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Impact of local-moment fluctuations on the magnetic degeneracy of iron arsenide superconductors
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We investigate the fate of the orthorhombic stripe-type magnetic state [ordering vectors (π,0)/(0,π )], observed
in most iron-pnictide superconductors, in the presence of localized magnetic moments that tend to form a Néel
state [ordering vector (π,π )]. We show that before long-range Néel order sets in, the coupling between the
conduction electrons and the fluctuations of the local moments favors an unusual magnetic state consisting of
a coherent superposition of the (π,0) and (0,π ) orders that preserves tetragonal symmetry. The magnetization
of this state is nonuniform and induces a simultaneous checkerboard charge order. We discuss signatures of this
magnetic configuration on the electronic spectrum and its impact on the superconducting state, showing that its
phase space for coexistence with the s+− state is smaller than the stripe-type state. Our results shed light on recent
experimental observations on Ba(Fe1−xMnx)2As2 compounds, where the Néel-type local Mn moments interact
with the Fe conduction electrons.
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I. INTRODUCTION

The proximity between magnetic order and unconventional
superconductivity in several materials has been a key mo-
tivation to investigate pairing mediated by spin fluctuations
[1]. Interestingly, the parent compounds of the two fami-
lies of high-temperature superconductors, cuprates and iron
pnictides, display rather different magnetic ground states.
While in the former a Mott insulating Néel-type magnetic
configuration [ordering vector QN = (π,π )] is observed, in
the latter one finds a metallic stripe-type state [ordering vectors
Q1 = (π,0) or Q2 = (0,π ) in the Fe-square lattice] that breaks
the tetragonal symmetry of the system down to orthorhombic.
These differences in the magnetic spectra are manifested in the
distinct pairing states promoted by the spin fluctuations—d

wave for the cuprates and s+− for the iron pnictides [2].
To better understand the similarities and differences be-

tween these two classes of materials, it is desirable to
study a system that interpolates between these two magnetic
ground states [3]. Experimentally, a promising material is
the Ba(Fe1−xMnx)2As2 compound: for x = 0 it undergoes
a nearly simultaneous magnetic-structural transition to a
metallic stripe-type state at Tmag ≈ 137K [4,5] with a saturated
magnetic moment of about 0.9 μB [6]. Optical conductivity [7]
and ARPES [8] measurements indicate that the conduction Fe
electrons are directly involved in the formation of the magnetic
state, in agreement with first-principle calculations [9]. For
x = 1 the system undergoes a magnetic transition at much
higher temperatures, Tmag ≈ 625K, forming an insulating Néel
state with a large saturated magnetic moment of 3.9 μB [10–
12]. Whether this state is a Mott insulator remains to be seen
[13], but both theory and experiment suggest that correlations
are stronger than in the x = 0 compound [14] and that a local
Mn moment picture describes well the ordered state [15–19].
Although no superconductivity has been observed in these
compounds, short-range Néel fluctuations, presumably arising
from the Mn moments, are observed via neutron scattering
even for small doping levels x ≈ 0.07 [20]. Remarkably,
x-ray and neutron diffraction measurements report an unusual
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intermediate magnetic state for x � 0.1, which does not break
the tetragonal symmetry of the system despite the presence of
magnetic Bragg peaks at Q1 = (π,0) or Q2 = (0,π ) [21].

Theoretically, the transition from a stripe phase to a Néel
state may seem at first sight straightforward. In a square-lattice
local-moment model with nearest-neighbor and next-nearest-
neighbor antiferromagnetic exchanges J1 and J2, respectively,
there is a classical transition from a stripe to a Néel state
once J1 > 2J2 [22]. However, the fact that the stripe state in
the pnictides is metallic, with conduction electrons forming the
magnetic moments, opens novel possibilities. This is because
the itinerant magnetic state driven by the nesting properties
of the Fermi surface is highly degenerate [23–27]: besides the
stripe phase, other configurations that do not break tetragonal
symmetry, with noncollinear or nonuniform magnetization,
may minimize the magnetic free energy (see Fig. 1). The
interaction with local moments affects this intricate free-
energy landscape and can potentially give rise to unusual
magnetic ground states.

