r) is defined in terms of the Bessel functions
of the first kind (Jk). The condition in Eq. (27) is then trivially
satisfied and we always find a normalizable zero mode.

Besides the above zero-mode solution, there are additional
2s possible ansatz similar to that in Eq. (15). The angular
momenta satisfy the following constraints:

l + m = 2s + 2, p + q = 2s,
(30)

p = l − 1, q = (2s + 1) − l,

once again obtained from Eqs. (10) and (13). Upon imposing
this set of constraints over the angular momenta, one set of
coupled differential equations for the functions f <

1 (r) and
f <

2 (r), in the vicinity of the origin assumes the identical form
as before with an even vortex [see Eq. (A3)]. Their solution
can readily be found from Eqs. (17)–(19), and the remaining
two radial functions are

g<
1 (r) =

{
C̃l J√

2s+2−l

[
r
√

λ2 − χ2
]

if λ > χ,

C̃l I√
2s+2−l

[
r
√

χ2 − λ2
]

if λ < χ,
(31)
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g<
2 (r) = − 1

(λ + χ )

(
∂r + 2s + 2 − l

r

)
g<

1 (r). (32)

Hence, at small distances there is one arbitrary constant for
each of f1(r),f2(r),g1(r), and g2(r). On the other hand, we
have shown in the previous subsection that the large r behavior
is independent of the angular momenta. Hence, far away from
the origin, the radial dependence is captured by Eq. (20) if
χ2 − λ2 < 0 and χ2 − λ2 < �2

0 or Eq. (21) if χ2 − λ2 > �2
0.

Therefore following the discussion on the matching conditions
at r = ξ , in the previous subsection, we can argue that there is
no zero-energy mode with multiple angular momenta ansatz,
even when the vorticity is odd.

D. Effects of gauge potential

In the above derivation, we have neglected the orbital effects
of the gauge potential. It can be introduced, for example,
considering a simple profile of the magnetic field. Let us
assume, that the magnetic field (applied in the z direction,
perpendicular to the plane of the vortex) is finite and constant
only within a distance r � ξ , and vanishes for r > ξ [46,63].
Then in the symmetric gauge, one can choose ar = 0 and

aφ =
{

r
2ξ 2 when r � ξ,

1
2r

for r > ξ.
(33)

With such a profile of the gauge potential, the ultraviolet
and the infrared asymptotic behaviors of all the functions
(f1,f2,g1,g2,f,g) remain unchanged. The only significant ef-
fect will be at intermediate distance r ∼ ξ . Hence, our deriva-
tion for the Z2 index for the generalized Jackiw-Rossi Hamil-
tonian remains valid, even in the presence of the gauge field.
To further demonstrate this assertion, we explicitly solve the
vortex zero mode with this profile of the gauge field in Sec. V.

E. Statement of Z2 index

After going through the above arguments, we can formally
present the statement of the Z2 index associated with the
zero modes for the generalized Jackiw-Rossi Hamiltonian.
For generic values of λ �= ±χ , which satisfy �2

0 + λ2 > χ2,
there exists one normalizable zero mode when the vorticity
is odd, while with even vorticity all the states are placed
at finite energies, in accordance with Eq. (6). On the other
hand, there are no normalizable zero modes for any vorticity,
if �2

0 + λ2 < χ2. We notice that the normalizability at infinity
is governed by the uniform H

gen
JR . There is a topological phase

transition or band inversion at �2
0 + λ2 = χ2, and this is the

reason for the absence of the normalizable zero-energy state
on one side.

However, there is an exception to the existence of the
Z2 index at λ = ±χ [50]. For these special values, the

condition �2
0 + λ2 > χ2 is trivially satisfied, which guarantees

the normalizability of the zero modes. In the above calculation,
we have assumed an antivortex configuration of the order
parameter ( ��). With an underlying antivortex it can be shown
that there exist precisely n number of zero-energy states for
arbitrary n, when λ = −χ . Moreover, all the zero-energy states
are eigenstates of the chirality operator �5, defined in Eq. (8),
with eigenvalue +1. On the other hand, for λ = +χ , once
again we recover the Z2 index for the generalized Jackiw-Rossi
Hamiltonian. One can achieve the Hamiltonian describing
a point vortex defect by unitarility rotating HJR in Eq. (1)
by i�4�5, which changes the relative sign between �1 and
�2. When we perform the same operation on the generalized
Jackiw-Rossi Hamiltonian in Eq. (5), it changes the sign of
the U(1) gauge field a → −a, and takes λ → −λ. Hence, n

number of zero-energy modes with underlying point vortex
appears in the spectrum when λ = +χ , whereas the Z2 index
remains unaltered for λ = −χ . With an underlying vortex
when λ = +χ , all the n number of zero modes are eigenstate
of �5, however, with eigenvalue −1. For the detail solutions
at this special values of two parameters λ and χ , readers are
referred to Appendix B.

III. THREE-DIMENSIONAL MASSIVE DIRAC
HAMILTONIAN WITH GAPPED PAIRINGS

Next we focus on momentum independent, time reversal
symmetric, gapped paired states of the three-dimensional
Dirac fermions. In three spatial dimensions, the Dirac quasi-
particles can pair into two fully gapped superconducting states.
One of them is trivial s-wave pairing, whereas the other
one is parity-odd and topologically nontrivial. To study the
nature of these paired states in the mixed/vortex phase, let
us define an eight component Nambu-Dirac spinor as � =
[��

p (+�k),��
h (−�k)], where ��

p (+�k) = ��(�k) and ��
h (−�k) =

�p(�k), otherwise

��(�k) = [c+
↑ (�k),c+

↓ (�k),c−
↑ (�k),c−

↓ (�k)]. (34)

c±
s corresponds to the annihilation operators for the even and

the odd parity states, respectively, with the spin projections
s = ↑,↓. The three-dimensional massive Dirac Hamiltonian in
the presence of trivial s-wave (�s) and odd-parity topological
(�T ) parings takes the form

HD =
∑

�k
�†(�k)Hgen[�s,�T ]�(�k). (35)

In order to preserve the time-reversal symmetry, we do not
choose any relative phase between �s and �T [64]. In
the announced eight-dimensional Nambu-Dirac basis (�),
Hgen[�s,�T ] takes the form

Hgen[�s,�T ] = (τ0 ⊗ α1)(kx − τ3 ⊗ I4ax) + (τ3 ⊗ α2)(ky − τ3 ⊗ I4ay) + (τ0 ⊗ α3)(kz − τ3 ⊗ I4az) + (τ3 ⊗ I4)μ

