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Quantitative characterization of the spin-orbit torque using harmonic Hall voltage measurements
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Solid understanding of current induced torques is a key to the development of current and voltage controlled
magnetization dynamics in ultrathin magnetic heterostructures. To evaluate the size and direction of such torques,
or effective fields, a number of methods have been employed. Here, we examine the adiabatic (low-frequency)
harmonic Hall voltage measurement that has been used to study the effective field. We derive an analytical
formula for the harmonic Hall voltages to evaluate the effective field for both out of plane and in-plane magnetized
systems. The formula agrees with numerical calculations based on a macrospin model. Two different in-plane
magnetized films, Pt|CoFeB|MgO and CuIr|CoFeB|MgO are studied using the formula developed. The effective
field obtained for the latter system shows relatively good agreement with that estimated using spin torque
switching phase diagram measurements reported previously. Our results illustrate the versatile applicability of
harmonic Hall voltage measurement for studying current induced torques in magnetic heterostructures.
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I. INTRODUCTION

Application of current to systems with large spin-orbit
coupling in bulk or at interfaces may result in spin current
generation and/or spin accumulation via the spin Hall effect
[1–3] or the Rashba-Edelstein effect [4,5]. When spin current
is generated in neighboring nonmagnetic (NM) layer(s) via
the spin Hall effect, such spin current can diffuse into the
ferromagnetic (FM) layer and exert torque on the moments via
spin transfer torque [6,7]. Alternatively, spin accumulation can
take place at the NM|FM interface via the Rashba-Edelstein
effect (i.e., current induced spin polarization). Accumulated
spins at the interface can force the moments to change its
direction by direct exchange coupling [8,9]. These effects
are referred to as the “spin-orbit torques” [9–15], which is to
be distinguished from conventional spin transfer torque since
the spin-orbit coupling plays a critical role in generating spin
current and spin accumulation.

Spin-orbit torques are attracting great interest as they can
lead to magnetization switching in geometries which were
not possible with conventional spin transfer torque [16,17]
and unprecedented fast domain wall motion [18,19]. Solid
understanding of how these torques arise is thus essential
for developing devices utilizing spin-orbit effects in ultrathin
magnetic heterostructures.

Recently, it has been reported that an adiabatic (low-
frequency) harmonic Hall voltage measurement, originally de-
veloped by Pi et al. [20], can be used to evaluate the “effective
magnetic field” [20–22] that generates the torque acting on the
magnetic moments [23–25]. This technique has been used to
evaluate the size and direction of the effective field in magnetic
heterostructures. Using such technique, we have previously
shown that the effective field shows a strong dependence
on the thickness of Ta and CoFeB layers in Ta|CoFeB|MgO
heterostructures [23]. The difference in the sign of the spin
Hall angle between Ta and Pt has been probed and reported
recently [25]. It has also been shown that there is a strong
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angular dependence (the angle between the magnetization and
the current flow direction) of the effective field in various
heterostructures [24]. Nonlocal effects, i.e., spin current
generated in a Pt layer can propagate through a Cu spacer and
exert torques on the magnetic layer, have been probed using
a similar technique [26]. These results show that the adiabatic
harmonic Hall voltage measurement is a useful tool to study
spin-orbit torques in ultrathin magnetic heterostructures.

The effective fields evaluated using different techniques
vary, in some cases, by orders of magnitude [17,20–22]. It is
thus important to examine the accuracy of the characterization
method used. With regard to the adiabatic harmonic Hall
measurements, its application to in-plane magnetized systems
has been limited, primarily due to the difficulty in obtaining
one of the two components (i.e., the dampinglike term) of
the effective field. To address these issues, here we derive an
analytical formula that describes the harmonic Hall voltages
and compare it to numerical calculations based on a macrospin
model to test its validity. We extend our approach, which
was previously limited to evaluate out-of-plane magnetized
samples, to characterize in-plane magnetized systems. The
formula developed is applied to two different in-plane mag-
netized systems, Pt|CoFeB|MgO and CuIr|CoFeB|MgO. The
effective field obtained for the latter system agrees with that
estimated using spin torque switching phase diagrams [27].