In this paper, motivated by the physics of these
Ba(Fe1−xMnx)2As2 compounds, we show that short-range
Néel-type fluctuations favor a different magnetic state that
does not break tetragonal symmetry but that still displays
magnetic Bragg peaks at Q1 = (π,0) and Q2 = (0,π ), in
qualitative agreement with the observations in the x ≈ 0.1
Ba(Fe1−xMnx)2As2 compounds. Its magnetic configuration is
nonuniform, inducing a secondary charge density-wave with
ordering vector QN , which can be detected experimentally.
We also determine the changes in the electronic spectrum—
which can be probed by ARPES and STM—promoted by
this magnetic tetragonal state. The main difference from
the reconstructed Fermi surface of the stripe state is the
absence of a central unhybridized hole pocket, replaced
by additional reconstructed pockets at high-symmetry direc-
tions. Finally, we show that the nonuniform state tends to
phase-separate from the s+− superconducting state, which
helps to explain the absence of coexisting superconductivity
in the Ba(Fe1−xMnx)2As2 compounds, in contrast to their
Ba(Fe1−xCox)2As2 counterparts.

The paper is organized as follows: in Sec. II we develop
a general Ginzburg-Landau model that captures the three
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FIG. 1. (Color online) Phase diagram of the Ginzburg-Landau
model Eq. (1), displaying the orthorhombic stripe-type state for g >

max {0, − w}, as well as the tetragonal nonuniform and noncollinear
states for g < max {0, − w} (see also Refs. [23,24]). In the absence of
Néel fluctuations, the ground state is the stripe one (blue dot). As Néel
fluctuations increase, a transition from the stripe to the nonuniform
state takes place (dashed arrow).

different possible magnetic ground states of the iron pnictides.
In Sec. III we introduce a microscopic model where the
itinerant electrons couple to local Néel moments, showing that
Néel fluctuations favor the nonuniform tetragonal magnetic
state. In Sec. IV we discuss the reconstructed electronic
spectrum due to this peculiar order, and in Sec. V, its impact
on superconductivity. Section VI is devoted to the concluding
remarks.

II. PHENOMENOLOGICAL MODEL: DEGENERACY OF
THE MAGNETIC GROUND STATE

The enlarged degeneracy of the itinerant magnetic ground
state of the iron pnictides can be captured by a phenomeno-
logical Ginzburg-Landau model [23,26,27]. In the tetragonal
phase, neutron scattering experiments find magnetic fluctua-
tions of equal amplitude peaked at the two ordering vectors
Q1 = (π,0) and Q2 = (0,π ) [20]. Therefore, we introduce
two O(3) magnetic order parameters, M1 and M2, associated,
respectively, with Q1 and Q2. As a result, the spin at position r
is in general a superposition of the two order parameters, i.e.,
S(r) = M1eiQ1·r + M2eiQ2·r. The most general free-energy
expansion that respects tetragonal and O(3) symmetries is

F = a

2

(
M2

1 + M2
2

) + u

4

(
M2

1 + M2
2

)2

− g

4

(
M2

1 − M2
2

)2 + w(M1 · M2)2. (1)

The first two terms depend only on the combination M2
1 +

M2
2 , effectively enlarging the symmetry of the system to O(6),

and resulting in a huge degeneracy of the magnetic ground
state [24,25]. The last two terms are responsible for lifting
this degeneracy, selecting both the relative amplitudes (either
M2

1 /M2
2 = 0 or M2

1 /M2
2 = 1) and the relative orientations

of the two order parameters (either M1 ‖ M2 or M1 ⊥ M2).
Figure 1 displays the phase diagram and the resulting ground

states as function of g and w. For g > max {0, − w}, we
find a stripe-type state, characterized by M1 �= 0 and M2 = 0
(or vice-versa), which breaks the tetragonal symmetry of the
system. This is the state most commonly observed in the iron
pnictides and has a residual Z2 (Ising) symmetry, related to
choosing either M1 �= 0 or M2 �= 0, which can be broken even
before the magnetic transition takes place [27].

