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We analyze the pairing instabilities for fermions on hexagonal lattices (both honeycomb and triangular ones) in
a wide range of fermionic densities ranging from van Hove density at which a single large Fermi surface splits into
two disconnected Fermi pockets, to a density at which disconnected pockets shrink to Fermi points (half-filling
for a honeycomb lattice and full filling for a triangular lattice). We argue that for a generic doping in this range,
superconductivity at weak coupling is of Kohn-Luttinger type, and, due to the presence of electronic interactions
beyond on-site repulsion, is a threshold phenomenon, with superconductivity emerging only if the attraction
generated by the Kohn-Luttinger mechanism exceeds the bare repulsion in some channel. For disconnected
Fermi pockets, we predict that Kohn-Luttinger superconductivity, if it occurs, is likely to be f wave. While the
Kohn-Luttinger analysis is adequate over most of the doping range, a more sophisticated analysis is needed near
van Hove doping. We treat van Hove doping using a parquet renormalization group, the equations for which we
derive and analyze. Near this doping level, superconductivity is a universal phenomenon, arising from any choice
of bare repulsive interactions. The strongest pairing instability is into a chiral d-wave state (d + id). At a truly
weak coupling, the strongest competitor is a spin-density-wave instability, however, d-wave superconductivity
still wins. Moreover, the feedback of the spin density fluctuations into the Cooper channel significantly enhances
the critical temperature over the estimates of the Kohn-Luttinger theory. We analyze renormalization group
equations at stronger couplings and find that the main competitor to d-wave superconductivity away from weak
coupling is actually ferromagnetism. We also discuss the effect of the edge fermions and show that they are
unimportant in the asymptotic weak coupling limit, but may give rise to, e.g., a charge-density-wave order at
moderate coupling strengths.
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I. INTRODUCTION

Understanding the instabilities of Fermi liquids has been an
enduring theme of research in condensed matter physics for
decades [1]. All rotationally isotropic Fermi liquids display
an instability to superconductivity in some nonzero angular
momentum channel [2–4]. This condition does not hold for
nonisotropic Fermi systems, which may remain in the normal
state down to T = 0. On the other hand, if a lattice system
has an attractive interaction in some pairing channel, it may
get enhanced when, e.g., the Fermi surface (FS) is nested. The
energy scale for superconductivity can also be enhanced by
divergences in the FS density of states at certain doping levels.

Of particular interest are situations where a Fermi liquid
instability to superconductivity is driven purely by an electron-
electron interaction rather than interaction with phonons. This
line of research has a long history. Pairing due to direct
fermion-fermion interactions was discussed in connection with
the superfluidity of 3He [5,6] and became mainstream after
the discovery of high-temperature superconductivity in the
cuprates [7,8] and subsequent discovery of superconductivity
in Fe-based pnictides [9].

The weak coupling scenario of the pairing due to nominally
repulsive Coulomb interaction is generally known as the Kohn-
Luttinger (KL) mechanism, developed in 1965 (Refs. [2,10]).
The KL mechanism is based upon two fundamental earlier
results. It was discovered by Friedel [11] in the early 1950s that
the screened Coulomb potential in a Fermi liquid has a long-
range oscillatory tail cos(2kF r + φ0)/r3 at large distances

r , hence at some large enough r , the screened Coulomb
interaction gets overscreened and becomes attractive. Next,
Landau and Pitaevskii analyzed the pairing in an isotropic
Fermi liquid at nonzero orbital momentum l of the pair and
found that the pairing problem decouples between different
l. Because of this decoupling, if only one partial component
of the interaction is attractive and all others are repulsive, the
system already undergoes a pairing instability into a state with
l for which the interaction is attractive [12].

Because the components of the interaction with large l

come from large distances, it is conceivable that occasional
overscreening of the Coulomb interaction at large distances
may make some of the partial interaction components with
large l attractive. KL analyzed the form of the fully screened
irreducible pairing interaction at large l in three-dimensional,
rotationally isotropic systems with k2/(2m) dispersion, by
separating nonanalytic 2kF screening and regular screening
from other momenta. KL incorporated the latter into the
effective interaction U (q) = U (q) (q = |q|) and made no
assumptions about the form U (q) except that it is an analytic
function of q2. The full irreducible pairing interaction is U (q)
plus extra terms coming from the screening (see Fig. 1).
An analysis of this form was first performed for the s-wave
channel in [13]. KL extended the analysis to nonzero l. They
argued that at large l contributions to partial components of
the irreducible interaction from 2kF scattering scale as 1/l4

due to the nonanalyticity of the 2kF screening (this is the
same nonanalyticity which gives rise to Friedel oscillations).
At the same time, partial components of analytic U (q) behave
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FIG. 1. (Color online) Kohn-Luttinger mechanism of the pairing.
The irreducible pairing interaction is the sum of the Coulomb
interaction, which includes all regular contribution from screening
[U (q), represented by a dashed line], and nonanalytic terms, which
appear at second order in U (q). Kohn and Luttinger demonstrated
that for rotationally isotropic systems, the partial components of the
irreducible pairing interaction are attractive for arbitrary U (q) for
large values of the angular momentum l, at least for odd l.

at large l as e−l , i.e., are much smaller. As a result, even though
the KL contribution is second order in U , it overwhelms the
direct first-order interaction term in channels with large enough
l. KL explicitly computed [2,10] the prefactor for the 1/l4

term and found that it generally depends on the parity of
l. They found that the interaction in channels with odd l is
attractive no matter what is the form of U (q). For the highly-
screened Hubbard interaction, for which U (0) = U (2kF ) =
U , the prefactor is attractive for both even and odd l. As a
result, any generic rotationally invariant system with repulsive
Coulomb interaction is unstable against pairing in channels
with sufficiently large l. The pairing will be into a channel that
has the largest attractive component. The situation away from
the asymptotic large l limit is less certain as the analytic and
nonanalytic contributions to the irreducible pairing interaction
are of the same order. However, one can make progress if the
bare interaction U (q) is weak, by doing perturbation theory in
weak interactions. For momentum-independent U (q) = U and
an isotropic system, the KL mechanism generates an attraction
in all channels down to l = 1, with the l = 1 channel having
the strongest attraction [14,15]. For a momentum-dependent
interaction, U (q) itself has components for all l and whether
the second-order KL contribution can overwhelm the bare
interaction depends on the details [4,16,17].

The situation in lattice systems is similar but not identical to
that in isotropic systems. Namely, there is only a discrete set of
orthogonal channels imposed by a specific lattice symmetry.
(For 2D systems with C4 lattice symmetry, there are four
one-dimensional channels A1g , B1g , B2g , and A2g , and one
two-dimensional Eg channel.) Each channel has an infinite set
of eigenfunctions. The leading eigenfunctions in each channel
can be formally associated with s wave (A1g), p wave (Eg),
d wave (B1g and B1g), etc., however, the “higher-momentum”
eigenfunctions have the same lattice symmetry as a leading
component in one of the channels and just fall into one
of the orthogonal subsets. For example, on a lattice with a
threefold rotation symmetry, gap functions of the form cos φ,
cos 4φ, cos 7φ, . . . have the same eigenvalue under threefold
rotation and thus belong to the same representation. Moreover,
since these gap functions all have the same eigenvalue under

threefold rotation they are not necessarily orthogonal to each
other, since the gap magnitude also depends on φ (albeit with
threefold symmetry). As a result, the notation of a single
large l channel no longer exists. (For a detailed discussion
of hexagonal lattice representations and its association with
superconducting orders see, e.g., Ref. [18]). There is an infinite
number of orthogonal linear combinations of eigenfunctions
in each subset, hence an infinite number of eigenvalues, and
for superconductivity only one of the eigenvalues needs to
be attractive. However, there is no generic condition that
there must be attractive channels, and, moreover, even if
some combinations of eigenfunctions are attractive, there
is no condition like in the isotropic case at large l, that
the bare interaction U (q) has to be vanishingly small in
one of these channels. All this makes the analysis of the
pairing in lattice systems more involved than in the isotropic
case.

There are two ways to proceed and we explore both.
First, in a system with a generic FS (FS) (i.e., the one
without nesting and/or special points where the density of
state diverges), one can apply perturbation theory and study
KL-type superconductivity for a generic U (r). For 2D systems
on a tetragonal lattice, such analyses have been performed
both analytically and numerically in Refs. [16,17] (see also
Ref. [19]). Here, we analyze KL superconductivity analytically
for systems on a hexagonal lattice. We show that the subset
of potential superconducting states is larger for fermions on
a hexagonal lattice than on a tetragonal lattice. We perform
a KL-type calculation for a system with an interaction U (r),
which is largest on-site (Hubbard component) but also extends
to nearest and second-nearest neighbors. We show that the
effective interaction taken to second order in the Hubbard U

gives rise to an attraction in a d-wave channel near van Hove
density and in a channel, which we identify as f wave, in a
range of dopings when the FS consists of six disconnected
pockets. This result agrees with the numerical analysis in
Ref. [20]. Our study provides analytical understanding of the
physics of the attraction. (We also consider pairing states
not analyzed in Ref. [20]). However, whether or not such
superconductivity is actually realized depends on how strong
the bare repulsive interaction is in the corresponding channel.
For the Hubbard-only model, the bare interaction vanishes for
all non-s-wave channels, but for a generic U (r), it is nonzero
in all channels. We found that the bare interaction, taken to
second neighbors, vanishes in some pairing channels, however,
these channels are not the ones in which KL interaction is
attractive. As a result, KL attraction (which is second order in
the bare coupling) competes with the bare repulsive interaction
and must exceed it, otherwise superconductivity would not
develop. This implies that superconductivity at a generic
doping is a threshold phenomenon: it does not occur if the
interaction U (r) is too weak. A somewhat richer behavior can
be obtained in multilayer hexagonal lattice systems [21,22],
but we do not discuss these here.

Second, at van Hove doping, the density of states diverges
at the so-called van Hove points, and, for hopping between
nearest neighbors, the FS consists of a set of parallel lines
(nesting) (see Fig. 2). In this situation, the KL renormalization
of the bare pairing interaction is by itself logarithmically
singular and has to be treated on equal footing with the pairing
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FIG. 2. (Color online) Fermi surface (blue lines) for fermions on
a honeycomb lattice at van Hove doping (ν = 3/8 or 5/8, where
ν = 1/2 corresponds to half-filling, where the fermionic spectrum
has Dirac points). For nearest-neighbor hopping, the Fermi surface
consists of parallel pieces (nesting). At the end point of parallel pieces
the density of states diverges (van Hove points M1,M2, and M3). Thin
solid lines represent the boundaries of the Brillouin zone.

channel. Moreover, there are logarithmic divergences in chan-
nels corresponding to particle-hole pairing [23], which also
feed back into the particle-particle pairing channel and may
generate additional attraction or repulsion. In this particular
case, one can extend the analysis beyond second order in
U (r). The analytical technique to do this is called parquet
RG [24]. The physics captured by parquet renormalization
group (RG) analysis is that KL renormalization gets stronger
as one progressively includes higher-order scattering events.
The parquet RG equations have been solved in a leading
logarithmical approximation in Ref. [25] and the net result
for superconductivity can be physically interpreted such that
the total pairing interaction (the bare one plus the KL part)
evolves as the temperature gets lowered and changes from a
repulsive one to an attractive one at some T (in other words, the
system self-generates the scale, which is analogous to a Debye
frequency). As T further decreases, the attraction grows, and
at some lower T the system undergoes a superconducting
instability towards a chiral d + id superconducting state which
breaks time-reversal symmetry. Note that at van Hove doping,
the instability is not a threshold phenomenon but rather occurs
for arbitrarily weak bare interactions.

There is a caveat. In a situation when the FS has van
Hove points and the interactions flow as T is lowered,
superconductivity is not the only one option: the system
can also develop a density-wave instability [in this case a
spin-density wave (SDW)]. It is known that superconductivity

FIG. 3. (Color online) The flow of the couplings in the s-wave
superconducting (SC) channel and spin-density-wave (SDW) channel
under parquet RG at van Hove density. The SDW coupling wins
at intermediate scales. The SC coupling is initially repulsive, but
changes sign under RG flow and eventually wins over the coupling
in the SDW channel.

and SDW do not co-exist [26]. At weak coupling [small bare
U (r)] and exactly at van Hove density, superconductivity wins
over SDW (see Fig. 3). What happens at larger couplings
and/or slightly away from van Hove density is less clear, and
has been debated in Refs. [18,27–30]. One possibility is that
the SDW may win as it wins at intermediate temperature
scales, and a deviation from a van Hove density restricts
the applicability of RG analysis to temperatures larger than
some cutoff. However, to properly address this issue one
needs to analyze the set of RG equations beyond the leading
logarithmic approximation. This is what we will do in the
second part of this paper. We show that at the van Hove point,
the physics is highly universal at weak coupling, and the system
invariably ends up in a d + id superconducting state. Once
we move away from weak coupling, the RG approach is no
longer controlled, and the neglect of higher loop diagrams
can no longer be justified. However, the procedure can still
be applied, although the results must be treated with caution.
We show that away from weak coupling the RG analysis that
focuses purely on the hexagon corners reveals two distinct
instabilities: one to d-wave superconductivity and another to
ferromagnetism. The SDW is never the leading instability if
the RG is allowed to run indefinitely, but it may dominate
if the RG is stopped at some intermediate energy scale by
higher loop effects or self-energy effects. The ferromagnetic
phase is the principal new result from extending the parquet
RG to strong coupling. We also discuss the effect at strong
coupling of fermions near the Fermi surface but well away
from the van Hove points (referred to henceforth as “edge
fermions” because they are near the edges of the hexagonal
FS, but are well away from the van Hove points at the corners
of the hexagonal FS). Along the ferromagnetic trajectory, the
edge fermions suppress ferromagnetism, and may destabilize
it in the strong coupling limit towards a different phase, like
a charge-density-wave (CDW) or an s-wave superconductor.
Meanwhile, along the d-wave superconducting trajectory,
the edge fermions strengthen d-wave superconductivity with
respect to SDW, but they may destabilise d + id state at strong
coupling towards another phase, such as a CDW.