+ (τ3 ⊗ β)mk − (τ3 ⊗ iα1α2)h+ − (τ3 ⊗ iα3�)h− − (τ2 ⊗ α2)�R
T + (τ1 ⊗ α2)�I

T

− (τ2 ⊗ iα1α3)�R
s + (τ1 ⊗ iα1α3)�I

s , (36)

where a is the electromagnetic gauge potential, and the complex pairing order parameters are defined as

��x = (
�R

x ,�I
x

) = |�x |(cos nφ, sin nφ), (37)
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with x = T ,s, and n is an integer. Then n counts the
vorticity and the Hamiltonians Hgen[�s,0] and Hgen[0,�T ],
respectively, correspond to line-vortex defect with underlying
s-wave and topologically nontrivial odd parity pairing. Here,
h± are respectively the symmetric and the antisymmetric
combinations of the Zeeman couplings of the even (h1) and
the odd (h2) parity bands, namely,

h± = 1
2 |h1 ± h2|, (38)

μ is the chemical potential, and mk is the Dirac mass. In what
follows, we set mk = m = constant. The four-dimensional
Hermitian matrices are defined as

α1 =
(

0 σ1

σ1 0

)
, α2 =

(
0 σ2

σ2 0

)
, α3 =

(
0 σ3

σ3 0

)
,

β =
(

σ0 0

0 −σ0

)
, � =

(
0 −iσ0

iσ0 0

)
, (39)

which together complete the Clifford algebra of five mu-
tually anticommuting four-dimensional matrices. Here, σ0

is the two-dimensional unit matrix and �σ are the Pauli
matrices. The other set of two-dimensional matrices, {τ0,�τ },
operate on the Nambu’s index. Here, we have ignored the
anisotropy in the Fermi velocity arising from the underlying
crystallographic structure, and set vx = vy = vz = v = 1 [65].
Next, we cast the pairing Hamiltonians in the kz = 0 plane
with underlying point vortex defects of the topologically
nontrivial odd parity pairing as orthogonal sum of two copies
of the generalized Jackiw-Rossi Hamiltonian, under generic
situation. Such mapping is shown to be true for the s-wave
pairing, however, only if there is no chiral symmetry breaking
perturbations, e.g., m,h−.

A. Odd-parity topological pairing

To perform the above mentioned exercise, it is worth
redefining the eight-component Nambu-Dirac spinor as

��
t = [

c+
↑ ,c−

↓ ,(c+
↑ )†,(c−

↓ )†,c+
↓ ,c−

↑ ,(c+
↓ )†,(c−

↑ )†
]
(�x). (40)

In this new basis, the part of the Hamiltonian, Hgen[0,�T ]
describing the point vortex in the xy plane (i.e., with kz = 0),
is completely block-diagonal, whereas the kz part is block off-
diagonal. For simplicity, let us set all the orbital components
of the gauge potential to zero. The total Hamiltonian with only
the topological paring then takes the form

Hgen[0,�T ] → H vor
T = (

HuL
T ⊕ HdR

T

) + kzMT
z , (41)

where

HuL
T = γ5α1kx + βγ5α2ky + iβα2�

R
T + α2�

I
T

+βα3γ5(m + h+) + β(μ + h−), (42)

and

HdR
T = γ5α1kx − βγ5α2ky − iβα2�

R
T + α2�

I
T

+βα3γ5(m − h+) + β(μ − h−). (43)

The matrix multiplying kz is MT
z = σ2 ⊗ (iα1α3). Here, we

have defined as new matrix

γ5 =
(

0 σ0

σ0 0

)
, (44)

which anticommutes with β and �, but commutes with
α1,α2,α3. Both H

uL/dR

T in Eq. (42), and Eq. (43) assume the
form of the generalized Jackiw-Rossi Hamiltonian, shown in
Eq. (5). We need the following identification of the parameters
χ ≡ m + h+,λ ≡ μ + h− for HuL

T , and χ ≡ m − h+,λ ≡
μ − h− for HdR

T .
Therefore, with a point vortex defect of underlying odd-

parity topological paring one ends up with two Majorana
modes, in the presence of generic perturbations. However,
these Majorana modes can only be found when the vorticity
of the point vortex is odd, as we have shown in the previous
section. Since the magnetic field gets screened beyond the core
of the vortex, the Zeeman couplings h± are finite only within
the vortex core. Hence two normalizable Majorana modes can
be achieved only when

�2
0 + μ2 > m2. (45)

B. s-wave pairing

A similar exercise can also be performed with an underlying
s-wave pairing, which also assumes the form of the generalized
Jackiw-Rossi Hamiltonian, when m = 0 and h− = 0. Let us
now rewrite Hgen[�s,0] in the basis

��
s = [

c+
↑ ,c−

↓ ,(c+
↓ )†,(c−

↑ )†,c+
↓ ,c−

↑ ,(c+
↑ )†,(c−

↓ )†
]
(�x). (46)

The eight-dimensional Hamiltonian, Hgen[�s,0] then takes the
form

Hgen[�s,0] → H vor
s = (

HuL
s ⊕ HdR

s

) + kzMs
z, (47)

similar to the Eq. (41). The diagonal blocks of H vor
s are

HuL
s = γ5(α1kx + α2ky) + �R

s α3 + �I
s iα3β + μβ

+ γ5α3h+ − iβα1α2m + I4h− (48)

and

HdR
s = γ5(α1kx − α2ky) − �R

s α3 − �I
s iα3β + μβ

− γ5α3h+ − iβα1α2m − I4h−. (49)

Here, as well the kz appears as block off-diagonal element, and
the matrix multiplying kz is Ms

z = σ2 ⊗ (iα1α3), identical to
MT

z . Therefore, in the absence of the Dirac mass (m) and the
antisymmetric combination of the Zeeman coupling (h−), both
HuL

s and HdR
s are equivalent to the generalized Jackiw-Rossi

Hamiltonian, shown in Eq. (5), where λ = μ, χ = h+ for
both H

uL/dR
gen . Hence, in the absence of any chiral symmetry

breaking perturbations, the point vortex of underlying s-wave
order can also support two Majorana zero modes, when
the vorticity is odd. The zero-energy modes in the absence
of μ,h+ are also the eigenstates of βγ5 = −σ2 ⊗ σ0, with
definite chirality. This matrix defines the chirality of massless
three-dimensional Dirac fermions, and should not be confused
with �5 = σ0 ⊗ σ3 = iα2α1, which defines the chirality of
the original Jackiw-Rossi Hamiltonian in Eq. (1). Any chiral
symmetry breaking perturbation of the three-dimensional
Dirac fermions, such as Dirac mass (m) and h− cause mixing
among these two states and the spectrum becomes gapped.
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IV. PERTURBATION THEORY FOR LINE VORTEX
ABOUT kz