For g < max {0, − w}, minimization of the free energy
leads to a tetragonal magnetic state characterized by simulta-
neously nonvanishing M2

1 = M2
2 . Two different configurations

are possible: for w > 0, we obtain the noncollinear state
M1 ⊥ M2, where nearest-neighbor spins of amplitude 〈Si〉 =√

2M are orthogonal to each other (see Fig. 1 and also
Refs. [23,24]). For w < 0, the ground state is given by
M1 ‖ M2, corresponding to a nonuniform collinear state (see
Fig. 1 and Refs. [23,24]). In this configuration, odd sites
of the original square lattice form a nonmagnetic sublattice,
with local spin 〈Siodd〉 = 0, whereas even sites form a Néel
sublattice, with 〈Sieven〉 = 2M . This nonuniform state induces a
charge density-wave (CDW) with modulation Q1 + Q2 = QN ,
where the odd (nonmagnetic) sites have different local charge
than the even (magnetic) sites. This can be obtained from
Eq. (1) by including the charge degrees of freedom [28]:

F̃ = F − ζ ρQN
(M1 · M2) + 1

2
χ−1

CDWρ2
QN

. (2)

Here, ρQN
is the Fourier component of the charge density

ρ (r) at momentum QN = (π,π ); i.e., it is related to a
checkerboard charge-density wave. Minimization with respect
to the CDW order parameter gives ρQN

= χCDWζ (M1 · M2),
implying that its amplitude in the magnetically ordered state
depends on both the coupling constant ζ and the bare CDW
susceptibility χCDW.

The vast majority of iron pnictides display a stripe-type
ground state, g > max {0, − w}. The recent observation in the
Ba(Fe1−xMnx)2As2 compounds of a magnetic state with peaks
at Q1 = (π,0) and Q2 = (0,π ) but no orthorhombic distortion
[21] indicates that upon sufficient Mn doping, the Ginzburg-
Landau coefficients change and bring the system to the regime
of tetragonal magnetic states (either the nonuniform or the
noncollinear state). Our goal now is to develop a microscopic
model to evaluate these coefficients and unveil the mechanism
behind these changes.

III. MICROSCOPIC MODEL: IMPACT OF NÉEL
FLUCTUATIONS

The typical Fermi surface of the iron pnictides is shown in
Fig. 3(a), obtained from the tight-binding model of Ref. [29].
To make our analysis more transparent, we follow Refs. [24,27]
and consider an effective model with a (possibly degenerate)
circular hole pocket h at the center of the Brillouin zone and
two elliptical electron pockets e1,2 centered at Q1 = (π,0) and
Q2 = (0,π ). The band dispersions are, respectively,

εh,k = ε0 − k2

2m
− μ

εe1,k+Q1 = −ε0 + k2
x

2mx

+ k2
y

2my

− μ
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εe2,k+Q2 = −ε0 + k2
x

2my

+ k2
y

2mx

− μ.

Close to particle-hole symmetry (perfect nesting), we can
rewrite the band dispersions in a more convenient form:

εh,k = −εk

εe1,k+Q1 = εk − (δμ + δm cos 2θ )

εe2,k+Q2 = εk − (δμ − δm cos 2θ ), (3)

where θ is the angle around the Fermi surface. The parameter
δμ is related to the occupation number (doping), and δm is
related to the ellipticity of the electron pockets:

δμ = 2μ + εF

[
1 − m

2

(
mx + my

mxmy

)]
,

(4)

δm = εF m

2

(
mx − my

mxmy

)
,

where εF is the Fermi energy. Thus, the noninteracting Hamil-
tonian is given by H0 = ∑

k,a εk,ac
†
a,kαca,kα , with band index

a and spin index α. Projecting the interacting Hamiltonian
in the SDW channel [30]—which is the leading instability
of the system—yields the term HI = USDW

∑
q,i s(i)

q · s(i)
−q,

where s(i)
q = ∑

k c
†
h,k+qασ αβcei ,k+Qiβ

are the two staggered
spin operators whose mean values are proportional to the two
order parameters Mi .

The free energy Eq. (1) can now be derived from the total
Hamiltonian H0 + HI by performing Hubbard-Stratonovich
transformations and integrating out the electronic degrees of
freedom [27]. We consider Mi to be real and homogeneous.
The Ginzburg-Landau coefficients, as obtained in Ref. [27],
are given by w = 0 and

u =
∫

k

G2
h,k(Ge1,k + Ge2,k)2 ≈ 7ζ (3)ρF

2π2T 2
, (5)

g = −
∫

k

G2
h,k(Ge1,k − Ge2,k)2 ≈ 31ζ (5)ρF

32π4T 2

(
δm

T

)2

, (6)

where G−1
a,k = iωn − εa,k are the noninteracting single-particle

Green’s functions, and ρF is the density of states at the
Fermi level. In the limit of perfect nesting (i.e., δμ = δm = 0)
one obtains g = w = 0, implying that the system has an
enlarged O(6) symmetry and a huge ground-state degeneracy.
Expanding near-perfect nesting yields g ∝ δ2

m > 0 and w = 0,
placing the system in the regime of a stripe-type magnetic
state (blue dot in Fig. 1). Similar free-energy calculations
considering other types of band dispersions also find that the
stripe state is favored for a wide range of parameters, consistent
with the observations that most iron pnictides display this
magnetic ordered state [23,26,31,32].