The paper is organized as follows. In the next two sections,
we consider KL pairing outside the immediate vicinity of
the van Hove density. In Sec. II, we consider fermions on
a triangular lattice, and in Sec. III, we consider fermions on a
honeycomb lattice. In both cases, we first introduce appropriate
patch models and discuss the potential pairing symmetries.
We then obtain the bare pairing interaction in various channels
for a U (r), which extends to second neighbors. After that,
we compute the second-order KL component of the pairing
interaction and analyze the full pairing vertices, which consist
of first-order terms and second-order KL contributions. We
argue that on both lattices a nodeless f -wave pairing is
favorable between van Hove density and full filling (triangular
lattice) and half-filling (honeycomb lattice), and chiral d-wave
(d + id) pairing is favorable at and very near van Hove density.
In Sec. IV, we discuss the behavior at the van Hove density. At
this point the superconducting and spin density wave channels
mix, so the system is described by a “parquet RG,” which we
present. Our discussion follows [25], but is substantially more
detailed, and we also extend the RG analysis to moderately
strong coupling. In Sec. V, we discuss the experimental
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FIG. 4. (Color online) Triangular lattice (a) and the correspond-
ing Brillouin zone in momentum space (b).

situation mostly focusing on doped graphene. We present our
conclusions in Sec. VI.

II. SYSTEMS ON A TRIANGULAR LATTICE

A. Fermi surface and fermionic dispersion

Consider a system of fermions on a triangular lattice
[Fig. 4(a)] with hopping t between nearest neighbors. The
Hamiltonian of free fermions is, in momentum space,

H2 =
∑

k

εkc
†
kck, (1)

where

εk = −4t cos
kx

2

(
cos

kx

2
+ cos

ky

√
3

2

)
− μ, (2)

and we set the interatomic spacing a to one. The Brillouin
zone (BZ) is a hexagon with corner points at (±4π/3,0) and
(±2π/3,2π/

√
3) [Fig. 4(b)].

The topology of the FS (FS) depends on the value of
the chemical potential μ. At μ < −8t all states are empty
at T = 0. At μ = −8t + δ, a small, near-circular FS opens
up at the center of the BZ [Fig. 5(a)]. As the chemical
potential gets smaller, the area of the FS increases and its
shape changes [Fig. 5(b)]. When μ = 0, the FS touches
the BZ boundary at six van Hove points (0,±2π/

√
3) and

FIG. 5. (Color online) Evolution of the FS with doping for
fermions on a triangular lattice: (a) μ slightly above −8t , (b) μ

approaching zero, (c) μ = 0. This is van Hove doping. The FS consists
of parallel pieces, which end at van Hove points where the density of
states diverges. (d) μ < t . The FS consists of disconnected pieces.

(±π,±π/
√

3) [Fig. 5(c)]. Simultaneously, the FS between any
nearest van Hove points becomes a straight line, i.e., the FS
contains parallel pieces (nesting) Once μ becomes positive, the
formerly singly connected FS decouples into 6 disconnected
pockets centered at the corners of the BZ [Fig. 5(d)]. At μ = t ,
the six FSs shrink to points at the BZ boundary at (± 4π

3 ,0) and
(± 2π

3 ,± 3π√
3
).

The van Hove points survive even if the hopping extends
beyond nearest neighbors. However, a flat FS acquires a finite
curvature once the hopping between second neighbors is added
(see also Ref. [18]).

B. The pairing interaction

Throughout this paper we assume that the bare interaction
between low-energy fermions is some short-range interaction
U (q), i.e., consider the interacting part of the Hamiltonian in
the form

Hint = −1

2

∑
Uα,β;γ,δ(k1,k2; k3,k4)a†

k1,α
a
†
k2,β

ak3,γ ak4,δ, (3)

where

Uα,β;γ,δ(k1,k2; k3,k4) = U (k1 − k3)δαγ δβδ, (4)

where α,β,γ,δ are spin indices. We will not make any
particular assumption about the form of U (q), i.e., will not
discuss how it is obtained from the original Coulomb repulsion,
except that we assume that U (q) is analytic and is largest at
q = 0. In an RG sense, U (q) can be understood as the effective
four-fermion static interaction, obtained after integrating out
high-energy fermions with energies between the bandwidth
W and 
, which is the fraction of the bandwidth, and
which sets the upper energy cutoff for our low-energy theory.
The screening by high-energy fermions does not give rise
to nonanalyticities, hence it is safe to consider U (q) as an
analytic function of q. We further assume that U (q) is small
compared to 
 and study pairing within perturbation theory
(not necessarily lowest order).

An instability in a particular pairing channel manifests
itself through the appearance of a pole at zero frequency
in the corresponding component of the vertex function
�α,β;γ,δ(k1,k2; k3,k4), which describes two-particle collective
bosonic excitations in a system of interacting fermions.
The vertex function incorporates multiple fermion-fermion
scattering processes at energies below 
, as well as the
Pauli principle, and constitutes the fully renormalized and
antisymmetrized four-fermion interaction (Fig. 6). We first
consider the pairing interaction to first order in U and then add
U 2 terms, which will account for Kohn-Luttinger physics.

FIG. 6. (Color online) The vertex function, whose poles deter-
mine the pairing instability, is the fully renormalized and antisym-
metrized interaction at zero total incoming and outgoing momenta.
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C. First order in U(q)

To first order in U (q), the vertex function coincides with
the antisymmetrized interaction

�α,β;γ,δ(k1,k2; k3,k4) = 1
2 [U (k1 − k3)δαγ δβδ

−U (k1 − k4)δαδδβγ ]. (5)

At weak coupling, the leading pairing instability occurs at
zero total momentum of a pair, and we set k1 = −k2 = k and
k3 = −k4 = k′. The part of � responsible for the pairing is
then

�α,β;γ,δ(k,k′) = 1
2 [U (k − k′)δαγ δβδ − U (k + k′)δαδδβγ ]. (6)

The vertex function can be further decoupled into spin-singlet
and spin-triplet channels as

�α,β;γ,δ(k,k′) = 1
4 {[U (k − k′) − U (k + k′)](δαγ δβδ

+ δαδδβγ ) + [U (k − k′) + U (k + k′)](δαγ δβδ

− δαδδβγ )}. (7)

We now make use of the identities∑
γ δ

(δαγ δβδ − δαδδβγ )(δγηδδξ−δδηδγ ξ ) = 2(δαηδβξ−δαξ δβη),

∑
γ δ

(δαγ δβδ + δαδδβγ )(δγηδδξ+δδηδγ ξ ) = 2(δαηδβξ+δαξ δβη)

(8)

to see that the singlet component of �α,β;γ,δ(k,k′) determines
the pairing instability in the spin-singlet channel with order
parameter �α,β (k) = iσ

y

αβ�(k), and the triplet component
of �α,β;γ,δ(k,k′) determines the pairing instability in the
spin-triplet channel with order parameter �α,β (k) = iσ

y
αγ σγβ ·

d(k)�(k), where d(k) is a unit vector that determines the
orientation of the triplet order parameter [31]. For definiteness,
we set d(k) to be antiparallel to z axis, then in the spin-triplet
channel �α,β(k) = σx

αβ�(k) (see Fig. 7).
Accordingly, we introduce

�s = 1
2 [U (k − k′) + U (k + k′)],

(9)
�t = 1

2 [U (k − k′) − U (k + k′)].

In rotationally invariant systems, each of these two interactions
can be further decoupled into orthogonal partial harmonics
with either even angular momentum (for �s) or odd angular
momentum (for �t ). For lattice systems with noncircular
FS, such decoupling is impossible and the maximum one
can do is to decouple the interaction into a discrete set
of representations for the corresponding space group. The
components from different sets are orthogonal to each other,

FIG. 7. (Color online) The pairing vertices for spin-singlet and
spin-triplet channels.

but each set still contains an infinite number of eigenfunctions
which are not orthogonal and do not decouple when we solve
for superconducting Tc.

Such decoupling into different discrete sets turns out to
be useful when all parts of the FS contribute about equally
to the pairing. Although all eigenfunctions in each subset
are technically of the same order, it turns out that the first
harmonics contribute most, such that one can truncate the
expansion by keeping only the lowest order terms, e.g.,
cos kx − cos ky for d-wave pairing in the cuprates or a ±
b cos 2θ for the gaps on electron pockets in Fe pnictides.
For fermions on a triangular lattice and μ near zero, the
problem, however, is different because the density of states
along the FS is maximized near van Hove points, which then
play the dominant role in the pairing (just like hot spots play
the dominant role in the weak coupling description of the
cuprates). If one attempts to compare the contribution to the
full � from different eigenfunctions from the same subset, one
finds that they all contribute nearly equally near such a “van
Hove” filling.

In this situation, it is advantageous to use a different
approach and restrict the pairing problem to a discrete set
of patches where the density of states is the largest and
the dimensional coupling constant is the largest (see Figs. 8
and 9). This is the approach which we take in this paper. For
fermions on a triangular lattice and near μ = 0, the density
of states is maximized in the regions near van Hove points.
There are six such regions (patches) on the FS (Fig. 8), but
only three are independent because the other three are related
to the first three by inverting the sign of the momentum,
and superconducting order parameters satisfy �(−k) = �(k)
for spin-singlet pairing and d(−k) = −d(k) for spin-triplet
pairing. The three hot regions are all equivalent in the sense
that 2kF for all three points differs by the reciprocal lattice
vector and the interaction at momentum Q connecting any

FIG. 8. (Color online) Patch model I assumes that the supercon-
ducting gap is concentrated in the shaded patches (a) van Hove
doping. The patches are centered at van Hove points: (b) and (c)
above and below van Hove doping, respectively; (d) for doping line
in (c), the model allows for symmetric and antisymmetric solutions
between points 1 and 1̄.
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(a)(a) (b)(b) (c)

FIG. 9. (Color online) Patch model II. At van Hove doping (a)
the patches are centered in between van Hove points: (b) and (c)
above and below van Hove doping, respectively. For a FS in the form
of disconnected pieces (c), the patches are located at the centers of
FS arcs.

two different hot regions is the same U (|Q|). Accordingly, we
define by U (0) the direct interaction within any of the patches,
by U (2kF ) the exchange (antisymmetrized) part of intrapatch
interaction with momentum transfer from kF to −kF , by U (Q)
the direct interaction between patches, and by U (Q + 2kF ) the
antisymmetrized part of the interpatch interaction. Because
there are intrapatch and interpatch interactions, we introduce
two different � in either singlet or triplet channel:

�(1)
s = �s(k,k) = 1

2 [U (0) + U (2kF )],

�(2)
s = �s(k,k + Q) = 1

2 [U (Q) + U (Q + 2kF )],
(10)

�
(1)
t = �t (k,k) = 1

2 [U (0) − U (2kF )],

�
(2)
t = �t (k,k) = 1

2 [U (Q) − U (Q + 2kF )].

We now introduce three order parameters �i , one for each
patch, and solve the 3 × 3 pairing problem:

λs�i = −�(1)
s �i − �(2)

s

∑
k �=i

�k,

(11)
λt�i = −�

(1)
t �i − �

(2)
t

∑
k �=i

�k

for the singlet and triplet channels, respectively. We obtain
three eigenfunctions in each channel:

λ(1)
s = −�(1)

s − 2�(2)
s , λ(2)

s = λ(3)
s = −�(1)

s + �(2)
s ,

(12)
λ

(1)
t = −�

(1)
t − 2�

(2)
t , λ

(2)
t = λ

(3)
t = −�

(1)
t + �

(2)
t .

For superconductivity, one needs at least one of these λ to be
positive. If all the λ are either negative or zero, the normal state
survives down to T = 0.

We will label this patch model as model I (Fig. 8). We will
also consider another patch model (patch model II), for which
we place patches in between van Hove points (see Fig. 9). This
second model is less relevant at van Hove filling but it is useful
at dopings when the FS splits into six disconnected segments
because the patches in the model II are located at the centers
of the FS segments.

1. Extended Hubbard model

We apply the results from the previous section to the model
with an interaction U (q) which extends up to second neighbors

on a triangular lattice. In momentum space,

U (q) = U0 + U1

(
cos qx + 2 cos

qx

2
cos

qy

√
3

2

)

+U2

(
cos qy

√
3 + 2 cos

3qx

2
cos

qy

√
3

2

)
, (13)

where U0, U1, and U2 are amplitudes of the on-site interaction
and interaction between first and second neighbors respec-
tively. We assume that U0 � U1 � U2, i.e., that the interac-
tion U (q) rapidly decreases at q comparable to interatomic
distances.

Using Eqs. (10)–(13), it is straightforward to obtain
eigenfunctions in each of the four channels at various fillings.
Because U (q) rapidly drops, we present only the leading
contributions to various λi (i.e., keep only the largest Ui). We
will see, however, that at least in one case, λi is only nonzero
because of U2.

a. Van Hove filling, μ = 0. For patch model I, the three
patches are centered at k1 = (0,− 2π√

3
), k2 = (π, π√

3
), and k3 =

(−π, π√
3
). The other three patches are centered at −ki . One

can easily make verify that for each of these ki , 2ki ≡ 2kF at
van Hove filling coincides with the reciprocal lattice vector. As
a result, the eigenfunctions in the spin-triplet channel vanish
identically. Meanwhile, in the spin-singlet channel, we have

λ
(1)
s,I = −3U0 − U1 − U2, λ

(2)
s,I = λ

(3)
s,I = −4(U1 + U2).

(14)

As long as all interactions are repulsive (Uj > 0), both
eigenvectors are negative, i.e., both spin-singlet channels are
repulsive. Note, however, that if the on site repulsion is
the strongest interaction but the first and second-neighbor
interactions are attractive (the case of overscreening by
high-energy fermions), the system becomes unstable towards
d-wave superconductivity.