In this section, we show that the Z2 index for the fermionic
zero modes bound to the point vortex, also dictates the number
of one-dimensional dispersive modes along the line vortex
in three spatial dimensions. The momentum along the vortex
core (kz) is shown to leave the zero-energy subspace of the
underlying two-dimensional Hamiltonian (multiple copies of
H JR

gen) invariant. Consequently, a first-order perturbation theory
for kz is exact and the dispersive modes along the vortex core
are the linear combinations of the vortex zero modes. We here
prove this statement with underlying topologically nontrivial
odd-parity and s-wave pairings separately.

A. Topological pairing

Let us first consider the generalized Dirac Hamiltonian with
the topological pairing, Hgen[0,�T ]. We have shown in the
previous section that Hgen[0,�T ] is unitarily equivalent to two
copies of the generalized Jackiw-Rossi Hamiltonian, when
kz = 0. Therefore Hgen[0,�T ; kz = 0] hosts two Majorana
zero modes for odd vorticity, under generic situation. These
two zero-energy states constitute a two-dimensional basis,
which remains invariant by any operator that commutes
or anticommutes with the Hamiltonian. If we turn off all
the perturbations, namely m, μ, h+, and h−, then there
are four such candidates falling into the second category.
Together they close a Cl(3) × U(1) algebra. The three mutually
anticommuting matrices, closing the Cl(3) subalgebra act
like standard two-dimensional Pauli matrices. The remaining
one, belonging to the U(1) commutes with three matrices,
which close the Cl(3) subalgebra. With underlying topological
pairing the Cl(3) × U(1) algebra is constituted by

�MT = {τ0 ⊗ α3,τ0 ⊗ β,τ0 ⊗ �,τ0 ⊗ iα1α2}, (50)

where the last entry belongs to the U(1) part. However, due
to Nambu’s particle-hole doubling of the original problem, an
8-dimensional k-dependent perturbation, akMk can acquire a
finite expectation value, only if the matrix Mk satisfies the
algebraic constraint

Mk = ∓(τ1 ⊗ I4) M�
k (τ1 ⊗ I4). (51)

In the above equation, the ∓ signs depend on whether the
coefficient ak is even or odd under the parity transformation
(k → −k). If the coefficient ak is of even parity, the only
matrix satisfying the above constraint is τ0 ⊗ �. This matrix
represents a parity and time-reversal odd Dirac mass (mPT ).
On the other hand, for an odd parity ak (e.g., linear in k) the
remaining three matrices can acquire finite expectation values
from the zero-energy subspace. Notice that one of the matrices,
τ0 ⊗ α3, appearing in the Cl(3) part of �MT , multiplies kz in
Hgen, shown in Eq. (36). Therefore the momentum along the
vortex core kz does not cause any mixing of the zero-energy
states with the rest of the spectrum. Consequently, a first-
order perturbation calculation in terms of kz leads to the exact
solution of the dispersive modes along the vortex core. The
matrix τ0 ⊗ α3 acts as an off-diagonal Pauli matrix in the zero-
energy subspace, and hence the one-dimensional dispersive
modes are the symmetric and the antisymmetric combinations

of the fermionic zero modes with underlying point vortex. The
energies of these two dispersive modes are E = ±kz. When
kz = 0, we have two Majorana fermions, which hybridize via
kz and become complex fermions.

The exactness of the perturbation theory in terms of kz is
also applicable when we take into account the perturbations
m,μ,h±. However, not all the matrices in �MT anticommute
with the generic Hamiltonian Hgen[0,�T ; kz = 0]. Before, we
proceed to prove this statement it is worth appreciating an
algebraic identity [29,36,66]. Expectation value of an operator
(M) can be expressed as

〈M〉 = 1

2

⎛
⎝ ∑

occupied

−
∑
empty

⎞
⎠ �

†
EM�E, (52)

where �E are the eigenstates of a generic Hamiltonian, H. If
there exists a matrix, say T , which anticommutes with H and
commutes with M, the above mentioned sum is restricted to
the zero-energy subspace. When m = μ = h± = 0, and M =
(τ0 ⊗ α3)kz, one can choose T = τ0 ⊗ iα1α2. When m,μ,h±
are finite, we can still find a matrix, T with requisite criteria, for
the chosen M = (τ0 × α3)kz. If all the perturbations m,μ,h±
are nonzero, we cannot find any unitary matrix for T . Rather
there is an antiunitary operator (AT ), namely (τ1 ⊗ iβα1α2) K,
where K is the complex conjugation, which anticommutes
with the Hamiltonian Hgen[0,�T ; kz = 0] and commutes with
(τ0 ⊗ α3)kz. Therefore we can choose T = AT . Hence, the
one-dimensional dispersive modes are always the symmetric
and the antisymmetric combinations of the zero-energy modes
bound to the point vortex. Even in the presence of the gauge
fields, we can still choose T = AT , and the above conclusions
remain unaltered.

B. s-wave pairing

A similar conclusion can be arrived at even with an
underlying s-wave pairing if we turn off all the chiral symmetry
breaking perturbations, for example, m,h−. Furthermore,
when μ,h+ is set to zero the Cl(3) ⊗ U(1) algebra of the matri-
ces, anticommuting with the Hamiltonian Hgen[�s,0; kz = 0]
is constituted by

�Ms = {τ0 ⊗ �,τ0 ⊗ α3,τ3 ⊗ β,τ0 ⊗ iα1α2}, (53)

where the last entry belongs to the U(1) part. Appearance of the
matrix τ0 ⊗ α3 in the Cl(3) part of �Ms , immediately guarantees
that the dispersive one-dimensional modes can be obtained by
performing a perturbative calculation over kz within the two-
dimensional basis spanned by the localized fermionic zero-
energy modes due to a point vortex in the kz = 0 plane. It can
also be confirmed from the Eq. (52), upon choosing T = τ0 ⊗
iα1α2 and M = τ0 ⊗ α3. Otherwise, the matrix τ0 ⊗ α3 acts
as the diagonal Pauli matrix. Hence the dispersive modes with
energies E = ±kz are identical to the fermionic zero mode due
to the point vortex. Let us now incorporate a finite chemical
potential (μ) and the symmetric Zeeman coupling h+. One
can then choose T = (τ2 ⊗ iβα1α2) K, for M = (τ0 ⊗ α3)kz.
In conjunction with such choice of T , Eq. (52) guarantees
that the dispersive modes with E = ±kz, are exactly the two
fermionic zero modes bound to the point vortex.