To make contact with the Ba(Fe1−xMnx)2As2 compounds,
we include the coupling between the conduction electrons
and Néel-type fluctuations. As shown by first-principle and
model calculations, Néel fluctuations are always present in
the iron pnictides due to the existence of two matching
electron pockets separated by QN = (π,π ) [31,33,34]. The
presence of Mn dopants enhances these fluctuations, because
the magnetic Mn dopants promote Néel order—indeed, the

“fully doped” BaMn2As2 compound displays a transition to
a Néel magnetic state at rather high temperatures [10]. The
coupling between the local Mn moments and the Fe conduction
electrons is attested by local probes such as ESR (electron
spin resonance) [35] and NMR (nuclear magnetic resonance)
[16]. This unique behavior of the Mn dopants should be
contrasted with other types of chemical substitution in the Fe
site, Ba(Fe1−xMx)2As2, such as M = Co, Ni, Cu. For instance,
Co and Ni are nonmagnetic, as shown by ESR measurements
[35]. Cu, although magnetic, does not seem to favor a Néel
state, since the “fully doped” BaCu2As2 compound remains
paramagnetic [36,37].

Experimental evidence for Néel fluctuations in
Ba(Fe1−xMnx)2As2 is given by neutron diffraction
experiments, which observe an inelastic magnetic peak
at QN = (π,π ) already for very small Mn-doping levels
x [20], where no long-range Néel order is observed. In
this dilute limit, Mn dopants are also expected to promote
impurity scattering. One of its main effects is to suppress
the magnetic transition temperature Tmag, as discussed in
Refs. [38,39]. Within our model, Tmag appears in the quadratic
term of the general Ginzburg-Landau expansion in Eq. (1),
and therefore is not responsible for the selection of the ground
state—which is determined solely by the quartic coefficients.
Thus, hereafter we focus only on the role played by Néel
fluctuations. Denoting by N the collective field associated
with these Néel fluctuations, and by χN (q) the corresponding
momentum-dependent susceptibility, we therefore consider
the coupling between the Néel fluctuations and the itinerant
electrons according to Ref. [34]:

HN =
∑

k

N · (c†e1,k+Q1α
σ αβce2,k+Q2β

), (7)

where, for simplicity, the coupling constant was incorporated
to N. To determine how the magnetic ground state is affected by
short-range Néel fluctuations, we rederive the coefficients of
the free energy Eq. (1) from the Hamiltonian H0 + HI + HN ,
expanding to the leading quadratic order in N:

δF = α

2
N2

(
M2

1 + M2
2

) − 4λ12[(M1 × M2) · N]2

+
(

4λ11 + 8λ12

4

)
N2(M2

1 + M2
2

)2

−
(

−4λ11 + 8λ12

4

)
N2(M2

1 − M2
2

)2
, (8)

with the coefficients

α = 4
∫

k

Gh,kG
2
e1,k

Ge2,k

λij =
∫

k

G2
h,kGe1,kGe2,kGei ,kGej ,k. (9)

The coefficients λij are represented diagrammatically in
Fig. 2(a). Near-perfect nesting, α > 0, which reflects the
competition between the Néel and stripe states. To study
the corrections to the quartic terms of Eq. (1), denoted here
by a tilde, we consider Gaussian isotropic Néel fluctuations
〈NiNj 〉 = 〈N2〉

3 δij and evaluate the diagrams close to perfect
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FIG. 2. (Color online) (a) Feynman diagrams λij associated with
the coupling between the Néel collective field N (dashed lines) and
the magnetic order parameters M1 and M2 (wavy lines). The solid
(black) lines are the Green’s functions of the corresponding bands.
(b) Behavior of the Gaussian Néel fluctuations 〈N2〉 as function of
the inverse Néel correlation length ξ−1

N . The Néel critical point is at
ξ−1
N = 0 .