The structure of the superconducting gap is shown in
Fig. 10(a). The eigenfunction λ(1)

s corresponds to an s-wave
solution (all �i are the same), the eigenfunctions λ(2)

s and λ(3)
s

describe two degenerate solutions, which we call d wave (d1

and d2) because if we formally extend the gap to the full FS,
we find that for the eigenfunctions corresponding to d1 and
d2 the gap changes sign four times as one circles the FS. The
gaps in the triplet channel vanish identically in patch model I
together with eigenvalues λ

(i)
t,I, and we do not show them.

For patch model II, the three patches are centered at k̄1 =
−(π,0), k̄2 = (π

2 , π
√

3
2 ), and k̄3 = (π

2 ,−π
√

3
2 ). The couplings

are nonzero in both spin-singlet and spin-triplet channels.
Setting U2 = 0 for simplicity, we obtain

λ
(1)
s,II ≈ −3U0, λ

(2)
s,II = λ

(3)
s,II = −U1,

(15)
λ

(1)
t,II = −4U1, λ

(2)
t,II = λ

(3)
t,II = −U1.

We see that all bare couplings are repulsive for positive
(repulsive) U0 and U1.

We show the structure of the superconducting gaps (the
eigenfunctions) in all six channels in Fig. 10(b). In the
spin-singlet sector, the eigenfunction corresponding to λ

(1)
s,II

is obviously s wave. The eigenfunctions corresponding to
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(a) (b)

(c)

FIG. 10. (Color online) (a) and (b) Structure of the superconduct-
ing gap in s-, p-, d-, and f -wave channels at van Hove doping in patch
models I and II, respectively. In the p-wave and d-wave channels,
the eigenvalues are doubly degenerate. (c) The structure of the gaps
in spin-triplet channels in patch model I at μ < 0, when the FS is
singly-connected and does not reach van Hove points.

λ
(2)
s,II = λ

(3)
s,II again change sign four times as one circles the

FS, and we keep calling them d wave. In the spin-triplet
sector, the eigenfunction for λ

(1)
t,II corresponds to an f -wave

solution [�i are the same for a triad separated by Q, but each
�i(−k) = −�i(k)], such that the gap changes sign six times
as one circles the FS. The eigenfunctions corresponding to λ

(2)
t,II

and λ
(3)
t,II change sign two times, as one circle the FS, and we

label them as p-wave solutions.
b. A smaller filling, μ < 0. We consider relatively small

deviations from van Hove filling, at which patch models
still make sense (see Fig. 8). For model I, the three patches
are now centered at k1 = (0,− 2√

3
(π − δ)), k2 = (π − δ,π−δ√

3
),

k3 = ( − (π − δ), π−δ√
3

), where δ � 1 and μ ≈ −2tδ2. Once δ

is nonzero, the couplings in the spin-triplet channel become
finite. We have

λ
(1)
t,I = −16U2δ

2, λ
(2)
s,I = λ

(3)
s,I = −(3U1 + U2)δ2. (16)

As long as U1 and U2 are positive (repulsive), the interactions
in both spin-triplet channels are repulsive, i.e, spin-triplet
superconductivity does not emerge. The interactions in spin-
singlet channels were repulsive for δ = 0 (for Ui > 0) and
remain so at a nonzero positive δ. The structure of the
superconducting gaps in spin-singlet channel does not change
from Fig. 10(a), but now there appear eigenfunctions in f and
p waves, corresponding to the eigenvalues in Eq. (16). We
show these eigenfunctions in Fig. 10(c).

For model II (Fig. 9), the patches are centered at k̄1 =
−(π − δ̄,0), k̄2 = (π+δ̄

2 ,
√

3
2 (π + δ̄)),k̄3 = (π+δ̄

2 ,−
√

3
2 (π +

δ̄)), and at −k̄i , where δ̄ = −2 arcsin [(
√

(t − μ)/t − 1)/2].
For μ < 0, δ̄ is negative. The couplings are given by (setting
U2 = 0)

λ
(1)
s,II ≈ −3U0,

λ
(2)
s,II = λ

(3)
s,II = −U1

2
[2 + cos 2δ̄ − cos δ̄(1 + 4 sin δ̄/2)],

(17)
λ

(1)
t,II = −4U1 cos2 δ̄/2(1 + sin δ̄/2)2,

λ
(2)
t,II = λ

(3)
t,II = −U1 cos2 δ̄/2(1 − 2 sin δ̄/2)2.

For δ̄ = 0, we reproduce (15). We see that all interactions
remain repulsive for arbitrary δ̄, as long as U0 and U1 are
positive. The structure of the eigenfunctions in s,d, and p

channels remains the same as in Fig. 10(b).
c. A larger filling, μ > 0. The situation becomes more

interesting at a larger filling, when the FS splits into six
pockets, each centered at the corner of the BZ. At small positive
μ = 2tδ2, one can still focus on patch model I with patches
near the van Hove points (0,− 2π√

3
), (π, π√

3
), and (−π, π√

3
),

but now each van Hove point splits into two FS points.
For example, k1 = (0,− 2π√

3
) splits into k1,+ = (2δ,− 2π√

3
) and

k1,− = (−2δ,− 2π√
3
). This splitting opens a possibility to

consider two types of solutions for the gaps in each patch:
a symmetric one, for which �k1,+ = �k1,− and antisymmetric
one, for which �k1,+ = −�k1,− . We label the corresponding λ

with additional subindices s and a.
A simple analysis shows that the expressions for the vertices

in spin-singlet and spin-triplet channels for symmetric and
antisymmetric solutions are obtained by replacing in Eq. (10):

U (0) → U (0) ± U (k1,+ − k1,−)

2
,

U (2kF ) → U (2k1+) ± U (k1,+ + k1,−)

2
,

(18)

U (Q) → U (k1,+ − k2,+) ± U (k1,+ − k2,−)

2
,

U (Q + 2kF ) → U (k1,+ + k2,+) ± U (k1,+ + k2,−)

2
,

where the upper (lower) sign is for the symmetric (antisym-
metric) solution.

For the symmetric solution, we have, formally keeping δ as
an arbitrary number between δ = 0 and δ = π/3, at which the
pockets disappear, and neglecting U2,

λ
(1,s)
s,I ≈ −3U0, λ

(2,s)
s,I = λ

(3,s)
s,I = −U1(cos δ + cos 2δ)2,

λ
(1,s)
t,I = 0, λ

(2,s)
t,I = λ

(3,s)
t,I = 0, (19)

where μ = 4t cos δ(1 − cos δ). The symmetric solutions for
�i in various channels for the model I are shown in Fig. 11.
For the f -wave solution, there are six zeros, one on each
disconnected segment of the FS. For each d-wave solution,
there are four nodes. For each p-wave solutions, there are two
nodes. The signs of λ’s in (19) are, however, such that at this
level no superconductivity emerges down to T = 0 when U0

and U1 are positive.
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FIG. 11. (Color online) The structure of superconducting gaps in
s-wave, f -wave, and two degenerate d-wave and p-wave channels
for the symmetric solution for the patch model I for μ > 0, when the
FS consists of six disconnected pieces. About the same solutions are
obtained in patch model II in s-wave and p-wave channels.

For the antisymmetric solution, we obtain, again
neglecting U2,

λ
(1,a)
s,I = 0, λ

(2,a)
s,I = λ

(3,a)
s,I = 0,

λ
(1,a)
t,I = −4U1 sin2 δ(1 + cos δ)2, (20)

λ
(2,a)
t,I = λ

(3,a)
t,I = −U1 sin2 δ(1 − 2 cos δ)2.

The structure of �i in various channels is shown in
Fig. 12. We keep calling the solutions s, p, d, and f waves,
although the number of zeros on the FS now depends
on whether the solution is symmetric or antisymmetric. In
particular, the antisymmetric f -wave solution has no nodes on
the FS (the nodes fall in between the Fermi pockets), while
one of the antisymmetric d-wave solutions has nodes on each
of six disconnected segments of the FS.

FIG. 12. (Color online) The same as in Fig. 11, but for the
antisymmetric solution for the patch model I. About the same
solutions are obtained in patch model II in f -wave and d-wave
channels.

FIG. 13. (Color online) The structure of the gap in s-, p-, d-,
and f -wave channels in patch model II at 0 < μ < t , when the FS
consists of six disconnected segments.

Like for the symmetric case, the couplings in (20) are
either repulsive or zero. In the formal limit δ = π/3, when
the FS segments shrink into points, we have negative λ

(1,a)
t,I =

−27U1/4 for the f -wave channel, however, the couplings in
s-, p-, and d-wave channels all vanish.

For patch model II, we have

λ
(1)
s,II ≈ −3U0,

λ
(2)
s,II = λ

(3)
s,II = −U1

2
[2 + cos 2δ̄ − cos δ̄(1 + 4 sin δ̄/2)],

(21)
λ

(1)
t,II = −4U1 cos2 δ̄/2(1 + sin δ̄/2)2,

λ
(2)
t,II = λ

(3)
t,II = −U1 cos2 δ̄/2(1 − 2 sin δ̄/2)2,

as in Eq. (17), but now μ > 0 and δ̄ =
2 arcsin [(1 − √

(t − μ)/t)/2] is positive. At δ̄ = π/3,
μ = t and FSs disappear.

We show the structure of eigenfunctions in various channels
in Fig. 13. Comparing these solutions with those in patch
model I and assuming that the system allows only symmetric
or antisymmetric solutions with respect to the former position
of van Hove points, we realize that the d-wave and f -wave
eigenfunctions in patch model II (corresponding to λ

(1)
t,II and

λ
(2,3)
s,II ) have the same structure as antisymmetric solutions in

patch model I (the ones for λ
(1,a)
t,I and λ

(2,a)
s,I = λ

(2,a)
s,I ), while

the eigenfunctions in s-wave and p-wave channels in patch
model II (corresponding to λ

(1)
s,II and λ

(2,3)
t,II ) have the same

structure as symmetric solutions in patch model I (the ones for
λ

(1,s)
s,I and λ

(2,s)
t,I = λ

(2,s)
t,I ). The eigenvalues are again generally

negative (repulsive), if U0 and U1 are positive, but vanish in
d-wave and p-wave channels when δ̄ = π/3, i.e., when the FS
shrinks to points.

The conclusion of the analysis in this section is that there
are multiple choices for the structure of the superconducting
gap for fermions on a triangular lattice. The “basic” symmetry
of the gap function is either s or p, or d, or f wave, but
the structure of the gap in each representation depends on
the choice of where the gap is maximized, what in our study
implies the choice of the patch model. The eigenvalues in
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various channels depend on the coordinate dependence of the
screened Coulomb interaction U (r). For repulsive interaction
U (r), which extends to second nearest neighbors, we found
that the bare couplings in all pairing channels (i.e., the
couplings to order U ) are repulsive, but some are either zero
or close to zero. The coupling in a conventional spin-singlet s-
wave channel is repulsive and of order of the on-site interaction
U0. The couplings in other channels vanish in the Hubbard
limit but are generally nonzero and repulsive in an extended
Hubbard model which includes interaction between nearest
and second nearest neighbors. In particular, in patch model I,
the couplings in the spin-singlet channel are repulsive at the van
Hove filing (μ = 0), but the ones in the spin-triplet channel
are strictly zero. At smaller fillings (negative μ), the bare
couplings in all channels are repulsive. At larger fillings, when
the FS is separated into six disconnected segments, the bare
f -wave coupling is zero for the symmetric solution, and the
bare d-wave coupling is zero for the antisymmetric solution.
(Again, we remind that although translation by reciprocal
lattice vectors can turn the six disconnected FS arcs into two
connected nearly circular pieces, we have chosen to work with
six disconnected arcs instead of two circles. The results are the
same either way.) For this last solution, the coupling in p-wave
channel gets smaller near full filling. In patch model II, the bare
couplings are also repulsive at a generic filling, but the ones in
d-wave and p-wave channels get smaller when the size of the
FS shrinks.

D. Kohn-Luttinger renormalizations

We now extend this analysis to second order in U and
include the renormalization of the pairing interaction by
fermions with energies below the theory cutoff 
. As noted
in the introduction, such analysis has been first performed by
Kohn and Luttinger (KL) for a 3D Fermi liquid with a generic
short-range interaction, and second-order contributions to the
pairing interactions are often called KL contributions. We will
use this notation.

One can argue that KL renormalization is relevant at weak
coupling only in a situation when the bare interaction is zero,
otherwise there is a repulsion to first order in U (q) and KL
terms cannot overcome it. This is generally true if U (q) is
asymptotically small. However, we will see that attractive
contributions to λ

(2,s)
s,I = λ

(3,s)
s,I and λ

(1,a)
t,I (symmetric d wave

and antisymmetric f wave, respectively) appear at the second
order in the on-site Hubbard interaction U0. The first-order
terms in these channels are repulsive, but are of order U1. If, as
it often happens, screened Coulomb interaction U (r) rapidly
drops with increasing r , we have U0 � U1. In this situation,
the second-order contribution in U0 becomes comparable to
O(U1) already within weak coupling, when the perturbative
approach is still valid (e,g., U 3

0 terms are small compared to
KL terms).

In the rest of this section, we compute O(U 2) terms near but
still at some distance from van Hove filling. Right at van Hove
filling, the KL U 2 terms contain logarithms that can only be cut
by external temperature, and higher-order terms in U contain
higher powers of divergent logarithms. In this situation, one
cannot restrict the analysis to terms second order in U and has
to sum up an infinite series of terms. We discuss van Hove

filling in more detail later in the paper, in Sec. IV. Here and
in the next section, we assume that logarithms are cut by a
nonzero |μ| and U (q) is small enough such that perturbation
theory is valid

The computation of the KL renormalization of the pairing
interaction is straightforward and has been discussed several
times in the literature (e.g., Ref. [32]). One has to dress the
bare interaction by the renormalization in the particle-hole
channel. Approximating U (q) by U0, one finds that only the
exchange diagram in Fig. 1 contributes. In this situation, the
renormalized interactions are

Uren(k − k′) = U (k − k′) + U 2
0 �(k + k′),

(22)
Uren(k + k′) = U (k + k′) + U 2

0 �(k − k′),

where �(q) = ∫
(d2ldω/(8π3)G(k,ω)G(l + q,ω) is the

particle-hole polarization bubble (defined with a positive sign).
For a circular FS in 2D, �(q < 2kF ) = m/(2π ).