It is worth mentioning that one of matrices in the Cl(3)
subgroup, namely τ3 ⊗ β appears in Hgen in Eq. (36) with
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the Dirac mass (m). This matrix also satisfies the condition
in Eq. (51), if its coefficient is momentum independent or
even under k → −k. Therefore the internal structure of the
zero-energy subspace shows that the Dirac mass is sufficient
to cause splitting of these two states and place them at finite
energies, ±m.

V. EXACT AND PERTURBATIVE SOLUTIONS
OF LINE VORTEX

The internal structure of the zero-energy modes of the point
vortex allowed us to show that the one-dimensional dispersive
modes along the core of the vortex can be constructed from
the localized Majorana zero modes due to the point vortex.
Thus the number of zero-energy modes in the spectrum of
the two-dimensional generalized Jackiw-Rossi Hamiltonians,
HuL

T and HdR
T with underlying odd-parity topological pairing,

or HuL
s and HdR

s with underlying s-wave pairing, is exactly the
number of gapless states along the vortex line. To exemplify
this claim, we here first present the exact solutions of the
dispersive modes for line-vortex as well as the zero-mode
solutions of the point vortex, for particular choices of the
parameters in Hgen[0,�T ] and Hgen[�s,0]. Then we show that
the one-dimensional dispersive modes with energies E = ±kz,
are either linear combinations of (for the topological pairing)
or exactly (for the s-wave pairing) the zero modes for the
point vortex. Some particular limits of this problem has been
considered previously in Refs. [16–19]. We here present only
the final results. Some additional details of this calculation can
be found in Appendix C.

A. Topological pairing with μ = h+ = 0

We consider a line vortex along the z direction with an
underlying odd-parity topological pairing. The solution for
dispersive mode with energies E = ±kz, when μ = h+ = 0,
in the basis of eight-component Nambu-Dirac spinor shown in
Eq. (34) reads as

|E = ±kz〉 = R(r,z)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g(r)e−iφ

±if (r)

∓g(r)e−iφ

if (r)

ig(r)eiφ

±f (r)

∓ig(r)eiφ

f (r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (54)

where the function R(r,z) takes the form

R(r,z) = exp

(
− i

π

4
+ ikzz −

∫ r

0
�r ′dr ′

)
. (55)

Taking the profile of the vector potential a to be same as in
Eq. (33), one obtains

g(r) = c1 I1[r
√

m2 − h2],
(56)

f (r) = c1

√
m + h

m − h
I0[r

√
m2 − h2],

when r � ξ . Outside the core of the vortex (r > ξ ),

g(r) = c3I1/2[r|m|] + c4I−1/2[r|m|],
(57)

f (r) = c4I1/2[r|m|] + c3I−1/2[r|m|].

The solutions and their first derivatives need to be matched at
r = ξ , where the solutions for r < ξ can be found by replacing
h2 → h2 + 1/2λ2 [46]. It eliminates two out of three arbitrary
constants from f (r) and g(r), while the remaining one is fixed
by the normalization condition.

On the other hand, solutions for two fermionic zero modes
with an underlying point vortex, when μ = h+ = 0, are the
following:

∣∣�0
1

〉 = R(r,0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g(r)e−iφ

0

0

if (r)

ig(r)eiφ

0

0

f (r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
∣∣�0

2

〉 = R(r,0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−if (r)

g(r)e−iφ

0

0

−f (r)

ig(r)eiφ

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(58)

It is now evident that the solution for two one-dimensional
dispersive modes, |E = +kz〉 and |E = −kz〉 in Eq. (54), are
respectively the antisymmetric and the symmetric combination
of two fermion zero modes |�0

1 〉 and |�0
2 〉, shown in Eqs. (58),

in the presence of point vortex.
Now we point out some subtleties regarding the perturbative

treatment of the kz term. In the absence of the chemical
potential and h+, we have solved the dispersive modes exactly,
and the velocity along the z direction remains the same as the
original Dirac quasiparticle’s Fermi velocity. In this particular
case, if we treat the kz part perturbatively with respect to
the zero modes of the planar Hamiltonian, we reproduce
the exact results for the eigenspinor and the eigenenergies
from the first-order degenerate perturbation theory. However,
the perturbative treatment of kz in the presence of μ does
not yield the exact eigenspinor and the eigenspectrum. This
mismatch can be attributed to the fact that [τ0 ⊗ α3,τ3 ⊗
I4] = 0. Therefore one needs to solve the eigenproblem of
the dispersive modes exactly using numerical methods. This
subtlety due to the commuting matrices can also be found in an
opposite limit. Consider, solving the dispersive mode exactly
in the absence of μ and h+. The matrix element of μ (which
is a chiral chemical potential for the BdG quasiparticles) in
the basis of the obtained dispersive states vanishes. Thus
the simultaneous presence of commuting operators require an
exact treatment to avoid fallacious perturbative conclusions.

B. s-wave paring with m = μ = h± = 0

Let us now consider a line vortex along the z direction with
underlying s-wave paring. The dispersive mode can be solved
analytically when we set m = μ = h± = 0. Solution for two
dispersive modes along the vortex line then takes the form (see
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Appendix C 2 for detail)

| + kz〉 = C+
−R(r,z)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−1

0

1

0

−i

0

i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, | − kz〉 = C−
−R(r,z)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

i

0

i

0

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(59)

Next we proceed to obtain the zero-energy (E = 0) modes
with an underlying point vortex of s-wave paring in the kz = 0
plane. It can readily be solved from Eq. (C10) upon setting E =
0,kz = 0. With an underlying s-wave pairing kz acts like σ3 =
diag.(1,−1) matrix in the zero-energy subspace. Therefore
it does not cause any mixing between two Majorana modes,
bound to the point vortex. Consequently, the gapless modes are
same as the vortex zero modes, multiplied by the plane-wave
factor exp (ikzz).