nesting, obtaining

ũ

u
≈ 1 − 0.13

〈N2〉
T 2

0

g̃

u
≈ 0.024

(
δ2
m

T 2
0

− 4〈N2〉
3T 2

0

)

w̃

u
≈ −0.016

〈N2〉
T 2

0

, (10)

where T0 is the energy scale of the bare magnetic transition
temperature. Thus, when Néel fluctuations are strong enough
compared to the energy scale of the ellipticity of the electron
pockets, 〈N2〉 > δ2

m/2, the leading instability of the system
is toward the nonuniform magnetic state (0 < g̃ < −w̃),
which preserves the tetragonal symmetry of the system and
induces a simultaneous checkerboard charge order. Notice
that, in the Gaussian approximation, 〈N2〉 ∝ ∫

q χN (q) does
not diverge at the Néel critical point [see Fig. 2(b)], so this
nonuniform magnetic state is not guaranteed to appear (see also
Appendix).

The possible existence of this intermediate state between
an itinerant stripe-type state and a localized Néel phase is the
main result of this paper. We note that a similar result also
holds when the Néel instability takes place at temperatures
higher than the one where the conduction electrons order
magnetically, i.e., where N2 → 〈N〉2. Note also that this
approximation breaks down near the critical region of the Néel
transition, where higher-order terms may be necessary.

IV. EXPERIMENTAL MANIFESTATIONS:
RECONSTRUCTED ELECTRONIC SPECTRUM

The most prominent experimental signature of the nonuni-
form state is the absence of orthorhombic distortion (i.e.,
no splitting of the lattice Bragg peaks) and the presence of
magnetic Bragg peaks at Q1 = (π,0) and Q2 = (0,π ). Indeed,
this is what x-ray and neutron diffraction experiments find in
the Ba(Fe1−xMnx)2As2 compounds for x � 0.1 [21]. However,

these features are also consistent with the noncollinear state.
This is the ground state when g < 0—which may in fact be
accomplished by the Néel fluctuations, see Eq. (10)—and
w > 0, which would require other mechanisms than Néel
fluctuations [40]. The key property that distinguishes between
the nonuniform and noncollinear tetragonal magnetic states is
the existence of an induced checkerboard charge order in the
former, ρQN

∝ M1 · M2. Because QN coincides with a Bragg
peak of the two-Fe unit cell, detecting this secondary order
via x-ray may be challenging. However, local probes such as
STM could detect this type of charge order. NMR could also
distinguish the nonuniform and noncollinear states, since in the
former half of the sites display zero averaged magnetization,
while in the latter every site is magnetic.

We emphasize that magnetic Bragg peaks at both momenta
Q1 = (π,0) and Q2 = (0,π ) are also expected in the stripe
state, due to the formation of domains. This makes it difficult
to distinguish between the stripe and nonuniform states using
only neutron diffraction data. Furthermore, relying only on the
absence of orthorhombic distortion to make this distinction
could be an issue depending on the limitations imposed by the
x-ray experimental resolution—see for instance Refs. [41,42].
In this regard, absence of shear modulus softening above
Tmag would provide strong evidence for a tetragonal magnetic
state [43–46]. Alternatively, the properties of the electronic
spectrum in the magnetic state could be used to differentiate
between the stripe and nonuniform states.

To obtain the reconstructed Fermi surface in the nonuniform
and striped states, we start with the five-orbital tight-binding
model of Ref. [29], with the Hamiltonian

H0 =
∑
mn

∑
kσ

c
†
m,kσ (tmn + εmδmn − μδmn)cn,kσ , (11)

where σ is the spin index, and m,n = 1...5 label the five d

orbitals of the Fe atom. tmn,εm are the hopping parameters
and onsite energies given in Ref. [29]. The chemical potential
is μ = 0 for the undoped compound, corresponding to an
occupation number of n = 6.

The presence of nonzero magnetic order parameters M1

and M2 gives rise to to the term

Hmag =
∑
i=1,2

∑
m

∑
kαβ

c
†
m,kα(Mi · σ αβ)cm,k+Qi ,β

+ κ
∑
m

∑
kα

c
†
m,kα(M1 · M2)cm,k+Q1+Q2,α + H.c.,

(12)

where we considered only intraorbital magnetic order param-
eters [47], assumed for simplicity to be of equal amplitude.
κ is a coupling constant that determines the amplitude of the
higher-order harmonic generated when both M1 and M2 are
nonzero—which gives rise to the checkerboard charge order.
In our calculations, we found that the reconstructed Fermi
surface does not depend strongly on the choice of κ .