To understand what KL terms do, it is sufficient to consider
the two limiting cases: (i) the case μ ≈ t , when disconnected
FS segments are about to disappear, and (ii) a small deviation
from van Hove point. To keep the presentation focused, we
will not consider in detail how KL renormalization affects
all possible channels, and instead will focus on the two most
obvious choices—a spin-triplet nodeless f -wave state near
μ ≈ t and doubly degenerate d-wave state near μ = 0. We
show that for both states, KL terms are attractive, of order
U 2

0 , and well may overshoot repulsive terms of order U1. We
checked KL renormalization in other channels and found that
they are not competitors to the two which we discuss below.

1. Near full filling

Near full filling, the most straightforward approach is to
consider patch model II in which patches are centered in
the middle of each FS segment. At μ � t , one can easily
make sure that there are only two relevant interactions Uren(0)
and Uren(2kF ), as if we define the corner BZ points as
k1 = (− 4π

3 ,0), k2 = ( 2π
3 , 3π√

3
), and k3 = ( 2π

3 , 3π√
3
), then ki − kj

is zero up to reciprocal lattice vector and ki + kj = 2ki , again
up to a reciprocal lattice vector. Then all we need to is to
compute �(0) and �(2kF ).

The fermionic dispersion within each segment can be
obtained by expanding near near the top of the band, i.e.,
for k = (− 4π

3 + lx,ly), the dispersion

ε(k) = (t − μ) − 3t

4
l2 −

√
3t

8
lx

(
l2
x − 3l2

y

) + . . . . (23)

Evaluating the particle-hole bubbles �(0) and �(2kF ), we find
that both the momentum integrals are dominated by small l,
where Eq. (23) is valid. The results are

�(0) ≈ 1√
3

1

πt
,

(24)

�(2kF ) = 1

2
�(0) +

√
3

54πt

(
t − μ

t

)
≈ 1

2
�(0).

The approximate factor of 2 difference between �(0) and
�(2kF ) can be easily understood. Indeed, �(0) is the sum of
contributions from all six segments of the FS. Its independence
on t − μ is the known result in 2D: after the frequency
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integration in �(0) = limq→0
∫

d2ldωG(l,ω)G(l + q,ω) the
smallness of the phase space precisely cancels the smallness
of the energy εl in the denominator. For �(2kF ), we find that
ε(l) and ε(l + 2kF ) are simultaneously small only in three FS
segments out of six. In the other three, if we choose l to be
on the FS, ε(lF + 2kF ) will be far from zero. For example, if
we choose 2kF = (− 8π

3 ,0), then ε(l) and ε(l + 2kF ) are both
small for l near ( 4π

3 ,0), (− 2π
3 , 2π√

3
), and (− 2π

3 ,− 2π√
3
), while

for l near (− 4π
3 ,0), ( 2π

3 , 2π√
3
), and ( 2π

3 ,− 2π√
3
), εl is small, but

ε(k + 2kF ) ≈ −9t . The contribution from these three corners
is then small in t − μ [the second term in �(2kF ) in (24)].

Using �(2kF ) ≈ (1/2)�(0), we obtain, keeping only terms
in U0,

Uren(0) = U0 + 1

2
U 2

0 �(0),

Uren(2kF ) = U0 + U 2
0 �(0), (25)

�0 = 1√
3πt

.

Substituting these Uren into the spin-singlet and spin-triplet
components of the vertex function and re-evaluating λi in
different channels, we find that the KL term gives a positive
(attractive) contribution of order U 2

0 �(0) to f -wave coupling:

λf = λ
(1)
t,II + 3

4
U 2

0 �(0) ≈ −27

4
U1 +

√
3

4π

U 2
0

t
. (26)

We see that the interaction in the f -wave channel in the
patch model II (same as in the antisymmetric f -wave channel
in patch model I) becomes attractive if the second-order
KL contribution from the on-site interaction U0 exceeds the
repulsive first-order contribution from the nearest-neighbor
interaction U1. We remind the reader that the antisymmetric
f -wave solution is the one in which the gap does not change
sign along a given FS segment but changes sign between
nearest FS segments.

Suppose that the KL contribution is larger than the bare
repulsion and the interaction in f -wave channel is attractive.
We then have Tc,f ∼ εF e−1/λ̄f , where εF ∼ t − μ, and λ̄ =
λf /(3

√
3πt) is the dimensionless coupling. We have, without

the U1 term, λ̄f = (1/12π2)(U0/t)2 ≈ 0.68(U0/W )2, where
W = 9t is the bandwidth. Note that Tc vanishes at μ = t due
to the vanishing prefactor. However, the coupling λ̄f remains
finite in this limit. This last result is a peculiarity of 2D where
the density of states on the FS does not depend on the value of
Fermi momentum.

One can easily extend the analysis to order O(t − μ) and
analyze how Tc,f evolves with decreasing μ. We found that the
f -wave coupling increases with increasing fermionic density.
Explicitly,

λ̄f = 1

12π2

(
U0

t

)2(
1 + 5

9

t − μ

t

)
. (27)

As a result, f -wave pairing gets stronger as one moves away
from full to van Hove filling [see Fig. 14(a)].

For completeness and for comparison of the couplings
between f -wave and d-wave channels later in the paper, we
computed the KL renormalization of the coupling λ

(2,s)
s,I for the

(c)

FIG. 14. (Color online) (a) and (b) The coupling constants in f -
wave and in d-wave channels as functions of the chemical potential
for fermions on a triangular lattice. (c) The transition temperatures for
f -wave and chiral d + id superconductivity. The coupling in f -wave
channel remains finite and positive at μ = t , when the FS disappears,
but Tc for f -wave vanishes because of vanishing prefactor. Near van
Hove doping, f -wave channel is already repulsive. As a result, Tc

for f wave is peaked in between μ = 0 and μ = t . The degenerate
d-wave channel has the largest coupling at van Hove doping, but
becomes repulsive at μ ≈ t . Whether the attractive regions in d-wave
and f -wave channels overlap depends on the interplay between KL
terms and the first-order terms coming from interaction between first,
second, and, possibly, further neighbors. Moreover, at intermediate
μ, SDW well may become the leading instability.

symmetric d-wave channel in patch model I. We found that
for this coupling, which we relabel as λd for clarity, KL terms
make the initially repulsive interaction even more repulsive.
Specifically,

λd = λ
(2,s)
s,I − 3

4
U 2

0 �(0) ≈ −
√

3

4π

U 2
0

t
< 0. (28)

2. Near van Hove filling

Continue first with the coupling in the f channel in patch
model II. Near van Hove doping, the expression for λf is

λf = λ
(1)
t,II + U 2

0

2
[�(0) + 2�(Q)

−�(2kF ) − 2�(Q + 2kF )]. (29)

For μ ≈ 0, all four �’s are different and have contributions
from low-energy fermions from different numbers of patches.
�(0) is the sum of contributions from low-energy fermions in
all six patches. For �(Q) and �(Q + 2kF ), such contributions
come from two patches, and for �(2kF ) the low-energy
contribution comes from only one patch. Away from the
immediate vicinity of van Hove filling, all individual low-
energy contributions are roughly of the same order. Then the
�(0) term is the largest (because of the largest number of
contributions), i.e., the U 2

0 term in λf is attractive and can
easily exceed a small repulsive bare term λ

(1)
t,II ≈ −4U1 [see

Eq. (17)]. As a consequence, the f -wave channel remains
attractive. However, right at van Hove filling this is no longer
the case because �(2kF ) diverges logarithmically, as ln 
/T ,
and overshoots �(0). The terms �(Q) and �(Q + 2kF )
diverge even more strongly, as ln2(
/T ), but the two are
identical at μ = 0 and cancel out in Eq. (29). As a result, the U 2

0
contribution to f -wave coupling in (29) is negative at μ = 0,
i.e., the coupling in the f -wave channel becomes repulsive
near van Hove filling. In Fig. 14, we combine the results for
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λf near van Hove and near full filling and sketch the behavior
of λf at fermionic densities between the two limits. We clearly
see that λf is nonmonotonic and has a maximum somewhere
between van Hove and full filling. The nonmonotonic behavior
of the coupling combined with the t − μ dependence of the
prefactor for Tc gives rise to a nonmonotonic behavior of the
onset temperature for f -wave pairing, as shown in Fig. 14.

We next analyzed patch model I, in which the gap is
concentrated near van Hove points. We found that the most
relevant KL contribution near van Hove filling is in the doubly
degenerate (symmetric) d-wave channel. The coupling in this
channel is

λd=λ
(2,s)
s,I +U 2

0

2
[−�(0) − �(2kF ) + �(Q) + �(Q + 2kF )],

(30)

and at small μ, λ
(2,s)
s,I ≈ −U1. The terms �(Q) and �(Q +

2kF ) are identical at μ = 0 and both diverge as log2 
/T ,
hence at small T the U 2

0 term definitely exceeds the bare
repulsion. Then λd > 0, i.e., the d-wave channel is attractive.

As has already been mentioned the presence of the
logarithms in the perturbation theory implies that one cannot
restrict oneself to the lowest order in perturbation theory
and has to sum an infinite series of KL-type corrections to
the pairing interaction. We discuss this in detail in Sec. IV.
The conclusion is qualitatively the same as the one obtained
from the lowest order calculation. Namely, the two d-wave
components are degenerate and attractive near van Hove
filling, and the corresponding Tc has a maximum value right at
van Hove filling (see, e.g., Refs. [25,27,32]. The superposition
of the two degenerate states can be chosen such that they are
related by time reversal. Below Tc, the system spontaneously
chooses one of the states in order to maximize condensation
energy and, by doing so, breaks time-reversal symmetry.

We combine the results for λd at small μ and at μ ≈ t and
sketch the behavior of d-wave coupling between van Hove and
full filling in Fig. 14(b). The comparison between this figure
and Fig. 14(a) shows that the system undergoes a transition
from d-wave to f -wave pairing at some distance from van
Hove doping [Fig. 14(c)]. At a truly weak coupling, Tc is the
largest right at van Hove filling.

Like we said, we analyzed other channels, i.e., symmetric
and antisymmetric p, symmetric f , and antisymmetric d

waves, and found that they are not competitors to symmetric d

and antisymmetric f channels. We also analyzed the pairing
at smaller fillings, when μ < 0. We found that the f -wave
channel again is the most attractive, because �(0) is the
largest. Hence, as filling decreases from the full one, the largest
attractive coupling evolves from f to d wave, and then again to
f wave. This agrees with the numerical study in Refs. [20,33].
We note that the f -wave gap for μ < 0, where the FS consists
of one piece, changes sign six times as one moves along
the FS.

III. FERMIONS ON A HONEYCOMB LATTICE

A similar but not identical behavior emerges in the KL
analysis of an interacting system of fermions on a honeycomb
lattice. This is what we analyze next.

FIG. 15. (Color online) A honeycomb lattice (a) and the corre-
sponding Brillouin zone in momentum space (b).

A. FS and fermionic dispersion

A honeycomb lattice is presented in Fig. 15. There are two
nonequivalent lattice sides, marked K and K ′ in the figure.
In a tight-binging model, fermions hop from one sublattice to
the other. The corresponding Hamiltonian in momentum space
is [34]

H2 = −
∑

k

[γka
†
kbk + γ ∗

k b
†
kak − μ(a†

kak + b
†
kbk)], (31)

where

γk = t

(
e−ikx + 2eikx/2 cos

ky

√
3

2

)
. (32)

It is convenient to define γk = εke
iφk , where

εk = |γk| = t

√
1 + 4 cos

3kx

2
cos

ky

√
3

2
+ 4 cos2

ky

√
3

2

(33)

and

cos φk = cos kx + 2 cos kx

2 cos ky

√
3

2

εk

, φ−k = −φk. (34)

The quadratic form is diagonalized by unitary transforma-
tion

ak = 1√
2
eiφk/2(ck + dk),

(35)

bk = 1√
2
e−iφk/2(ck − dk).

The excitation spectrum consists of two branches with
opposite signs of energy

H2 =
∑

k

[(εk − μ)d†
kdk − (εk + μ)c†kck]. (36)

At half-filling, μ = 0, the FS consists of 6 Dirac points
(±2π/3,±2π/(3

√
3)), (0,±4π/(3

√
3)) at which εk = 0. Only

two of these six Dirac points are inequivalent (the rest are
connected by reciprocal lattice vectors), but it is convenient
for our analysis to work keep track of excitations near all
six Dirac points. The same results are (of course) obtained if
we identify points that differ by a reciprocal lattice vector.
When filling either increases or decreases, 6 disconnected
segments of the FS open up. At 3/8 or 5/8 filling, when
|μ| = t , disconnected FS pieces merge. At these two fillings,
the excitation spectrum has six van Hove points at (±2π/3,0)
and (±π/3,±π/

√
3) and the FS obtained from (33) consists

of straight lines connecting van Hove points. The van Hove
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points are protected by topology and survive when hopping
extends beyond nearest neighbors. The nesting (FS in the form
of straight lines) survives when the hopping extends to second
neighbors, but gets destroyed by third and further neighbor
hoppings. At larger |μ|, the FS has one piece, centered in the
middle of the BZ. The size of the FS shrinks and it vanishes
at |μ| = 3t . This evolution is quite similar to the one in Fig. 5
for the triangular lattice.

For positive μ (filling above 1/2), the six disconnected FSs
are of electron type (the states inside the FS have smaller
energy than μ) and the FS centered at (0,0) is of hole type. For
negative μ, the situation is opposite. The cases of positive and
negative μ give identical results for superconductivity, and for
definiteness below we focus on μ > 0 when dk fermions have
a FS [see Eq. (36)].