VI. SUMMARY AND DISCUSSIONS

In this paper, we have demonstrated that the original
Jackiw-Rossi Hamiltonian describing a point vortex defect
in two spatial dimensions [see Eq. (1)], can be augmented
by two additional terms [see Eq. (5)], which still possesses
a spectral symmetry. Consequently, the generalized Jackiw-
Rossi Hamiltonian of Eq. (5) may support zero modes. For
generic values of the perturbation parameters satisfying the
condition in Eq. (27), we obtain a single zero mode only for
the odd vorticity. In contrast, there are no zero modes for
the even vorticity, for generic perturbations. To demonstrate
the emergence of the Z2 index for the zero modes, we
have employed a method of matching asymptotic solutions,
which correctly captures all the known results within a single
framework. We have also found that there exist special values
of λ = ±χ , for which there are n number of zero modes
respectively for a vortex and an antivortex of vorticity n.

One of the main goals of this paper is to determine the
number of gapless one-dimensional modes along the line
vortex of a gapped paired states of three-dimensional Dirac
quasiparticles. In order to answer this question, we have
mapped the problem into the determination of the number
of vortex zero modes of appropriate H JR

gen’s. Through this
procedure, we have succeeded in showing that the number
of gapless modes is also dictated by the Z2 index of H JR

gen’s.
We have exemplified this by considering the topological odd
parity and trivial s-wave pairings. If the underlying Dirac
fermions are massless, then in the absence of the chemical
potential and the Zeeman couplings, both types of pairing lead
to two copies of appropriate HJR for kz = 0. Consequently,
the number of the gapless modes is governed by the Z index
theorem of Weinberg [20,22]. When generic perturbations are
considered, only the topological pairing sustains two gapless
modes for odd vorticity, in accordance with the Z2 index.
With an underlying s-wave pairing the vortex zero-energy
modes and thus the gapless dispersive modes can only be

found only when chiral-symmetry breaking perturbations in
the particle-hole channel, such as the Dirac mass, h−, are
absent.

Our calculations for isolated vortex can be extended in
perturbation theory set up for multiple vortices in the dilute
vortex limit. In the presence of multiple vortices, if we again
consider kz = 0, there will be tunneling within each copy of
H JR

gen’s [see Eqs. (42) and (43)] for topological superconductor.
As far as the topology of the order parameter field is concerned,
there is no difference between a n vortex and widely separated
n number of single vortices. Our analysis now suggests an
interesting even-odd effect based on the Z2 index. When the
net vorticity is odd, the gapless state will survive the tunneling
effects. In contrast, the gapless state will be absent for a net
even vorticity. This consideration can also be extended to
nondilute limit following the strategy in Ref. [67]. For similar
even-odd effect in p + ip superconductor, see Ref. [53].

With an underlying s-wave pairing, the one-dimensional
dispersive modes are gapped in the presence of a Dirac mass
(m). Hence the one-dimensional Hamiltonian along the vortex
core conforms to a massive Dirac Hamiltonian in one spatial
dimension. Thus with a domain wall configuration of m, the
one-dimensional Hamiltonian corresponds to the one studied
by Jackiw-Rebbi [1], and system binds localized Majorana
fermions, where m changes its sign [38,68]. Appearance of
such Majorana fermions can also be justified in the following
way. The components of the s-wave order parameters ��s and
the Dirac mass (m) mutually anticommutes and constitute an
O(3) vector, which also anticommute with the noninteract-
ing Dirac Hamiltonian Hgen[0,0], when μ = 0 = h±. Thus
together a line vortex of s-wave pairing and domain wall of
Dirac mass constitute a hedgehog in three spatial dimensions,
and binds localized Majorana fermions at the end point of
line vortex or where m changes its sign [1]. However, ��T

and m do not anticommute with each other, and no such
Majorana fermion can exist near the domain wall of m. If, on
the other hand, the system allows a domain wall of parity and
time-reversal odd Dirac mass (mPT ), which together with ��T ,
constitute another O(3) vector, localized Majorana fermions
can then be realized at the end points of the line vortex of the
parity-odd, topological superconductor.

Our analysis can be applied to an interesting problem of
chiral anomaly for the gapless one-dimensional modes along
the vortex line of an axial superfluid, which was considered by
Callan and Harvey [13]. They have considered the following
model:

Hax =
3∑

j=1

γ0γj (−i∂j − eAj ) + �(r)γ0 exp(iθγ0γ5), (60)

where we have used five mutually anticommuting γ matrices,
and Aj is the electromagnetic vector potential, and e is the
electron’s charge. When, we consider a line n vortex of the
axial superfluid order parameter along the z direction (θ =
nφ), there are n gapless chiral one-dimensional modes. This
number of modes is tied with the Weinberg’s Z index theorem
for the underlying Jackiw-Rossi problem in the x-y plane. The
chiral one-dimensional modes in the presence of the electric
field along the z direction, give rise to a nondissipative electric
current along the z direction, determined by one-dimensional
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chiral anomaly jz = n × e2Ez/(2π ). This current in turn is
supplied radially from the bulk into the vortex core, which is
captured by the following axion electrodynamics term:

Laxion = − e2

8π2

∫
d4xεμνρλ∂μθ Aν ∂ρAλ. (61)

Now we may add various fermion bilinears to the above model,
which can still support gapless modes along the vortex line.
According to the construction of H JR

gen in the previous sections,
we can add γ5λ and iγ1γ2χ , which respectively describe
an axial chemical potential, and the third component of the
spacelike axial vector (these terms break the Lorentz and CPT
symmetries). Under this circumstance there is a single gapless
mode only for the odd vorticity, if �2

0 + λ2 > χ2. The value
of the amplitude �(r) at radial infinity has been chosen to be
�0. Consequently, we can find nondissipative current only for
the odd vorticity, under generic values of these parameters.
Accordingly, the bulk axion term, which is usually computed
through the Goldstone-Wilczek formula [2], has to be modified
to capture the Z2 index.