The reconstructed band structure for the stripe and nonuni-
form orders can be obtained by diagonalizing the full
Hamiltonian H = H0 + Hmag adjusting the chemical potential
μ under the constraint of fixed occupation number n = 6.
To diagonalize the Hamiltonian, we introduce the Nambu
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FIG. 3. (Color online) Reconstructed Fermi surfaces near the
center of the Brillouin zone in the presence of Q1 = (π,0) stripe-
type magnetic order (b) and nonuniform magnetic order (c). The
Fermi surface in the paramagnetic state is shown in (a), with the
tight-binding parameters of Ref. [29].

operators:

ψ
†
m,kσ = (c†m,kσ c

†
m,k+Q1σ

c
†
m,k+Q2σ

c
†
m,k+Q1+Q2σ

).

The order parameters couple different elements in Nambu
space: Mi couples c

†
m,kσ to cm,k+Qi σ ′ and c

†
m,k+Qi σ

to

cm,k+Q1+Q2σ ′ , while M1 · M2 couples c
†
m,k+Q1σ

to cm,k+Q2σ ′

and c
†
m,kσ to cm,k+Q1+Q2σ ′ . For the (π,0) stripe order, M2 = 0

and M1 = M x̂, and the magnetic unit cell is given by −π/2 �
kx � π/2 and −π � ky � π . For the nonuniform magnetic
order, M1 = M2 = M√

2
x̂, where the factor of

√
2 is introduced

to keep the total order parameter
√

M2
1 + M2

2 the same as in
the striped case. The magnetic unit cell is given in this case by
−π/2 � kx,ky � π/2.

In Fig. 3, we present the reconstructed Fermi surface around
the center of the magnetic Brillouin zone for both magnetic
ground states. In the paramagnetic phase, the Fermi surface
consists of two concentric hole pockets at the center of the
Brillouin zone and two elliptical pockets centered at the
momenta Q1 = (π,0) and Q2 = (0,π ). In the striped state,
we find that for reasonable values of the magnetic order
parameter (M ≈ 60 meV), one of the hole pockets remains
unhybridized while the other hole pocket hybridizes with the
folded electron pocket, giving rise to “Dirac cones”—the small
reconstructed pockets along the stripe modulation direction.
This is in general agreement with previous theoretical and
experimental results [47–49]. On the other hand, for the
nonuniform state, each of the two hole pockets hybridize with
one of the two electron pockets. As a result, there remains only
small reconstructed pockets [50]. Unlike the small pockets that
appear in the stripe state case, four of these pockets appear
along the Q1 + Q2 = (π,π ) direction, a unique signature of
the double-Q nonuniform magnetic order.

V. COEXISTENCE BETWEEN TETRAGONALLY
SYMMETRIC MAGNETISM AND SUPERCONDUCTIVITY

An intriguing observation in the Ba(Fe1−xMnx)2As2 com-
pounds is the absence of superconductivity, despite the fact
that the magnetic transition is suppressed down to 50 K.
In the closely related compounds Ba(Fe1−xCox)2As2, for
instance, one observes coexistence between superconductivity
and magnetism for similar values of Tmag [51]. It has been
pointed out that the Néel fluctuations in Ba(Fe1−xMnx)2As2

effectively suppress the leading s+− pairing instability and
instead promote d-wave pairing [34]. Besides this effect, the
possible change in the magnetic ground state also has an
impact on the outcome of the competition between long-range
magnetic order and superconductivity.