II. ANALYTICAL SOLUTIONS

A. Modulation amplitude of the magnetization angle

When current is passed to the device under test, current
induced effective field �HX,Y,Z , including the Oersted field,
can modify the magnetization angle from its equilibrium value
(θ0, ϕ0). This section describes how this current induced
modulation of the magnetization angle, termed the modulation
amplitudes (�θ,�ϕ) hereafter, is analytically derived. The
final results are given in Eqs. (14) and (15).

The magnetic energy of the system can be expressed as

E = −KEFF cos2 θ − KI sin2 ϕ sin2 θ − �M · �H, (1)
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FIG. 1. (Color online) Schematic illustration of the experimental
setup. A Hall bar is patterned from a magnetic heterostructure
consisting of a nonmagnetic metal layer (gray), a ferromagnetic
metal layer (blue), and an insulating oxide layer (red). The large gray
square is the substrate with an insulating oxide surface. Definitions
of the coordinate systems are illustrated together. �M denotes the
magnetization and �H represents the external field.

where θ and ϕ are the polar and azimuthal angles, respectively,
of the magnetization �M (see Fig. 1 for the definition), defined
as

�M = MSm̂,m̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) , (2)

Ms is the saturation magnetization, m̂ is a unit vector
representing the magnetization direction. The direction of the
external magnetic field �H is expressed using its polar and
azimuthal angles (θH , ϕH ) as

�H = H (sin θH cos ϕH , sin θH sin ϕH , cos θH ) . (3)

KEFF is the effective out of plane anisotropy energy and KI

is the in-plane easy axis anisotropy energy. KEFF and KI

can be expressed as the following using the demagnetization
coefficients Ni (

∑
i=X,Y,Z Ni = 4π ) and the uniaxial magnetic

anisotropy energy KU :

KEFF = KU − 1
2 (NZ − NX) M2

S,

KI = 1
2 (NX − NY ) M2

S . (4)

KU is defined positive for out of plane magnetic easy axis.
We use the convention of polar coordinates (0 � θH � π and
0 � ϕH � 2π ) here.

The equilibrium magnetization direction (θ0, ϕ0) is calcu-
lated using the following two equations:

∂E

∂θ
= 0 = (KEFF − KI sin2 ϕ0) sin 2θ0

−MSH [cos θ0 sin θH (cos ϕ0 cos ϕH

+ sin ϕ0 sin ϕH ) − sin θ0 cos θH ], (5)

∂E

∂ϕ
= 0

= −KI sin2 θ0 sin 2ϕ0 − MSH sin θ0 sin θH sin(ϕH − ϕ0).
(6)

Equations (5) and (6) can be solved to obtain (θ0, ϕ0). To
simplify notations, we define

HK ≡ 2KEFF

MS

, HA ≡ 2KI

MS

. (7)

The modulation amplitudes (�θ,�ϕ), i.e., the change in
the magnetization angle from its equilibrium value (θ0, ϕ0)
due to the effect of current induced effective field � �H , are
given by [24,28]

�θ = ∂θ

∂HX

�HX + ∂θ

∂HY

�HY + ∂θ

∂HZ

�HZ, (8)

�ϕ = ∂ϕ

∂HX

�HX + ∂ϕ

∂HY

�HY + ∂ϕ

∂HZ

�HZ. (9)

Here, ∂θ
∂Hi

and ∂ϕ

∂Hi
represent the degree of change in the

angles when �Hi is applied. Throughout this paper, subscript
i denotes the i(=X,Y,Z) component of the corresponding
vector. (�Hi does not necessarily have to be current related
fields, but here it is understood as the current induced fields
including those due to spin-orbit torques and the Oersted
field.)

To calculate ∂θ
∂Hi

and ∂ϕ

∂Hi
, we use the following relations

derived from Eqs. (5) and (6):

∂

∂Hi

(
∂E

∂θ

)
= 0 = [(KEFF − KI sin2 ϕ0)2 cos 2θ0 − MS (−HX sin θ0 cos ϕ0 − HY sin θ0 sin ϕ0 − HZ cos θ0)]

∂θ

∂Hi

+ [−KI sin 2θ0 sin 2ϕ0 − MS cos θ0 (−HX sin ϕ0 + HY cos ϕ0)]
∂ϕ

∂Hi

− MSfi, (10)

∂

∂Hi

(
∂E

∂ϕ

)
= 0 = [−KI cos θ0 sin 2ϕ0 + MS cos θ0 (HX sin ϕ0 − HY cos ϕ0)]

∂θ

∂Hi

+ [−2KI sin θ0 cos 2ϕ0 + MS sin θ0 (HX cos ϕ0 + HY sin ϕ0)]
∂ϕ

∂Hi

+ MSgi, (11)

where

�f = [cos θ0 cos ϕ0,cos θ0 sin ϕ0,− sin θ0], �g = [sin θ0 sin ϕ0,− sin θ0 cos ϕ0,0].