B. The pairing interaction

We use the same general reasoning as in the previous
paragraph. Namely, we split the antisymmetrized interaction
into spin-singlet and spin-triplet components and further split
spin-singlet component into s wave (λ(1)

s ) and doubly degener-
ate d wave (λ(2)

s = λ(3)
s ) and split spin-triplet component into

f wave (λ(1)
t ) and doubly degenerate p wave (λ(2)

t = λ
(3)
t ). To

shorten the presentation and not to bother the reader with a
rederivation of the same results as in the previous section,
we only consider the range of doping where the FS consists
of six disconnected segments. We consider patch model I,
in which the pairing predominantly involves fermions from
momenta near where van Hove points are located at van Hove
doping. Like in the triangular case, we consider two types of
the solutions for the gap: the “symmetric” solution, in which
the gap remains of the same sign at the two ends when we
split each van Hove point into two, and the “antisymmetric”
one, in which the gap changes sign between the two split
van Hove points. In another parallel to the triangular case,
we also consider patch model II, in which we focus on the
middle points of the disconnected FS segments. We again find
that the solutions for the gap in the patch model II are similar
to the solutions of the antisymmetric model I in d-wave and
f -wave channels and to the solutions of the symmetric model
I in p-wave and s-wave channels.

The structure of the gap in various channels in these two
patch models is quite similar to that on the triangular lattice
(see Figs. 11–13), the only difference is that the FS for the
honeycomb lattice is rotated by 90◦ compared to that for
the triangular lattice. For this reason, we will not present
separate figures for the gap structures on a honeycomb lattice.

C. First order in U(q)

Like in the triangular lattice case, we consider the lattice
model with short-range interaction, which extends up to second
neighbors. The interaction is originally written in real space
in terms of lattice operators a and b. To re-express it in
terms of operators dk and d

†
k one needs to apply the unitary

transformation, i.e., include the phase factors. These phase
factors are often neglected in the literature. We will see,
however, that they play an important role in our case.

1. Extended Hubbard model

We consider the model with interaction up to second
neighbors. The on-site interaction potential involves fermions
from the same sublattice and phase factors cancel out for
incoming momenta k,−k and outgoing momenta p,−p:

H
(0)
int = −U0

2
(a†

k,αa
†
−k,βap,αa−p,β + b

†
k,αb

†
−k,βbp,αb−p,β )

= −U0

4
d
†
k,αd

†
−k,βdp,αd−p,β . (37)

Interaction between nearest neighbors involves fermions from
different sublattices, and phase factors do not cancel and have
to be kept [18]. We obtain

H
(1)
int = −U1

8
d
†
k,αd

†
−k,βdp,αd−p,βεk−p cos(φk−p − φk + φp).

(38)

Interaction between second neighbors again involves fermions
from the same sublattice and phase factors cancel out:

H
(2)
int = −U2

2
d
†
k,αd

†
−k,βdp,αd−p,β�(k − p),

(39)

�(q) = cos qy

√
3 + 2 cos

3qx

2
cos

qy

√
3

2
.

Like before, we assume U0 � U1 � U2 and will only keep
the leading term in the formulas for the eigenvectors.

a. Van Hove filling, μ = t . Consider first the patch model
I, which is centered at van Hove points. For a given triad
k1 = (−2π/3,0), k2 = (π/3,π/

√
3), and k3 = (π/3,−π/

√
3)

we have φki
= −π/3 (i = 1,2,3) and φki−kj

= π for i �= j .
Like in triangular case, there are only two different interactions
U (0) = U (2kF ) and U (Q) = U (Q + 2kF ), where Q = k1 −
k2. A simple calculation yields

U (0) = U0

2
+ 3U1

4
+ 3U2

2
,

(40)

U (Q) = U0

2
− U1

4
− U2

2
.

The interaction in the spin-triplet channel then vanishes
identically, and in spin-singlet channel, we obtain

λ(1)
s ≈ −3

U0

2
− U1 − U2, λ(2)

s = λ(3)
s = −U1 − U2. (41)

Both couplings are repulsive if Ui are all positive.
The patch model II at van Hove filling is cen-

tered at ±k̄1, ±k̄1, and ±k̄1, where k̄1 = (0,π/
√

3), k̄2 =
(−π/2,−π/(2

√
3)), and k̄3 = (π/2,−π/(2

√
3)). For this

model, the eigenvalues are nonzero in all channels. We
obtained

λ
(1)
s,II = −3

U0

2
, λ

(2)
s,II = λ

(3)
s,II = −U1

4
,

(42)

λ
(1)
t,II = −2U2, λ

(2)
t,II = λ

(3)
t,II = −3U1

4
.

Again, all eigenvalues are negative (repulsive), when all
Ui > 0.

b. Larger filling, μ > t . The analysis parallels the one for
fermions on a triangular lattice and we just list the results. The
patch model I is centered at (± 2(π−δ)

3 ,0) and (± (π−δ)
3 ,± (π−δ)√

3
),
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where δ is related to μ as μ = t
√

1 + 8 sin2 δ/2. The center
for each patch is the saddle point in the fermionic dispersion,
e.g., near k1 = (− 2(π−δ)

3 ,0),

εk1+k = −3(sin δ/
√

1 + 8 sin2 δ/2)kx,

− (3/2)((1 − 0.5 cos δ)/
√

1 + 8 sin2 δ/2)k2
y. (43)

The eigenvalues are

λ(1)
s = −3

U0

2
, λ(2)

s = λ(3)
s = −U1

4

(1 + cos δ)2

5 − 4 cos δ
,

(44)

λ
(1)
t = 0, λ

(2)
t = λ

(3)
t = −9U1

4

sin2 δ

5 − 4 cos δ
.

Observe that the coupling in the f -wave channel vanishes, i.e.,
individual contributions from U0, U1, and U2 all cancel out.

The patch model II is centered at (0,± (π+δ̄)√
3

) and

(± (π+δ̄)
2 ,± (π+δ̄)

2
√

3
), where δ̄ = −2 arcsin (μ − t)/2. The eigen-

values are

λ
(1)
s,II = −3

U0

2
, λ(2)

s = λ(3)
s = −U1

4
(1 + sin δ̄/2)2,

λ
(1)
t,II = −2U2 cos2 δ̄/2(1 + sin δ̄/2)2, (45)

λ
(2)
t,II = λ

(3)
t,II = −2U1

8
(1 + cos δ̄).

All bare couplings are again repulsive. Note, however, that
the coupling in the f -wave channel is proportional to the
second-neighbor interaction potential U2, i.e., it is smaller than
the repulsive couplings in other channels.

c. Smaller fillings 0 < μ < t . In this range of fillings, the
FS consists of 6 segments around Dirac points. For the patch
model II, the eigenfunctions are the same as in Eq. (45), only
now δ̄ is positive and varies between δ̄ = 0 at μ = t and δ̄ =
π/3 at μ = 0. The couplings are all repulsive, the smallest is
in the f channel, and this one varies between λ

(1)
t,II = −2U2 at

μ = 0 and λ
(1)
t,II = −27U2/8 at μ = t .

Like in the triangular lattice case, the solutions for the
gap for patch model I split into symmetric and antisymmetric
subclasses, which differ in the relative signs of the gaps at split
van Hove points (ki+ and ki−). The formulas for the couplings
are rather complicated due to the presence of phase factors
in the nearest-neighbor interaction and we do not present
them here. The key result is that the couplings are repulsive
in all channels except in symmetric spin-triplet channels
and antisymmetric spin-singlet channels, where individual
contributions of order U1 and U2 cancel out for all 0 < μ < t .
In technical terms, the cancellation holds between U (0) and
U (k1+ + k1−), between U (k1+ − k2+) and U (k1+ + k2,−), etc.

To summarize, we see that the couplings to order U (q) are
generally repulsive, although the one for the f -wave channel
in the model II (similar to the one in the antisymmetric f -wave
channel in model I) is only repulsive due to second-neighbor
U2 > 0. As a peculiarity of the honeycomb lattice, the coupling
in the symmetric spin-triplet f -wave channel vanishes for all
dopings, and the couplings in the symmetric p-wave channel
and antisymmetric s and d channels vanish for all 0 < μ < t .
The antisymmetric solution in the patch model I indeed only
makes sense when the FS consists of separate segments.

D. Kohn-Luttinger renormalizations

We now discuss the KL physics: the renormalization of
the interactions to second order in U . Like in the triangular
case, we search for the renormalizations coming from on-site
interaction as attraction and hope that a KL attraction at order
U 2

0 can overshoot a bare repulsion of order U1 or, even better,
U2. We again consider the two limiting cases: one close to
half-filling, when FS segments around Dirac points are small,
and the other near van Hove filling.

1. Near half-filling

We first consider patch model I and look into the channels
for which the couplings to order O(U0) vanish. These are
antisymmetric spin singlet and symmetric spin-triplet chan-
nels. If there was an attraction in any of these channels from
KL terms, the system would become a superconductor for
arbitrarily weak interaction U (q). We found, however, that this
does not happen. Namely, the KL renormalizations in these
particular channels involve the combinations of polarization
operators:

�(0) − �(k1+ + k1−),�(k1+ − k1−) − �(2k1+),

�(k1+ − k2+) − �(k1+ + k2−),�(k1+ − k2−)

−�(k1+ + k2+). (46)

A straightforward analysis shows that these combinations
are all zero. For example, for k1+ = (2π/3,δ/

√
3), k1− =

(2π/3,−δ/
√

3), where δ = 2 arccos (t − μ)/2t , εk1++k1−+q =
εq . and εk1+−k1−+q = ε2k1++q . Elementary analysis then shows
up that each of the terms in Eq. (46) vanishes. The implication
is that, in patch model I, the pairing interaction in these
particular channels vanishes to order U 2

0 and, we conjecture,
to all orders in U0. This vanishing is the consequence of
FS nesting, which is present as long as one neglects third
neighbor and longer range hopping. Hopping between third
neighbors breaks nesting and gives rise to nonzero couplings
in the antisymmetric spin singlet and symmetric spin-triplet
channels. The third neighbor hopping is, however, rather
weak, at least in graphene, and these pairing interactions,
even if attractive, are weak compared to interactions in the
antisymmetric f -wave and symmetric d-wave channels, which
we consider below.

Antisymmetric f -wave and symmetric d-wave channels
can be conveniently studied at small μ within patch model II,
and we now focus on this model. Like in the case of a
triangular lattice, there are two relevant interactions Uren(0) and
Uren(2kF ). Keeping only the U0 term we obtain, like before,

Uren(0) = U0

2
+ 1

4
U 2

0 �(2kF ),

Uren(2kF ) = U0

2
+ 1

4
U 2

0 �(0),
(47)

Uren(Q) = U0

2
+ 1

4
U 2

0 �(2kF ),

Uren(Q + 2kF ) = U0

2
+ 1

4
U 2

0 �(0),

where Q is approximately the distance between Dirac points.
Again, the polarization operator �(0) at zero momentum
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transfer is approximately two times larger than the one at
2kF because �(0) collects the contributions from low-energy
fermions from all six segments of the FS, while �(2kF )
collects low-energy contributions from three segments, and in
other three the momentum transfer by 2kF places a fermion
far away from the FS. As a result, the coupling in the f -wave
channel is

λf = λ
(1)
t,II + 3

8
U 2

0 [�(0) − �(2kF )]

≈ −27
U2

8
+ 3

16
U 2

0 �(0). (48)

We see that, like in the triangular case, the U 2
0 term in the

interaction is attractive [�(0) is positively defined]. Because
U0 � U2, the KL term overshoots the bare repulsion already
at weak coupling. Once this happens, the system becomes
unstable against f -wave pairing of the same type as Fig. 13.

There is one difference with the triangular case though. The
evaluation of �(0) yields [35]

�(0) = 2μ√
3πt2

+ O(μ2). (49)

In distinction to the case of a triangular lattice, the polarization
operator �(0) scales linearly with μ and vanishes right at
half-filling. This implies that f -wave attraction develops only
at some small but finite distance away from from half-filling,
when the KL attractions develops enough to overshoot the
first-order repulsion. An additional smallness at μ � t comes
from the fact that the actual parameter that appears in the
exponent in the BCS formula for Tc is the product of λ

(1,ren)
t,II

and the density of states at the FS. The latter also scales with μ:

NF = μ

3πt2
+ O(μ2). (50)

Introducing the dimensionless coupling λ̄ = λNF , we obtain
for the f -wave channel

λ̄f = − 9

8π

(
U2

t

)2(
μ

t

)
+

√
3

24π2

(
U0

t

)2(
μ

t

)2

. (51)

Superconducting Tc ∼ μe−1/λ̄f . At small μ/t , Tc is
vanishingly small, if not zero. However, at, say, U0 ∼ 6t (the
bandwidth) and μ � t the dimensionless coupling is λ̄f ≈
0.26 and Tc ∼ 10−3t , which is not small given that t ∼ 104 K.

There is an interesting peculiarity of f -wave pairing on
a honeycomb lattice: the gap has a nonvanishing angular
dependence at small μ. This follows from the fact that if one
calculates �(q) for Dirac fermions at small μ without ap-
proximating �(q) by �(0), we obtain a universal dependence
on q/kF :

�(q) = 2μ

π
√

3t2
f

(
q

kF

)
, (52)

where kF = 2μ/(3t). In the two limits, f (0) = 1 and f (2) =
3.66/π . In between, f (x) interpolates as shown in Fig. 16.
Because of this dependence, if we label by φ and φ′ the
angles specifying the locations of fermions on the FS’s
(−π/3 < φ,φ′ < π/3), the kernel in the gap equation relating
�(φ) and �(φ′) contains the function of cos(φ − φ′). A
symmetric in φ solution is then �(φ) = �(1 + α cos φ +

FIG. 16. (Color online) Scaling function f (q/kF ) in Eq. (52).
The limiting values are f (0) = 1 and f (2) = 3.66/π .

β cos2 φ + . . . ), where α, β, etc., are universal numbers
independent on μ.