The condition �2
0 + λ2 > χ2 has a simple physical meaning

in terms of the uniform model’s band structure. If χ = 0, the
Kramer’s degeneracy is lifted by λ, but keeping the spectrum
fully gapped. On the other hand, for λ = 0, the spectrum
is fully gapped only when � > χ . For χ > �, we have a
Weyl semimetal phase, which does not support the vortex
zero modes. In the Weyl semimetal phase, there are chiral
surface states, which lead to anomalous Hall conductivity
and chiral magnetic conductivity [9]. The anomalous transport
properties in the gapless phase are also captured by appropriate
axion electrodynamics terms, which are not related to vortex
zero modes. This is also interesting to note that the number
of gapless modes also controls an associated gravitational
anomaly formula, and our work suggests its Z2 modification
in the presence of λ and/or χ . We also note that the axial vector
χ breaks the spatial rotational symmetry, and for this reason
the zero modes can only be found for a line vortex aligned
with the axial vector.
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APPENDIX A: DETAIL OF Z2 INDEX THEOREM OF
GENERALIZED JACKIW-ROSSI HAMILTONIAN

In this Appendix, we present some additional details of
the derivation of the Z2 index theorem associated with the
existence of the zero-energy states in the spectrum of the
generalized Jackiw-Rossi Hamiltonian, defined in Eq. (5).

1. Even vorticity

Upon substituting the ansatz for the zero-energy states as
in Eq. (15) with the constraints over the angular momenta [see
Eq. (16)], into Eq. (13), we obtain the following coupled set
of differential equations:(

∂r + l

r

)
f1(r) + �rg1(r) + (λ + χ )f2(r) = 0,

(
∂r − l − 1

r

)
f2(r) + �rg2(r) − (λ − χ )f1(r) = 0,

(
∂r − 2s − l

r

)
g2(r) + �rf2(r) − (λ − χ )g1(r) = 0,

(
∂r + 2s + 1 − l

r

)
g1(r) + �rf1(r) + (λ + χ )g2(r) = 0,

(A1)

where

l = 0,1, . . . ,(2s − 1). (A2)

Therefore, with even vorticity, n = 2s, there may exist n

number of zero-energy states.
Near origin (r → 0): As r → 0, the pairing order parameter

�r vanishes smoothly, and neglecting the contribution from
�r , we arrive at the two sets of coupled differential equations.
One of them reads as(

∂r + l

r

)
f <

1 (r) + (λ + χ )f <
2 (r) = 0,

(A3)(
∂r − l − 1

r

)
f <

2 (r) − (λ − χ )f <
1 (r) = 0.

The other set of the coupled differential equations is(
∂r + 2s + 1 − l

r

)
g<

1 (r) + (λ + χ )g<
2 (r) = 0,

(A4)(
∂r − 2s − l

r

)
g<

2 (r) − (λ − χ )g<
1 (r) = 0.

Solutions of these differential equations are shown in
Eqs. (17)–(19).

Far from origin (r → ∞): As r → ∞, the pairing ampli-
tude �r approaches the asymptotic value �0, and neglecting
all the terms proportional to 1/r in Eq. (A1), we obtain a new
set of four coupled differential equations:

∂rf
>
1 (r) + �0g

>
1 (r) + (λ + χ )f >

2 (r) = 0,

∂rg
>
1 (r) + �0f

>
1 (r) + (λ + χ )g>

2 (r) = 0,
(A5)

∂rf
>
2 (r) + �0g

>
2 (r) − (λ − χ )f >

1 (r) = 0,

∂rg
>
2 (r) + �0f

>
2 (r) − (λ − χ )g>

1 (r) = 0.

Notice that far away from the origin the differential equations
are independent of the angular momenta (l,m,p,q). The above
four equations reduce to two sets coupled differential equations
in terms of new variables, defined as [69]

F±(r) = f >
1 (r) ± g>

1 (r) and G±(r) = f >
2 (r) ± g>

2 (r).
(A6)
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In terms of these variables the set of equations in Eq. (A5)
becomes

∂rF±(r) ± �0F±(r) + (λ + χ )G±(r) = 0, (A7)

∂rG±(r) ± �0G±(r) − (λ − χ )F±(r) = 0. (A8)

The solution of these new equations can in general be written
as

F+ =
∑
σ=±

Cσ exp
(
αF

σ r
)
, G+ =

∑
σ=±

C ′
σ exp

(
αF

σ r
)
,

F− =
∑
σ=±

C̃σ exp
(
αG

σ r
)
, G− =

∑
σ=±

C̃ ′
σ exp

(
αG

σ r
)
,

where

αF
σ = −�0 + σ

√
χ2 − λ2; αG

σ = �0 + σ
√

χ2 − λ2,

(A9)

with σ = ±. The arbitrary coefficients appearing in the
solutions are related according to

C ′
σ = −σ Cσ

√
χ − λ

χ + λ
, C̃ ′

σ = σ C̃σ

√
χ − λ

χ + λ
. (A10)

We are interested only in those solutions which decay expo-
nentially as r → ∞, so that they are normalizable. Depending
on the relative strength of �0, λ and χ , the solutions can take
different forms.

If χ2 < λ2, and (χ2 − λ2) < �2
0, αF

± < 0, but αG
± > 0.

Therefore normalizibility of the solutions demands F− =
G− = 0. In terms of the original functions, the solutions
are given in Eq. (20). If on the other hand, χ2 − λ2 >

�2
0, α

F/G
− < 0, whereas α

F/G
+ > 0. Hence, for normalizable

solutions C+ = C̃+ = 0, and the corresponding solutions are
given in Eq. (21).

2. Odd vorticity

When the vorticity of a point vortex is odd, there exists one
possible zero-energy state, with single angular momentum, as
shown in Eq. (22). Inserting this ansatz into Eq. (13), we obtain
the following coupled differential equations for f (r) and g(r):(

∂r + l

r

)
f (r) + �rf (r) + (λ + χ )g(r) = 0,

(A11)(
∂r + 1 − l

r

)
g(r) + �rg(r) − (λ − χ )f (r) = 0.

Following the same strategy, mentioned in the last section, we
find that as r → 0, f (r) is same as f <

1 (r), whereas g<(r) is
given by

g<(r) = − 1

λ + χ

(
∂r + l

r

)
f <(r). (A12)

At large distances, the above differential equations take the
form

∂rf
>(r) + �0f

>(r) + (λ + χ )g>(r) = 0,
(A13)

∂rg
>(r) + �0g

>(r) − (λ − χ )f >(r) = 0,

which can be solved by using the ansatz f >(r) = c exp (αr).
The solutions of these two equations are presented in Eq. (25).