The coupled equations (10) and (11) can be solved for ∂θ
∂Hi

and ∂ϕ

∂Hi
, which reads

∂θ

∂Hi

= 1

F1
(fi − Cgi) , (12)
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∂ϕ

∂Hi

= 1

F1F2

{
fi

[
1

2
HA sin 2θ0 sin 2ϕ0 − cos θ0 (HX sin ϕ0 − HY cos ϕ0)

]
− gi

[
(HK − HA sin2 ϕ0) cos 2θ0 + �H · m̂

]}
, (13)

F1 ≡ (HK − HA sin2 ϕ0) cos 2θ0 + �H · m̂ − C

[
1

2
HA sin 2θ0 sin 2ϕ0 − cos θ0 (HX sin ϕ0 − HY cos ϕ0)

]
,

F2 ≡ −HA sin2 θ0 cos 2ϕ0 + (HX cos ϕ0 + HY sin ϕ0) sin θ0,

C ≡ 1

F2

[
1

2
HA sin 2θ0 sin 2ϕ0 − cos θ0 (HX sin ϕ0 − HY cos ϕ0)

]
.

To obtain a simplified expression for �θ and �ϕ, we
make the following assumptions that are usually satisfied
in the experiments. First, we consider |HA| � |H sinθH |, a
requirement which is, in general, met since in-plane magnetic
anisotropy is small for many material systems. (Since HA

includes shape anisotropy, high aspect ratio nanowires may not
satisfy this condition.) Assuming |HA| � |H sinθH | in Eq. (6)
gives ϕ0 = ϕH , which simplifies many expressions. Next, we
assume that the in-plane component of the external field H

is directed along (or close to) one of the Cartesian coordinate
axes (along x or y axis). Fixing the external field (and thus the
magnetization direction because of the previous assumption)
along one of the high-symmetry axes considerably simplifies
many of the expressions (see Appendix for the details).

With these assumptions and substitution of Eqs. (12)
and (13) into Eqs. (8) and (9), we obtain the following ex-
pressions for the modulation amplitudes of the magnetization
angle (for ϕH along the x and y axes):

�θ = cos θ0 (�HX cos ϕH + �HY sin ϕH ) − sin θ0�HZ

(HK − HA sin2 ϕH ) cos 2θ0 + H cos (θH − θ0)
,

(14)

�ϕ = −�HX sin ϕH + �HY cos ϕH

−HA sin θ0 cos 2ϕH + H sin θH

. (15)

B. Expression for the Hall voltage

The Hall voltage typically contains contributions from
the anomalous Hall effect (AHE) and the planar Hall effect
(PHE) [24,29,30]. We define �RA and �RP as the change
in the Hall resistance due to the AHE and PHE, respectively.
Assuming a current flow along the x axis, which is different
from the convention used in our previous report [23], the Hall
resistance RXY is expressed as

RXY = 1
2�RA cos θ + 1

2�RP sin2 θ sin 2ϕ. (16)

Note that contribution from the ordinary Hall effect, which are
neglected here, can influence the measurement depending on
the material and the measurement condition. If we substitute
θ = θ0 + �θ,ϕ = ϕ0 + �ϕ and assume �θ � 1 and �ϕ �
1, Eq. (16) can be expanded to read

RXY ≈ 1
2�RA (cos θ0 − �θ sin θ0)

+ 1
2�RP (sin2 θ0 + �θ sin 2θ0)(sin 2ϕ0

+ 2�ϕ cos 2ϕ0). (17)

The Hall voltage VXY is a product of the Hall resistance
RXY and the current I passed along the device, i.e.,

VXY = RXY I. (18)