We close this section with a word of caution. At second
order in U , the presence of the other branch of excitations [c
branch at negative energies in Eq. (36)] does not affect KL
consideration for two reasons. First, the interactions in d-c
basis do not contain terms with three d operators and one c

operator, hence there are no KL contribution with the bubbles
made out of one d and one c fermion. Second, the terms
with two c and two d fermions are present, but these contain
a polarization bubble made of two c fermions. The latter
vanishes because the bubble is identically zero for any positive
μ. However, at higher orders, diagrams of the type shown in
Fig. 17 do contribute. These diagrams contain pairs of polar-
ization bubbles, each made out of one c and one d fermion.
Such a bubble tends to a finite value at vanishing μ, hence
the dimensionless coupling from such term contains only one
power of μ (but higher power of U/t). Whether these terms
are friends or foes of f -wave superconductivity is unclear.

2. Near van Hove points

The consideration near van Hove points is essentially
identical to the one for fermions on a triangular lattice
and we only state the result: to order U 2

0 interaction in
symmetric d-wave channel in patch model I is attractive and is
logarithmically singular. The coupling in f -wave channel in
patch model II) is repulsive at this density. The behavior of λd

and λf at various densities is shown in Fig. 18 together with
the corresponding Tc.

As a consequence, within the KL approximation, the
strongest pairing instability at and near the van Hove points is
doubly degenerate d wave. Whether there is a direct transition
between f wave at smaller μ and d wave at μ ≈ t (and possible
co-existence of the two superconducting orders), or the system

FIG. 17. (Color online) An example of higher-order diagram,
which contributes to KL renormalization of the pairing interaction
near half-filling. Thin blue and thick red lines represent fermions from
the two branches with positive and negative energies, respectively.
The dashed line is the Hubbard interaction U (0).
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(c)

FIG. 18. (Color online) Fermions on a honeycomb lattice. (a) and
(b) Behavior of the leading eigenfunctions in f -wave and d-wave
channels as functions of the chemical potential for 0 < μ < t , when
the FS consists of six disconnected segments. (c) Behavior of Tc in
the two channels. The d-wave channel has the strongest instability
(largest Tc) near van Hove doping.

first loses d-wave order, remains normal down to T = 0 in
some range of μ � t and then becomes unstable towards
f -wave superconductivity, depends on details. An SDW order
at intermediate μ is also a possibility [18,27–29]. Numerical
study of the Hubbard model with only U0 interaction indicates
that superconductivity of one type or the other develops for all
μ < t . How the situation changes due to interaction between
further neighbors remains to be seen.

At even larger μ > t , the analysis of superconductivity
becomes less universal because the polarization operators
�(0), �(2kF ), �(Q), and �(Q + 2kF ) are all of the same
order and the interplay between them depends on the details
of the band structure. If �(q) drops rather fast with increasing
q, the f -wave channel again becomes attractive and wins over
other channels. If so, the system evolves from f to d wave and
then again to f -wave superconductor as μ increases. However,
the coupling gets smaller as μ increases, so the best chance
to detect f -wave superconductivity is to analyze the region
μ � t .

In the rest of the paper, we present more detailed analysis
of superconductivity and its interplay with other instabilities
near van Hove filling. Like we said, at van Hove doping the
polarization operators at all four relevant momenta diverge
logarithmically, either as ln 
/T or as ln2 
/T , and the
second-order KL analysis is not adequate.

IV. AT THE VAN HOVE POINT

When fermions on triangular or honeycomb lattices with
hopping between nearest neighbors are doped to the saddle
points of the dispersion, they display a nested FS (FS) and
a logarithmically divergent density of states (DOS), which
trigger instabilities to numerous strongly ordered states. It has
recently been shown using a RG calculation that the leading
instability in the presence of weak repulsive interactions is
to chiral d wave superconductivity. However, that calculation
only took into account the “corners” of the FS, which are
saddle points of the dispersion and dominate the DOS. Here,
we present the RG for the full FS.

We divide the FS up into corner regions (which are close
to a saddle point and dominate the DOS) and “edge” regions.
Ignoring the edges altogether corresponds to the RG from
Ref. [25]. Here, we will take the edge regions into account

also. Initially, we work within a leading log approximation
(valid in the weak coupling limit), and demonstrate that the
behavior of the FS edges mimics the behavior of the corners,
so that the full FS displays the same instability as the corners.
Thus, if the FS corners develop d-wave superconductivity, they
induce d-wave superconductivity on the rest of the FS also.

Next, we extend the calculations away from the limit of
weak coupling. Guided by our earlier analysis of the weak
coupling problem, we assume that it is sufficient to determine
the leading instability of the FS corners, since the rest of the FS
will be dragged along. We derive the one loop RG equations
for the corners, including correction terms coming from the
edge fermions. These corrections are subleading in logs,
however, they must be taken into account when interactions
are not weak. We show that whereas at weak coupling there
is only one stable fixed trajectory, above a critical coupling
strength a second stable fixed trajectory appears. Thus, at
weak coupling there is a unique instability (corresponding to
d-wave superconductivity), whereas above a critical coupling
strength there are two possible instabilities, with the nature of
the microscopic interactions determining which one develops.
The two instabilities are shown to correspond to d-wave
superconductivity and ferromagnetism, respectively.

A. The model

For definiteness, in thissection, we focus on a honeycomb
lattice. Fermions on a triangular lattice show the same be-
havior. We consider a system with nearest-neighbor hopping,
described by the dispersion given by Eq. (33). We focus on van
Hove filling at 5/8 density (a positive μ) and consider only the
band of low-energy fermions. We have

εk = −t

√
1 + 4 cos

ky

√
3

2
cos

3kx

2
+ 4 cos2

ky

√
3

2
− μ.

(53)

The saddle point corresponds to setting the chemical potential
μ = t. The FS takes the form of a hexagon inscribed within
a hexagonal BZ. The corners of the hexagonal FS are saddle
points of the dispersion, and dominate the DOS.

We split up the FS into three inequivalent corners (labelled
A, B, and C), and six inequivalent edges, labeled ±1,±2,±3
as shown in Fig. 19. Crystal momentum conservation strongly
restricts the allows scattering processes. The allowed scattering

M1

M1

M2M2

M3

M3

Q2

Q1

Q3

A

A

BB

C

C 2

-2

3

-3 -1

1

(a) (b)

FIG. 19. (Color online) (a) Shows hexagonal FS inscribed within
hexagonal BZ. The three inequivalent corners of the FS, M1,M2,M3

are saddle points of the dispersion and dominate the density of states.
The FS displays three nesting vectors Q1,Q2 and Q3. (b) The FS may
be split into corner regions A, B, and C and edge regions ±1,±2,±3.
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processes involving at least one fermion on edge 1 are
enumerated in the table below. The equivalent scattering
processes involving fermions on one of the other edges can
be deduced by symmetry. We also enumerate the inequivalent
corner-corner scattering processes involving corners A and B.
The processes involving corner C can again be deduced by
symmetry. Note that all these processes conserve momentum
up to a reciprocal lattice vector.

We now study the evolution of these various couplings
under perturbative RG. An RG framework is suitable for this
problem, because the interactions are marginal at tree level,
with ln corrections in perturbation theory. The presence of
a logarithmic van Hove singularity in the density of states
(DOS) means that the most divergent diagrams at n loop
order in perturbation theory diverge as ln2n 1

E
in the infrared.

The perturbation theory breaks down once g0 ln2 

E

∼ O(1),
where g0 is the bare coupling and 
 is the ultraviolet cutoff
for the theory. In the weak coupling regime g0 � 1, we
have ln 
/E� 1 at the limit of applicability of perturbation
theory. Therefore diagrams subleading in powers of ln 
/E

can be ignored, and we can concentrate our attention on the
most strongly divergent diagrams. In this limit, the leading
divergences can be resummed into a ln2 RG.

The perturbation theory for the full FS contains “corner-
corner” loops (taken into account in the patch model), and
also “edge-edge loops” and “corner-edge” loops (see Table I
for a list of all the allowed scattering processes). We find that
edge-edge and corner-edge loops are at most ln1 divergent.
Thus they can be safely ignored in the weak coupling limit,
but they can introduce ln1 corrections as we move away from
weak coupling. Moreover, corner-edge loops are suppressed
by a factor of 
/W , where W is the bandwidth (W ∼ 12 eV
in graphene), and we assume 
 � t. We therefore neglect
corner-edge loops throughout this paper. It thus follows that
the ln2 RG is controlled by corner-corner loops, with ln1

corrections coming from corner-corner and edge-edge loops.

We present the analysis in two sections: first, we calculate
the full FS RG in the weak coupling limit. In this limit, we
can neglect subleading logarithms and concentrate on the ln2

divergent diagrams, which come from corner-corner loops
only. We will show that in this limit the only instability is
to d-wave superconductivity. Next, we extend the analysis
away from weak coupling, by taking into account subleading
ln1 corrections. We will show that above a critical coupling
strength there appears a second instability, which corresponds
to ferromagnetism. There is also the possibility of a spin
density wave instability (SDW), but this requires us to stop
the RG at some scale, since if the RG is allowed to run
indefinitely some other instability ultimately overtakes the
SDW. This picture becomes even more diverse for the case
of strong nearest-neighbor interactions [36].

B. Full FS RG at weak coupling

The building blocks of the RG are particle-particle ladders
and particle-hole bubbles, evaluated at momentum transfer
zero and momentum transfer equal to a nesting vector. The
ladders and bubbles involving corner fermions were presented
in Ref. [25]. Here, we present ladders and bubbles involving
edge fermions.

For diagrams involving only edge fermions, the leading
divergence is logarithmic. There are no ln2 divergences
because there are no saddle points on the edge. The ln
divergences in edge-edge diagrams arise only in the Cooper
and Pierls channels, i.e., in the particle-particle ladder at zero
momentum, and in the particle-hole bubble at momentum
equal to one nesting vector. These take the form

�edge
pp (0) = 2cξ, �

edge
ph (Q) = 2cξ,

where c is a cutoff dependent nonuniversal prefactor of order
1 and we have defined the RG scale ξ = 1

2ν0 ln 

E

, which
is equal to one half the density of states at an energy E.

TABLE I. Table listing allowed scattering processes. Here, σ,σ ′ are spin labels, A, B, C label inequivalent saddle points (FS corners), and
±1,±2,±3 label FS edges. The allowed interactions are assumed to be short range (i.e., they are assumed to have no momentum dependence).

Corner-corner Incoming state Outgoing state Edge-edge Incoming state Outgoing state

g1 |(A,σ ),(B,σ ′)〉 |(B,σ ),(A,σ ′)〉 h1A |(1,σ ),(2,σ ′)〉 |(2,σ ),(1,σ ′)〉
g2 |(A,σ ),(B,σ ′)〉 |(A,σ ),(B,σ ′)〉 h1A |(1,σ ),(−3,σ ′)〉 |(−3,σ ),(1,σ ′)〉
g3 |(A,σ ),(A,σ ′)〉 |(B,σ ),(B,σ ′)〉 h1B |(1,σ ),(3,σ ′)〉 |(3,σ ),(1,σ ′)〉
g4 |(A,σ ),(A,σ ′)〉 |(A,σ ),(A,σ ′)〉 h1B |(1,σ ),(−2,σ ′)〉 |(−2,σ ),(1,σ ′)〉
Corner-Edge Incoming state Outgoing state h1C |(1,σ ),(−1,σ ′)〉 |(−1,σ ),(1,σ ′)〉
v1A |(1,σ ),(B,σ ′)〉 |(B,σ ),(1,σ ′)〉 h2A |(1,σ ),(2,σ ′)〉 |(1,σ ),(2,σ ′)〉
v1A |(1,σ ),(C,σ ′)〉 |(C,σ ),(1,σ ′)〉 h2A |(1,σ ),(−3,σ ′)〉 |(1,σ ),(−3,σ ′)〉
v1B |(1,σ ),(A,σ ′)〉 |(A,σ ),(1,σ ′)〉 h2B |(1,σ ),(−2,σ ′)〉 |(1,σ ),(−2,σ ′)〉
v2A |(1,σ ),(B,σ ′)〉 |(1,σ ),(B,σ ′)〉 h2B |(1,σ ),(3,σ ′)〉 |(1,σ ),(3,σ ′)〉
v2A |(1,σ ),(C,σ ′)〉 |(1,σ ),(C,σ ′)〉 h2C |(1,σ ),(−1,σ ′)〉 |(1,σ ),(−1,σ ′)〉
v2B |(1,σ ),(A,σ ′)〉 |(1,σ ),(A,σ ′)〉 h3 |(1,σ ),(1,σ ′)〉 |(−1,σ ),(−1,σ ′)〉
v3A |(1,σ ),(−1,σ ′)〉 |(B,σ ),(B,σ ′)〉 h4 |(1,σ ),(1,σ ′)〉 |(1,σ ),(1,σ ′)〉
v3A |(1,σ ),(−1,σ ′)〉 |(C,σ ),(C,σ ′)〉 h5 |(1,σ ),(−1,σ ′)〉 |(2,σ ),(−2,σ ′)〉
v3B |(1,σ ),(−1,σ ′)〉 |(A,σ ),(A,σ ′)〉 h5 |(1,σ ),(−1,σ ′)〉 |(−3,σ ),(3,σ ′)〉
v4 |(1,σ ),(B,σ ′)〉 |(−1,σ ),(C,σ ′)〉 h6 |(1,σ ),(−1,σ ′)〉 |(−2,σ ),(2,σ ′)〉
v4 |(1,σ ),(C,σ ′)〉 |(−1,σ ),(B,σ ′)〉 h6 |(1,σ ),(−1,σ ′)〉 |(3,σ ),(−3,σ ′)〉
v5 |(1,σ ),(B,σ ′)〉 |(C,σ ),(−1,σ ′)〉
v5 |(1,σ ),(C,σ ′)〉 |(B,σ ),(−1,σ ′)〉
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The above expressions assume perfect nesting. Imperfect
nesting may be dealt with by cutting off the growth of
�ph(Q) at some RG scale ξc, as discussed in Ref. [25].
All other edge-edge diagrams are convergent. Meanwhile, it
may be straightforwardly verified that all ladders and bubbles
constructed out of one corner fermion and one edge fermion are
suppressed by 
/W, where, we remind, W is the bandwidth
and 
 is the UV cutoff for the RG. The suppression arises
because a corner-edge pair can never be nested in any scattering
channel, and thus the phase space for these scattering processes
is strongly restricted. We assume 
/W � 1, which allows
us to neglect mixed corner-edge loops. Moreover, in the
weak coupling limit, ln2 divergent diagrams are much more
important than ln divergent diagrams, which also allows us to
neglect edge-edge loops. The resulting ln2 renormalizations
come only from diagrams with corner-corner loops. The RG
equations in the corner-corner sector are

dg1

dξ
= 2d1g1(g2 − g1),

dg2

dξ
= d1

(
g2

2 + g2
3

)
,

dg3

dξ
= −d0

[
(n − 2)g2

3 + 2g3g4
] + 2d1g3(2g2 − g1), (54)

dg4

dξ
= −d0

[
(n − 1)g2

3 + g2
4

]
.