Within the phenomenological model Eq. (1), this competi-
tion is described by the additional Ginzburg-Landau terms:

F̃ = F + FSC + γ

2
�2

(
M2

1 + M2
2

)
, (13)

where � is the superconducting order parameter and γ > 0 is
a coupling constant that can be derived directly from the mi-
croscopic Hamiltonian H0 + HI [52,53]. The superconducting
free energy is given by the usual form:

FSC = as

2
�2 + us

4
�4, (14)

with as ∝ T − Tc and us > 0. To determine whether long-
range magnetic order and superconductivity can coexist, we
minimize the free energy Eq. (13) with respect to � and
check whether the renormalized quartic coefficient of M is
positive. In general, coexistence takes place when γ√

us
<

√
ũm,

where the effective parameter ũm is given by ũm = ũ − g̃ for
the striped state and ũm = ũ − |w̃| for the nonuniform state.
Using our results from Eq. (10), we plot in Fig. 4 the value of
this effective parameter ũm as a function of the amplitude
of the Néel fluctuations for both stripe and nonuniform

stripe non-uniform

0.00 0.05 0.10 0.15 0.20
N2

T02
0.96

0.97
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0.99

1.00

um
u

FIG. 4. (Color online) Effective quartic magnetic coefficient ũm

as function of the amplitude of Néel fluctuations 〈N2〉. The con-
dition for coexistence between superconductivity and long-range
magnetism is γ√

us
<

√
ũm, implying that the phase space for the

coexistence state is reduced as Néel fluctuations become stronger. In

this plot we used δ2
m

T 2
0

= 0.2.
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magnetic states. As shown in the Fig. 4, ũm decreases as Néel
fluctuations become stronger, restricting the phase space for
which coexistence between superconductivity and long-range
magnetism is achieved, γ√

us
<

√
ũm. Therefore, stronger Néel

fluctuations make it difficult for a coexistence state with either
stripe or nonuniform states to be realized.

VI. CONCLUDING REMARKS

In summary, we have shown that an unusual nonuniform
tetragonal magnetic state consisting of a coherent combination
of Q1 = (π,0) and Q2 = (0,π ) orders can be realized in the
iron pnictides as a result of the interplay between itinerant
magnetism promoted by the nesting features of the Fermi sur-
face and Néel-type fluctuations promoted by local moments.
This nonuniform state induces a checkerboard charge order
and a reconstruction of the electronic spectrum, both of which
can be detected experimentally. We argue that our findings
may explain the experimental observation of a tetragonal
magnetic state displaying Bragg peaks at Q1 = (π,0) and
Q2 = (0,π ) in doped Ba(Fe1−xMnx)2As2, as well as the
absence of coexisting superconductivity in these compounds.
Besides Ba(Fe1−xMnx)2As2, a tetragonal magnetic state has
also been reported in (Ba1−xNa)Fe2As2 [54], and possibly
in 122 compounds under pressure [55,56], but whether Néel
fluctuations are also present in these systems remains to be
seen. The existence of such tetragonal magnetic states also
imposes important constraints on the mechanism of magnetism
in the iron pnictides, as they imply that tetragonal symmetry
breaking is not a necessary condition to achieve long-range
magnetic order.
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APPENDIX: GAUSSIAN NÉEL FLUCTUATIONS

Here we show how 〈N2〉 is obtained within a Gaussian
approximation. The action for the Néel field N can be written

as

SNéel[N] = 1

2

∫
q

χ−1
N,qN

2 +
∫

x

u

4
N4, (A1)

where q = (q,νn) denotes both momentum and bosonic
Matsubara frequency νn = 2πnT , and x = (r,τ ). For a clas-
sical transition in a strongly anisotropic system, the Néel
susceptibility takes the form

χ−1
N,q = r0 + q2

‖ + ηz sin2 qz, (A2)

where r0 ∝ T − TNéel and ηz is the interplane coupling.
Following Ref. [26], the quartic term can be decoupled by
an auxiliary field ψ :

Seff[N,ψ] = 1

2

∫
q

χ−1
q N2 −

∫
x

1

4u
ψ2 + 1

2

∫
x

ψN2. (A3)

Minimization with respect to ψ gives 〈N2〉 = 〈ψ〉/u. In the
absence of long-range Néel order, the N field can be directly
integrated out, yielding the effective action:

Seff = −ψ2

4u
+ 3

2

∫
q

ln
(
χ−1

q + ψ
)
. (A4)

Minimization with respect to ψ gives

ψ = 3u

∫
q

1

χ−1
q + ψ

. (A5)

Explicit evaluation then yields

ψ = ū ln
2�√

r0 + ψ + √
r0 + ψ + ηz

, (A6)

where ū = 3uT/(2π ), and � is the upper cutoff. In Fig. 2(b)
of the paper, the parameters used were ū/�2 = 0.01 and
ηz/�

2 = 0.001. The correlation length is given by ξN =
(r0 + ψ)−1/2 and diverges at the Néel transition.
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