When a sinusoidal current (I = �I sin ωt) is applied, the
current induced effective field oscillates in sync with the
current. Note that the frequency of the oscillating current ω is
small enough (typically in the hertz range) so that the phase
difference, if any, between the current and the effective field
oscillations can be ignored. Thus �Hi in Eqs. (14) and (15)
need to be replaced with �Hi sin ωt to accommodate the
oscillating effective field. This results in replacing �θ and
�ϕ in Eq. (17) with �θ sin ωt and �ϕ sin ωt , respectively.
Substituting the modified Eq. (17) into Eq. (18) give

VXY = V0 + Vω sin ωt + V2ω cos 2ωt,

V0 = 1
2 (Bθ + Bϕ)�I,

Vω = A�I,

V2ω = − 1
2 (Bθ + Bϕ)�I, (19)

A = 1
2�RA cos θ0 + 1

2�RP sin2 θ0 sin 2ϕ0,

Bθ = 1
2 (−�RA sin θ0 + �RP sin 2θ0 sin 2ϕ0) �θ,

Bϕ = �RP sin2 θ0 cos 2ϕ0�ϕ.

As evident in Eq. (19), the second harmonic Hall voltage V2ω

contains information of �Hi through �θ and �ϕ [Eqs. (14)
and (15)]. Note that Eq. (19) describes the harmonic Hall
voltage in the limit of small �θ and �ϕ.

C. Relation between the current induced effective field
and spin torque

To illustrate the relationship between the current induced
effective field �Hi and the conventional spin torque terms,
�Hi can be added, in the form of vector � �H , in the Landau-
Lifshitz-Gilbert (LLG) equation:

∂m̂

∂t
= −γ m̂ ×

(
− ∂E

∂ �M + � �H
)

+ αm̂ × ∂m̂

∂t
. (20)

Here, α is the Gilbert damping constant, γ is the gyromagnetic
ratio, − ∂E

∂ �M is the current independent effective magnetic fields
that include external, exchange, anisotropy and demagnetiza-
tion fields. Equation (20) can be compared to the general LLG
equation that includes the two spin torque terms:
∂m̂

∂t
= −γ m̂ ×

(
− ∂E

∂ �M + aJ (m̂ × p̂) + bJ p̂

)
+ αm̂ × ∂m̂

∂t
.

(21)

Here, p̂ represents the magnetization direction of the “ref-
erence layer” in spin valve nanopillars/magnetic tunnel
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junctions, aJ and bJ correspond to the dampinglike
(Slonczweski-Berger) term [6,7] and the fieldlike term [31],
respectively. In magnetic heterostructures where spin-orbit
torques need to be considered, p̂ represents the average spin
direction of the electrons diffusing into the magnetic layer.
Comparing Eqs. (20) and (21), we can decompose the current
induced effective field � �H into two terms, the dampinglike
term aJ m̂ × p̂ and the fieldlike term bJ p̂. The dampinglike
term depends on the magnetization direction whereas the
fieldlike term is independent of m̂. Thus one can identify
whether the effective field is dampinglike or fieldlike by
measuring its dependence on the magnetization direction.

In general, aJ and bJ are not constant and depend on the rel-
ative angle between m̂ and p̂. For example, aJ depends [32,33]
on m̂ · p̂, which manifests itself in the magnetization angular
dependence of giant magnetoresistance [34] and spin torque
induced effects [35]. Recently, it has been reported that
both aJ and bJ show significant dependence on the angle
of magnetization in ultrathin magnetic heterostructures [24].
Here we assume that aJ and bJ are constant for simplicity.
This is because the magnetization angle does not vary much
during the experiments for the majority of our approaches
described here. The only exception applies to case described
in Sec. III B 2 where the effect of the angular dependence of
aJ and bJ is briefly discussed.

For the numerical calculations, we use p̂ = (0,1,0); this
represents, for example, the spin direction of the electrons
entering the CoFeB layer via the spin Hall effect in Ta when
current is passed along the +x direction in Ta|CoFeB|MgO
heterostructures [23]. In the following, we consider two
representative cases, systems with out of plane and in-plane
magnetizations.