The exact solution of the zero-energy states from Eq. (A11)
can be found upon assuming

f (r) = f̃ (r)e− ∫ r

0 �r′ dr ′
, g(r) = g̃(r)e− ∫ r

0 �r′ dr ′
. (A14)

The functions f̃ (r) and g̃(r) then satisfy the following
equations: (

∂r + l

r

)
f̃ (r) + (λ + χ )g̃(r) = 0,

(A15)(
∂r − l − 1

r

)
g̃(r) + (λ + χ )f̃ (r) = 0,

yielding

f̃ (r) =
{

Cl J√
l[r

√
λ2 − χ2] if λ > χ,

Cl I√
l[r

√
χ2 − λ2] if λ < χ,

(A16)

and

g̃(r) = −
(

1

λ + χ

) (
∂r + l

r

)
f̃ (r). (A17)

Normalizibility of these solutions, depending on the mutual
strength of λ, χ , and �0, has been discussed in the Sec. II C.

Besides the zero mode with ansatz in Eq. (22), there are
additional 2s possible ansatz similar to that in Eq. (15). The
angular momenta satisfy the constraints in Eq. (30). Upon
imposing those constraints over the angular momenta, one set
of coupled differential equations involving the functions f <

1 (r)
and f <

2 (r), in the vicinity of the origin assumes the identical
form as in Eq. (A3). The other set of coupled differential
equations is(

∂r + 2s + 2 − l

r

)
g<

1 (r) + (λ + χ )g<
2 (r) = 0,

(A18)(
∂r + l − 2s − 1

r

)
g<

2 (r) − (λ − χ )g<
1 (r) = 0.

The solutions for g<
1 (r) and g<

2 (r) are shown in Eq. (31). Far
from the origin, the differential equations are independent of
angular momenta, and takes the form of Eq. (20) or (21),
depending on the mutual strength of �0, χ , and λ.

APPENDIX B: ZERO-ENERGY STATES AT λ = ±χ

We here present the detail solutions of the zero-energy states
with an underlying antivortex for λ = ±χ . When λ = −χ , one
can write the equation for the zero-energy modes for even-
vorticity (n = 2s) from Eq. (A1). Written slightly differently,
they read as (

∂r + p + 1

r

)
f1(r) + �rg1(r) = 0,

(
∂r − p

r

)
f2(r) + �rg2(r) − 2λf1(r) = 0,

(B1)(
∂r − 2s − 1 − p

r

)
g2(r) + �rf2(r) − 2λg1(r) = 0,

(
∂r + 2s − p

r

)
g1(r) + �rf1(r) = 0,
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where p is a positive definite integers, and takes the values

p = 0,1, . . . ,2s − 1. (B2)

In the vicinity of the origin, where �r → 0, f <
1 (r) =

c̃1r
−(p+1), and g<

1 (r) = c̃2r
−(2s−p). Hence, normalizable zero-

energy modes can only be found when c̃1 = c̃2 = 0. On the
other hand, in the vicinity of the origin,

f <
2 (r) = c1r

p, g<
2 (r) = c2r

2s−1−p, (B3)

are well behaved functions for all p given in Eq. (B2). Far away
from the origin, these two functions are f >

2 (r) = g>
2 (r) =

c exp (−�0r). Two out of three arbitrary constants (c1,c2,c)
can be fixed by imposing the boundary conditions

f <
1 (r = ξ ) = f >

1 (r = ξ ), g<
1 (r = ξ ) = g>

1 (r = ξ ), (B4)

while the remaining one is determined by the overall normal-
ization factor. Hence there are n = 2s number of zero-energy
states with underlying antivortex, when λ = −χ . In terms of
the original functions in Eq. (15), V (�x) = 0 for the zero-energy
modes. Therefore the zero-energy modes are eigenstate of the
operator �5 = σ0 ⊗ σ3 with eigenvalue +1. These solutions
match exactly with the ones found by Jackiw and Rossi, in the
absence of gauge fields [20].

If, on the other hand, λ = χ , we have

f <
2 (r) = c̃2r

p, f <
1 (r) = − c̃2λ

p + 1
rp+1,

(B5)

g<
2 (r) = c′

2r
2s−1−p, g<

1 (r) = c′
2λ

p − 2s
r2s−p,

where c̃2,c
′
2 are arbitrary constants. Far away from the origin,

the functions behave as

f >
2 (r) = g>

2 (r) = c exp (−�0r),
(B6)

f >
1 (r) = g>

1 (r) = −2cλr exp (−�0r),

where c is also an arbitrary constant. After satisfying the
boundary conditions, for example, the one shown in Eq. (B4),
two out of three arbitrary constants, (c̃2,c

′
2,c) are fixed. With

only one arbitrary constant, it is now impossible to satisfy two
similar boundary conditions for f2(r) and g2(r). Therefore,
when λ = χ , there is no zero-energy state when the underlying
antivortex has even vorticity.

Let us now consider the antivortex with odd vorticity, n =
2s + 1. We first focus on 2s ansatz of the form Eq. (15). The
equations of the zero-energy modes then read as(

∂r + p + 1

r

)
f1(r) + �rg1(r) = 0,

(
∂r − p

r

)
f2(r) + �rg2(r) − 2λf1(r) = 0,

(B7)(
∂r − 2s − p

r

)
g2(r) + �rf2(r) − 2λg1(r) = 0,

(
∂r + 2s − p + 1

r

)
g1(r) + �rf1(r) = 0,

when λ = −χ . For the normalizable zero-energy modes, we
find f1(r) = g1(r) = 0. The remaining two functions in the

vicinity of the origin are given by

f <
2 (r) = c1r

p, g<
2 (r) = c2r

2s−p, (B8)

and far away from origin they are

f >
2 (r) = g>

2 (r) = c exp (−�0r). (B9)

Hence, for λ = −χ , there exists 2s number of zero-energy
states with an underlying antivortex of vorticity 2s + 1 of the
form Eq. (15). These solutions are also identical to the ones
one find when λ = χ = 0 [20]. However, when λ = χ , there
is no zero-energy mode of the form Eq. (15).

Next we solve the zero-energy mode with the ansatz of the
form Eq. (22), when λ = ±χ . One can also write the Eq. (A11)
for the zero-energy states as(

∂r + p + 1

r

)
f (r) + �rf (r) + (λ + χ )g(r) = 0,

(B10)(
∂r − p

r

)
g(r) + �rg(r) − (λ − χ )f (r) = 0,

where p = (n − 1)/2, and n(odd) is the vorticity. For λ = −χ ,
the radial functions of the zero modes are given by

f (r) = 0, g(r) = c rp exp

(
−

∫ r

0
�r ′ dr ′

)
, (B11)

where c is an arbitrary constant, similar to the one found
in original work by Jackiw-Rossi [20]. With this particular
ansatz, we also find normalizable zero-energy modes even
when λ = χ . The radial functions then go as

f (r) = −c

(
λ

p + 1

)
rp+1 exp

(
−

∫ r

0
�r ′ dr ′

)
,

(B12)

g(r) = c exp

(
−

∫ r

0
�r ′ dr ′

)
.