Here, d0 and the d1 are functions of ξ and we have defined

d0(ξ ) = d�corner
pp (0)

dξ
= ξ + ξ0

2
,

(55)

d1(ξ ) = d�corner
ph (Q)

dξ
= ξ + ξ0

2
,

where perfect nesting is assumed. Imperfect nesting may be
dealt with by taking d1 < d0, as discussed in Ref. [25]. We
have also defined ξ0 = 1

2ν0 ln W/
, and we assume that the
UV cutoff 
 (and hence ξ0) is the same for d1 and d0.

Meanwhile, we find that for the edge-edge couplings,

dh1A(B)

dξ
= O(ξ 0),

dh1C

dξ
= −2v2

3Ad0 − v2
3Bd0 − 2v2

4d1 + O(ξ 0).

dh2A(B)

dξ
= O(ξ 0),

dh2C

dξ
= −2v2

3Ad0 − v2
3Bd0 + v2

4d1 + O(ξ 0),

dh3

dξ
= v2

5d1 − 2v2
4d1 + O(ξ 0),

dh4

dξ
= O(ξ 0),

dh5

dξ
= −v2

3d0 − 2v3Av3Bd0 + O(ξ 0),

dh6

dξ
= −2v3Av3Bd0 + O(ξ 0).

We emphasize that there are ln square divergences in the
β functions coming from corner-corner loops, because of
which d1 and d0 grow with ξ as d0,1 ∼ ξ . This allows us
to asymptotically neglect corrections to the β functions which
do not grow with ξ [denoted above as O(ξ 0) corrections].

Finally, for the corner-edge couplings,

dv1A(B)

dξ
= O(ξ 0),

dv2A(B)

dξ
= O(ξ 0),

dv3A

dξ
= −2v3A(g4 + g3)d0 − 2v3Bg3d0 + O(ξ 0),

dv3B

dξ
= −2v3Bg4d0 − 4v3Ag3d0 + O(ξ 0), (56)

dv4

dξ
= −4v4g3d1 + O(ξ 0),

dv5

dξ
= 2v5g2d1 + 2v4g1d1 + O(ξ 0).

We can now solve the system sequentially. First, we
solve the corner system in a leading log approximation.
The corner-corner couplings diverge along a fixed trajectory
with g1,2,3 → ∞,g4 → −∞ and |g4| > g3 > g2 � g1. We
can now determine what happens in the corner-edge coupling
space. It is convenient to define v+ = 2v3A + v3B and v− =
v3A − v3B . We find that v5 and v− are relevant and flow to +∞
(with v− > v5) whereas the rest of the corner-edge coupling
sector is irrelevant. Feeding this into the edge sector, we see
that

dh1C

dξ
= dh2c

dξ
= −2

3
v2

−d0,
dh3

dξ
= v2

5d1,

dh5

dξ
= 1

3
v2

−d0,
dh6

dξ
= 4

9
v2

−d0.

with the rest of the edge-edge sector being irrelevant. Thus we
see that h3,5,6 → ∞, h1C,2C → −∞ and all other edge-edge
couplings flow to zero.

We now wish to calculate the susceptibilities for the full
FS. In Ref. [25], we already analyzed the susceptibilities of
the corners. We now calculate the susceptibilities towards
various ordering types for the FS edges. We illustrate the
procedure by calculating the susceptibilities towards super-
conductivity. We introduce test vertices corresponding to
Cooper pairing at zero crystal momentum. There are six
vertices corresponding to six inequivalent ways of making
Cooper pairs �1−1,�−11,�2−2,�−22,�3−3,�−33,where it fol-
lows from Hermiticity that �1−1 = �∗

−11. We now calculate
the renormalization of these six test vertices under RG. This
is governed by a martix equation d�

dξ
= H�,where � is a six

component vector of test vertices and the matrix H is

H = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h2c h5 h6 h1C h6 h5

h5 h2C h5 h6 h1C h6

h6 h5 h2C h5 h6 h1c

h1C h6 h5 h2C h5 h6

h6 h1C h6 h5 h2C h5

h5 h6 h1C h6 h5 h2C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (57)

The most positive eigenvalue (corresponding to the
strongest instability), given the asymptotic values of the h

fields, happens for the eigenvectors (−1,0,1,−1,0,1) and
(1,−2,1,1,−2,1), which correspond to the two d-wave chan-
nels dxy and dx2−y2 . The eigenvalue 2(h1C + h2C − h5 − h6)
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is the exponent with which the d-wave superconducting
instability diverges.

An analogous analysis for SDW yields an exponent of
2(h1C + h2C). This is an exponent smaller than the corre-
sponding exponent for d-wave superconductivity. Thus SDW
is subleading to d-wave superconductivity even on the edges.

We thus obtain the pleasing result that when d-wave
superconductivity is the leading instability at the FS corners,
it is also the leading instability at the edges. Put another way,
the corners “pull” the edges along into the superconducting
phase.

C. RG away from weak coupling

We now extend the RG away from weak coupling. When
deriving the RG equations away from weak coupling, one must
keep track of ln and ln2 divergent terms. In the weak coupling
limit, the ln2 divergences are parametrically stronger, and
control the flow. However, when interactions are of moderate
strength, the phase transition can set in when ln is of order
one, at which point there is no distinction between ln and ln2

terms. Therefore, to determine the phase structure away from
weak coupling, we must keep track of ln and ln2 divergences.

As we have discussed, while ln2 divergences come from
corner-corner loops only, ln1 divergences arise also from edge-
edge loops. Corner-edge loops are parametrically supressed
by 
/t � 1, and may be ignored. We present the full RG
away from weak coupling in two steps. First, we analyze what
happens if we ignore edge fermions altogether. Then we put
the edge fermions back in.

D. Patch RG away from weak coupling

The RG equations for the corner-corner sector are obtained
by extending the approach developed for the square lattice
problem [37] to the number of patches n > 2. The number of
patches matters only in diagrams with zero net momentum in
fermion loops, since it is only there that we get summation
over fermion flavors inside the loop. In this manner, we obtain
the beta functions:

dg1

dξ
= 2d1g1(g2 − g1) + d2g1[2g4 + (n − 2)g1] − 2d3g1g2,

dg2

dξ
= d1

(
g2

2 + g2
3

) + 2d2
[
g1g4 + (n − 2)

(
g1g2 − g2

2

)
− g2g4

] − d3
(
g2

1 + g2
2

)
,

dg3

dξ
= −(n − 2)d0g

2
3 − 2d0g3g4 + 2d1g3(2g2 − g1),

dg4

dξ
= −(n − 1)d0g

2
3 − d0g

2
4 + d2

[
(n − 1)g2

1

+ 2(n − 1)
(
g1g2 − g2

2

) + g2
4

]
. (58)

Following the notations first introduced in Ref. [37] for RG
studies of the square lattice, we have defined

d0 = ∂�pp(Q)

∂ξ
= ξ0 + ξ

2
, d0 = ∂�ph(Q)

∂ξ
≈ ξ0 + ξ

2
,

d2 = ∂�ph(0)

∂ξ
= 1, d3 = ∂�pp(Q)

∂ξ
� 1, (59)

where ξ0 = 1
2ν0 ln 
0



and we have assumed perfect nest-

ing. We have allowed for the UV cutoff of our theory,

, being different from the scale at which the dispersion
changes, 
0.

There are two qualitatively different regimes. When the bare
interactions are weak at the UV scale, the RG does not flow to
strong coupling until a very large scale ξc, such that d2(ξc) �
1, d3(ξc) � 1. In this limit, the ln1 terms in the β functions
can be neglected, and the phase structure is controlled by
the ln2 divergent terms, i.e., we can set d2 = 0,d3 = 0. The
system of RG equations collapses onto the system studied in
Ref. [25], and the only possible phase that can result for the
corner fermions is d-wave superconductivity.

A qualitatively different behavior is obtained when interac-
tions are stronger. When the flow to strong coupling occurs for
ln ∼ O(1), there is no difference between ln and ln2 terms, and
both must be taken into account simultaneously. To understand
the behavior in this regime, we set d0 = d1 = d2 = d3 = 1.
This places ln2 and ln divergent terms on an equal footing.
Defining g′

i = dgi/dξ , we obtain the RG equations (for n = 3)

g′
1 = g1(2g4 − g1),

g′
2 = g2

3 − g2
1 + 2(g2 + g4)(g1 − g2),

(60)
g′

3 = g3(4g2 − 2g1 − 2g4 − g3),

g′
4 = 2g2

1 − 2g2
3 + 4g2(g1 − g2).

This has finite coupling fixed points along the line g1 =
g2 = g3 = 0 and also along the line g1 = g2 = g3 = 2g4. To
investigate the stability of these finite coupling solutions, we
consider small deviations from the fixed line, δgi , where i =
1,2,3,4. The flow of these small deviations is governed by
δg′

i = Kij δgj , where the matrix K is given by

K = 2

⎡
⎢⎢⎣

−g1 + g4 0 0 g1

g2 + g4 − g1 g1 − 2g2 − g4 g3 g1 − g2

−g3 2g3 −g3 + 2g2 − g1 − g4 −g3

2g1 + 2g2 g1 − 4g2 −2g3 0

⎤
⎥⎥⎦ . (61)

The fixed line is stable only if all the eigenvalues of K are
negative (or zero). However, K has at least one positive
eigenvalue for both g1 = g2 = g3 and g1 = g2 = g3 = 2g4,
therefore both fixed lines are unstable. The only stable fixed
points of the flow are at infinity.

To determine the possible fixed trajectories, we substitute
into Eq. (60) the scaling ansatz

gi(ξ ) = Gi

ξc − ξ
, (62)
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where ξc is the RG time at which the couplings diverge.
This turns the four coupled differential equations Eq. (60)
into four coupled algebraic equations, which can be solved on
mathematica. The equations are

G1 = G1(2G4 − G1),

G2 = G2
3 − G2

1 + 2(G2 + G4)(G1 − G2),
(63)

G3 = G3(4G2 − 2G1 − 2G4 − G3),

G4 = 2G2
1 − 2G2

3 + 4G2(G1 − G2).

The scaling equations (63) are solved most simply by G1 =
G2 = G3 = G4 = 0, however, this noninteracting fixed point
lies on the two fixed lines that were investigated above, and
which were found to be unstable. Therefore we can neglect
this trivial solution.

We find using mathematica that there are 13 distinct non-
trivial solutions of (63), corresponding to 13 different limiting
trajectories. However, not all of them can be accessed starting
from repulsive interactions. From Eq. (60), we note that the β

functions for g1 and g3 vanish when the respective couplings go
to zero. Thus these couplings cannot change sign, and we can
exclude any solution corresponding to negative values for g1 or
g3. Similarly, 2g′

2 + g′
4 ∝ 2g2 + g4, therefore the combination

of couplings 2g2 + g4 also cannot change sign, and we can
exclude any solution with 2g2 + g4 < 0. These conditions
allow us to eliminate nine of the thirteen solutions to leave us
with only four fixed trajectories that can be accessed starting
from repulsive interactions. The four solutions correspond to
values (G1,G2,G3,G4) = (0, 1

2 ,0,−1),(0, 1
6 , 1

3 ,− 1
3 ),( 1

2 , 1
4 ,0, 3

4 ),
or (3,−1,0,2).

We further want to determine which of these fixed trajec-
tories are stable. We therefore consider small deviations from
the fixed trajectory,

g(ξ ) = Gi

ξc − ξ
+ δgi. (64)

Substituting into Eq. (60) and linearizing, we obtain a flow
equation of the form (ξc − ξ )δg′

i = Kij δgj , where K is given
by Eq. (61) with gi → Gi .

Again, we want to use the matrix K to check the stability of
the fixed trajectories. However, the matrix K will now certainly

have at least one eigenvector with positive eigenvalue—the
eigenvector corresponding to flow along the fixed trajectory.
We want to exclude this direction from our stability analysis.
Therefore we project onto the subspace orthogonal to the
fixed trajectory by multiplying by the projection matrix P =
1 − (G1,G2,G3,G4) ⊗ (G1,G2,G3,G4)T . We then examine
the eigenvalues of the matrix KP . If this matrix has any
positive eigenvalues, then the fixed trajectory is unstable.
This stability analysis reveals that there are only two stable
fixed trajectories that can be accessed starting from repulsive
interactions, corresponding to two possible phases. These
fixed trajectories have critical couplings (G1,G2,G3,G4) =
(0, 1

6 , 1
3 ,− 1

3 ) and ( 1
2 , 1

4 ,0, 3
4 ), respectively. From a numerical

solution of the differential equations (60), we have confirmed
that the RG does indeed converge to one of these two fixed
trajectories.

It now remains to determine what the leading instability
is along each fixed trajectory. We consider pairing in all
channels, ln divergent as well as ln2 divergent (since we have
set d1 = d2 = d3 = d4 = 1, there is no difference between
these ordering channels). We now consider the susceptibility
towards developing a nonzero expectation value for every
possible fermion bilinear, i.e., particle-particle pairing and
particle hole pairing, at momentum transfer zero or momentum
transfer Q, in the spin singlet or spin triplet channel, and
with any possible structure in patch space. The various
susceptibilities are tabulated in Table II.

We observe that the two fixed points show very different
behavior. At the first fixed point, there are instabilities in
the (doubly degenerate) d-wave pairing channel, in the SDW
channel, and in the d-wave Pomeranchuk channel, with the
superconducting instability leading. Thus this fixed point is
adiabatically connected to the weak coupling fixed point,
which also exhibits a leading instability to (doubly degenerate)
d-wave superconductivity.

Meanwhile, at the second fixed point, there are instabilities
in the finite momentum pairing channel and in the SDW
channel, and also in the ferromagnet channel, with both s- and
d-wave symmetry. The leading instability is in the isotropic
(s-wave) ferromagnet channel. The resulting state breaks spin
rotation symmetry but preserves lattice rotation symmetry and

TABLE II. Susceptibilities to various kinds of order scale as (ξc − ξ )α , with α < 0 indicating an instability. We present here the
susceptibilities to various types of order at each fixed point, calculated for d1 = d2 = d3 = 1, i.e., no difference between ln and ln2 divergent
ordering channels. Here, c† is an electron creation operator, with a number subscript 1,2,3 indicating which patch the electron is created on,
and a subscript arrow labeling the spin state.

Ordering channel Verbal description Susceptibility exponent (0, 1
6 , 1

3 ,− 1
3 ) ( 1

2 , 1
4 ,0, 3

4 )

〈c1↑c1↓〉 = �1 = �2 = �3 s-wave SC 2(2G3 + G4) 2
3

3
2

〈c1↑c1↓〉 = �1 = −�3,�2 = 0 d-wave SC(doubly degenerate) 2(G4 − G3) − 4
3

3
2

〈c1↑c2↓〉 finite momentum pairing 2(G2 − G1) 1
3 − 1

2

〈c†1↑c2↓〉 SDW −2(G2 + G3) −1 − 1
2

〈c†1↑c2↑〉 CDW (2G1 − G2 + G3) 1
6

3
4

〈c†1↑c1↓〉 = �1 = �2 = �3 s-wave ferromagnet −2(G4 + 2G1) 2
3 − 7

2

〈c†1↑c1↓〉 = �1 = −�3,�2 = 0 d-wave ferromagnet (doubly degenerate) −2(G4 − G1) 2
3 − 1

2

〈c†1↑c1↑〉 = �1 = �2 = �3 charge compressibility 4G2 − 2G1 + G4
1
3

3
4

〈c†1↑c1↑〉 = �1 = −�3,�2 = 0 d-wave Pomeranchuk (doubly degenerate) G1 + G4 − 2G2 − 2
3

3
4
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translation symmetry. Such a ferromagnet state is natural to
expect in the vicinity of a van Hove singularity in the DOS.
However, it is only accessible for not too weak bare couplings.
In the limit of zero coupling strength, the leading instability is
the d + id superconductor.

E. Full FS RG away from weak coupling

Thus far we concentrated solely on the corner fermions.
We now put the edge fermions back in. We assume in the
interests of analytic tractability that the edge fermions are
in the same phase as the corner fermions (we demonstrated
this to be the case at weak coupling). The problem then
simplifies to determining the leading instability of the corner
fermions, taking into account the renormalizations arising
from the edge fermions. Assuming that d0 = d1 = d2 = d3 =
c = 1, so that all divergent diagrams in all channels are treated
on an equal footing, and corner-corner loops and edge-edge
loops are treated on the same footing also, we obtain β

functions for the corner-corner sector, which take the form

g′
1 = g1(2g4 − g1) − 2v2

5,

g′
2 = g2

3 − g2
1 + 2(g2 + g4)(g1 − g2) + v2

4,

g′
3 = g3(4g2 − 2g1 − 2g4 − g3) − 2v2

3A − 4v2
3B + v2

4 − 2v2
5,

g′
4 = 2g2

1 − 2g2
3 + 4g2(g1 − g2) − 4v2

3A − 2v2
3B. (65)

We make one final approximation. Namely, in the β

functions for the corner-edge couplings, we retain only ln2

divergent terms arising from corner-corner loops, and neglect
terms of O(ln1). The RG equations for the corner-edge
couplings are then given by Eq. (56). Again, we solve the
system sequentially. First, we solve for the g couplings.
Then we solve for the v couplings. Finally, we determine the
back-action of the v on the g couplings.

We note that the couplings v4 and 2v3A + v3B are always
irrelevant. The coupling v5 → ∞ is the only relevant corner-
edge coupling along the ferromagnetic trajectory, whereas the
couplings v5 and v− = v3A − v3B are both relevant along the
d-wave superconducting trajectory. Along the ferromagnetic
trajectory, neglecting the irrelevant couplings, we obtain

g′
1 ≈ g1(2g4 − g1) − 2v2

5,

g′
2 ≈ g2

3 − g2
1 + 2(g2 + g4)(g1 − g2),

(66)
g′

3 ≈ g3(4g2 − 2g1 − 2g4 − g3) − 2v2
5,

g′
4 ≈ 2g2

1 − 2g2
3 + 4g2(g1 − g2).

Thus, along the ferromagnetic trajectory, the corner-edge
couplings affect only the g1 and g3 couplings. They tend to
suppress the g1 coupling, thereby suppressing ferromagnetism,
and they can also drive g3 negative. If g3 changes sign, then a
number of other phases, such as s-wave superconductivity and
charge density waves, become possible. Thus the effect of edge
fermions can be quite marked along the ferromagnetic sector,
where they can alter the dominant phase from ferromagnetism
to something else, like CDW or s-wave superconductivity.
However, this will only happen if the effect of edge fermions
is sufficiently strong, which requires strong couplings.

Meanwhile, along the SCd trajectory, both v5 and v− =
v3A − v3B are relevant. The resulting equations, neglecting

irrelevant corrections, are

g′
1 = g1(2g4 − g1) − 2v2

5,

g′
2 = g2

3 − g2
1 + 2(g2 + g4)(g1 − g2),

(67)
g′

3 = g3(4g2 − 2g1 − 2g4 − g3) − 2v2
− − 2v2

5,

g′
4 = 2g2

1 − 2g2
3 + 4g2(g1 − g2) − 4

3v2
−.

Thus the edge fermions suppress g3, which suppresses SCd
and SDW equally, but they also make g4 more negative,
which strengthens superconductivity. Thus the effect of edge
fermions along the SCd trajectory is to strengthen supercon-
ductivity with respect to SDW. Of course, if couplings are
sufficiently strong that the edge fermions trigger a sign change
in g1, then an entirely new phase could arise. A CDW phase
would be the most likely candidate given a negative g1.

Thus we see that along the edge fermions can destabilise
the ferromagnetic trajectory towards other phases, like s-
wave superconductivity and CDW. Meanwhile, along the SCd
trajectory, edge fermions strengthen superconductivity with
respect to SDW. However, they can also induce formation of
a different kind of phase, such as a CDW.

F. Summary of the system behavior at the van Hove point

Thus we can make the following conclusions. (1) In the
weak coupling limit, the full FS RG reproduces exactly the
patch RG for the saddle points presented in Ref. [25]. The
entire FS enters the same phase as the FS corners, which
is a d-wave superconductor. (2) Once we move away from
weak coupling, the RG approach is no longer controlled,
and the neglect of higher loop diagrams can no longer be
justified. However, the procedure can still be applied, although
the results must be treated with caution. (3) Away from
weak coupling, a patch RG analysis that focuses purely on
the hexagon corners reveals two distinct instabilities: one to
d-wave superconductivity, and another to ferromagnetism. The
SDW is never the leading instability if the RG is allowed to run
indefinitely, but it may dominate if the RG is stopped at some
intermediate energy scale by higher loop effects or self energy
effects. The ferromagnetic phase is the principal new result
from extending the patch RG to strong coupling. (4) The effect
of the edge fermions at strong coupling can also be estimated.
Along the ferromagnetic trajectory, the edge fermions suppress
ferromagnetism, and may destabilize it in the strong coupling
limit towards a different phase, like a CDW or an s-wave
superconductor. Meanwhile, along the SCd trajectory, the edge
fermions strengthen SCd with respect to SDW, but they may
destabilise SCd at strong coupling towards another phase, such
as a CDW.

Note, however, that although van Hove singularities arise
rather generically (see, e.g., Ref. [38]), for most of them the
divergence in the density of states either is not accompanied
by Fermi surface nesting, due to, e.g., the presence of longer-
range hybridization, or the nesting vector is not one half of a
reciprocal lattice vector. In these cases, the physics differs quite
substantially from the discussions in this paper. For further
details see, e.g., Refs. [39–41].

144501-20



SUPERCONDUCTIVITY FROM WEAK REPULSION IN . . . PHYSICAL REVIEW B 89, 144501 (2014)

V. EXPERIMENTAL OUTLOOK

Despite its rapid development in recent years, the inves-
tigation of unconventional superconductivity in systems on
hexagonal lattices is still at an early stage [18]. A core
challenge for hexagonal scenarios in general is to identify
whether superconductivity is of electronic origin. Because
many hexagonal systems exhibit a strong propensity to lattice
distortions, phonon mediated s-wave superconductivity is
often a valid competitor.

With respect to electronically mediated superconductivity,
one primary direction is a search for a potential chiral d-wave
pairing in graphene doped to the van Hove point [25,27,28,32].
Such doping can be reached by chemical means, as Ref. [42]
has demonstrated. It will be revealing to conduct low-
temperature transport experiments capable of detecting su-
perconductivity on these samples. Given the large amounts
of disorder introduced by chemical doping, however, it is not
clear that superconductivity should arise in chemically doped
graphene. Alternative doping techniques, such as ionic liquid
gating, which introduce less disorder, have not yet succeeded
in reaching van Hove filling.

However, as elaborated on in our paper and also in earlier
publications [20,27], even well away from the van Hove point,
there is a possibility for triplet (f -wave) superconductivity.
Thus another primary direction is fabrication of materials that
are doped less that all the way to the van Hove point, but
have a smaller amount of disorder. Low-temperature transport
experiments on such samples are highly desirable.

With ongoing material research fostering the hope for
further compounds to arise, there are already several promising
hexagonal systems exhibiting unconventional superconductiv-
ity which might be describable along the analysis laid out in
this paper. An interesting candidate material is SrPtAs [43],
where preliminary experimental evidence indicates a nonzero
magnetic moment below Tc, combined with the absence of
line nodes. In particular, nuclear resonance experiments seem
to be consistent with chiral d-wave superconductivity [44].

Organic charge-transfer complexes such as the Bechgaard
salts [33,45], the layered triangular superconductors κ-(BEDT-
TTF)2X [46], and the water-intercalated sodium cobal-
tates [39,47] are triangular lattice compounds, which, accord-
ing to our study, should also display d-wave and f -wave super-
conductivity at different dopings. While the interaction over
bandwidth ratio is rather high in these materials, the insights
from Kohn-Luttinger and parquet-RG considerations, favoring
unconventional superconductivity, might still be valuable.

Artificial hexagonal optical lattices loaded with fermionic
isotopes of ultracold atomic gases could establish another
realization in nature of the scenarios we describe in this paper.
While the challenge is to reduce the effective temperature
T/TF to make the Fermi surface instabilities accessible, all
other parameters are likely to be easily matched with an outset
that tends to exhibit unconventional superconductivity [48].

VI. CONCLUSIONS

We have studied the emergence of superconductivity in
hexagonal lattice systems (both honeycomb and triangular)
over a wide range of doping levels. Away from van Hove

doping, the Kohn-Luttinger framework provides a satisfactory
formalism for investigating the emergence of superconduc-
tivity. Superconductivity arises if the attraction generated in
a particular channel at second order in perturbation theory
exceeds the bare repulsion in the corresponding channel. Thus
Kohn-Luttinger superconductivity at generic doping levels in a
hexagonal lattice system is a threshold phenomenon, and more-
over depends on the details of the lattice scale interactions. We
find that in a pure Hubbard model, superconductivity arises
very generally, whereas including further neighbor interactions
disfavors superconductivity. However, we also find that, if
superconductivity does arise at a generic doping, it is likely to
be in the f -wave channel. Thus hexagonal lattice systems
are expected to provide a good platform for the f -wave
superconductivity, which as far as we know has never yet
been observed.

Meanwhile, close to van Hove filling, the Kohn-Luttinger
formalism is inadequate, owing to the divergence of pertur-
bation theory, and also because of the nesting of the Fermi
surface, which strongly couples the particle-particle and parti-
cle hole channels. We have constructed and analyzed a parquet
RG, which provides an asymptotically exact description of the
physics at weak coupling. The parquet analysis introduced in
this paper includes the full Fermi surface in the calculation,
unlike [25], which concentrated on the parts of the Fermi
surface close to the saddle points. The full Fermi surface
parquet RG confirms the conclusions of Ref. [25], establishing
that the weak coupling physics is highly universal, with any
choice of bare repulsive interactions producing an instability
to doubly degenerate d-wave superconductivity. Moreover, the
feedback of particle hole channels into the particle-particle
sector ensures that the critical temperature is strongly enhanced
over the Kohn-Luttinger estimates. Meanwhile, extending the
analysis away from weak coupling, we find that the main com-
petitors to superconductivity if interactions are not that weak
are ferromagnetism, or, potentially, charge density waves.

We expect the ideas laid out in this paper will be relevant
for all investigations of superconductivity in hexagonal lattice
systems. We note in particular that chiral d-wave supercon-
ductivity may already have been observed in SrPtAs [43], in
the vicinity of van Hove doping. We hope that other ideas
discussed above, such as f -wave pairing away from van Hove
doping, will also be observed in the not too distant future.

Note added. It was brought to our attention after the
completion of this work that the emergence of f -wave triplet
pairing on a triangular lattice was also discussed in Ref. [49]
in the context of superconductivity in Na0.35CoO2.1.3H2O.
These authors included terms of order U 3 and argued that
these terms increase Tc for f -wave pairing.
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