Therefore the zero-energy mode of the form Eq. (22), exists
whether λ = χ or λ = −χ . For n = 1 or p = 0, this solution
matches exactly with the one shown in Ref. [46].

APPENDIX C: DETAIL OF DISPERSIVE AND
VORTEX ZERO MODES

1. Topological pairing

Let us first present some details for the solutions of the
gapless dispersive modes and fermionic vortex zero-energy
state with underlying topological pairing when μ = h+ = 0.
The coupled differential equations for gapless modes along the
vortex core (chosen in z direction) read as

(m + h−)�+
↑ + (−i)e−iφ

(
∂r − i

r
∂φ + aφ

)
�−

↓

+ kz�
−
↑ + �re

−iφ(�−
↓ )† = E�+

↑ , (C1)

−(m − h−)�−
↓ + (−i)eiφ

(
∂r + i

r
∂φ − aφ

)
�+

↑

− kz�
+
↓ − �re

−iφ(�+
↑ )† = E�−

↓ , (C2)
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(m − h−)�+
↓ + (−i)eiφ

(
∂r + i

r
∂φ − aφ

)
�−

↑

− kz�
−
↓ − �re

−iφ(�−
↑ )† = E�+

↓ , (C3)

−(m + h−)�−
↑ + (−i)e−iφ

(
∂r − i

r
∂φ + aφ

)
�+

↓

+ kz�
+
↑ + �re

−iφ(�+
↓ )† = E�−

↑ . (C4)

Remaining four equations are simply the complex conjuga-
tions of the above four. For E = kz, the various components
of the Nambu-Dirac spinor are related according to

�−
↑ = �+

↑ ,�−
↓ = −�+

↓ ,(�−
↑ )† = (�+

↑ )†,(�−
↓ )† = −(�+

↓ )†.

(C5)

Upon imposing these constraints, the above four equations
reduce to only two, and they take the form

(−i)e−iφ

(
∂r − i

r
∂φ + aφ

)
�−

↓ + (m + h−)�+
↑

+�re
−iφ(�−

↓ )† = 0, (C6)

(−i)eiφ

(
∂r + i

r
∂φ − aφ

)
�+

↑ − (m − h−)�−
↓

−�re
−iφ(�+

↑ )† = 0. (C7)

These two coupled equations can be solved using the ansatz

λ+
↑ = R(r,0) e−iφ g(r), λ−

↓ = R∗(r,0) f (r), (C8)

yielding the solution shown in Eq. (54) for |E = +kz〉. On
the other hand, when we wish to solve the dispersive mode
with E = −kz, the components of Nambu spinor are related
according to

�−
↑ = −�+

↑ ,�−
↓ = �+

↓ ,(�−
↑ )† = −(�+

↑ )†,(�−
↓ )† = (�+

↓ )†.

(C9)

Following the same steps above, we find the other dispersive
mode |E = −kz〉, also shown in Eq. (54).

Next we present the solution of the fermionic zero modes
with an underlying point vortex, when μ = h+ = 0. With
this particular choice of parameters, after setting E = kz = 0,
one set of coupled differential equations for the zero mode
is obtained from Eqs. (C1) and (C2), yielding the solution
|�0

1 〉 shown in Eq. (58). The other set of coupled differential
equations for the fermionic zero mode arises from Eqs. (C3)
and (C4), giving the solution |�0

2 〉 in Eq. (58).

2. s-wave pairing

Let us now consider a line vortex along the z direction with
underlying s-wave paring. The dispersive mode can be solved

analytically when we set m = μ = h± = 0. Furthermore, we
also turn off the orbital contribution of the gauge field, i.e.,
aφ = 0. Then the coupled differential equations read as

(−i)

(
∂r − i

r
∂φ

)
�−

↓ + kz�
−
↑ + e−iφ�r (�+

↓ )† = E�+
↑ ,

(−i)

(
∂r + i

r
∂φ

)
�−

↑ − kz�
−
↓ + e−iφ�r (�+

↑ )† = E�+
↓ ,

(−i)

(
∂r − i

r
∂φ

)
�+

↓ + kz�
+
↑ + e−iφ�r (�−

↓ )† = E�−
↑ ,

(−i)

(
∂r + i

r
∂φ

)
�+

↑ − kz�
+
↓ + e−iφ�r (�−

↑ )† = E�−
↓ .

(C10)

The remaining four equations are the Hermitian conjugates
of above four. Upon imposing the constraints over the spinor
components, as shown in Eq. (C5), the above four equation
reduces to two decoupled equations. For E = +kz, they read as

ie−iφ

(
∂r − i

r
∂φ

)
�−

↓ + e−iφ�r (�−
↓ )† = 0, (C11)

ieiφ

(
∂r + i

r
∂φ

)
�+

↑ + e−iφ�r (�+
↑ )† = 0. (C12)

These two equations, respectively, yield

�−
↓ = C+

−e−i π
4 e− ∫ r

0 �r′ dr ′
, �+

↑ = C+
+
r

e−i π
4 e− ∫ r

0 �r′ dr ′
,

(C13)

where C+
± are the arbitrary constants. However, to keep the

second solution well behaved near the origin, we have to set
C+

+ = 0, therefore �+
↑ ≡ 0. On the other hand, the constraints

in Eq. (C9) yield the following two decoupled equations for
the dispersive mode with E = −kz:

(−i)e−iφ

(
∂r − i

r
∂φ

)
�−

↓ + e−iφ�r (�−
↓ )† = 0, (C14)

(−i)eiφ

(
∂r + i

r
∂φ

)
�+

↑ + e−iφ�r (�+
↑ )† = 0, (C15)

giving

�−
↓ = (i) C−

−e−i π
4 e− ∫ r

0 �r′ dr ′
,

(C16)

�+
↑ = C−

+
r

ei π
4 e− ∫ r

0 �r′ dr ′
,

respectively, where C−
± are also arbitrary constants. For the

solutions to be well behaved in the vicinity of the origin,
we need to set C−

+ = 0, and thus �+
↑ = 0 once again. In

conjunction with these constraints, the above solutions in
Eqs. (C13) and (C16), yield two dispersive modes with
underlying s-wave order, shown in Eq. (59).
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