III. APPROXIMATE EXPRESSIONS FOR THE HARMONIC
HALL VOLTAGES

A. Out-of-plane magnetization systems

We first consider a system where the magnetization points
along the film normal owing to its perpendicular magnetic
anisotropy. To obtain analytical solutions for the harmonic Hall
voltages, we assume the equilibrium magnetization direction
does not deviate much from the z-axis, i.e., θ0 = θ ′

0

(
θ ′

0 � 1
)

for �M along +ẑ and θ0 = π − θ ′
0

(
θ ′

0 � 1
)

for �M along −ẑ.
Keeping terms that are linear with θ ′

0, Eqs. (5) and (6) give

θ ′
0 = H sin θH

(HK − HA sin2 ϕH ) ± H cos θH

, ϕ0 = ϕH . (22)

Note that |HA| � |H sin θH | is assumed in Eq. (6) to obtain
ϕ0 = ϕH . The ± sign corresponds to the case for �M pointing
along ±ẑ. Substituting Eq. (22) into Eqs. (14), (15), and (19)
give

Vω ≈ ±1

2
�RA

[
1 − 1

2

(
H sin θH

HK ± H cos θH

)2]
�I, (23)

V2ω ≈ −1

4
[∓�RA (�HX cos ϕH + �HY sin ϕH )

+ 2�RP (−�HX sin ϕH + �HY cos ϕH ) cos 2ϕH ]

× H sin θH

(HK ± H cos θH )2 �I. (24)

Equation (24) shows that the planar Hall effect mixes the
signal from different components of the current induced
effective field [24]. For systems with negligible PHE, �HX

(�HY ) can be determined by measuring V2ω as a function
of the external in-plane field directed along the x (y) axis.
However, if the PHE becomes comparable to the size of AHE,
contribution from the orthogonal component appears in V2ω

via the PHE. For example, when �RP is larger than half of
�RA, �HY (�HX) becomes the dominant term in V2ω for field
sweep along the x (y) axis. Thus to estimate the effective field
components accurately in systems with non-negligble PHE,
one needs to measure V2ω in two orthogonal directions and
analytically calculate each component, as described below.

We follow the procedure used previously [23] to eliminate
the prefactors that are functions of �I and HK in Eqs. (23)
and (24). θH = π/2 is substituted in Eqs. (23) and (24) since
the external field is swept along the film plane. The respective
curvature and slope of Vω and V2ω versus the external field are
calculated to obtain the ratio B, defined as

B ≡
(

∂V2ω

∂H

/
∂2Vω

∂H 2

)

= −1

2

[ (
�HX ∓ 2

�RP

�RA

cos 2ϕH �HY

)
cos ϕH

+
(

�HY ± 2
�RP

�RA

cos 2ϕH �HX

)
sin ϕH

]
. (25)

We define BX ≡ ( ∂V2ω

∂H
/∂2Vω

∂H 2 )| �H‖x̂ and BY ≡ ( ∂V2ω

∂H
/∂2Vω

∂H 2 )| �H‖ŷ ,
which correspond to B when the external field H is directed
along the x and y axes, respectively, and ξ ≡ �RP

�RA
, which is

the ratio of the PHE and AHE resistances. Finally, we obtain

�HX = −2
(BX ± 2ξBY )

1 − 4ξ 2
,

�HY = −2
(BY ± 2ξBX)

1 − 4ξ 2
. (26)

The ± sign corresponds to �M pointing along ±ẑ. Equation (26)
provides a simple method to obtain the effective field under
circumstances where both AHE and PHE contribute to the
Hall signal. When PHE is negligible, ξ = 0 and we recover
the form derived previously [23].

B. In-plane magnetization systems

We next consider systems with in-plane magnetization
(easy axis is along the x axis). Note that HK<0 for in-plane
magnetized systems. Following the previous discussions, the
external field must be swept along two directions orthogonal
to the magnetization direction to obtain each component of the
effective field (the dampinglike and the fieldlike terms). For
in-plane magnetized samples, the two directions are: along the
film normal and along a direction within the film plane that is
transverse to the magnetization direction. From the discussions
on the out of plane magnetized samples and considering the
symmetry of the system, for in-plane magnetized samples,
one may expect to obtain the dampinglike term from the out
of plane field sweep and the fieldlike term from the in-plane
transverse field sweep. It turns out that [see Eq. (29) and below]
the out of plane field sweep gives information of the fieldlike
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term whereas the in-plane transverse field sweep provides that
of the dampinglike term when |HK | 	 |HA|, which we
consider here. This is due to the larger contribution of the
planar Hall effect on the second harmonic signal (V2ω) over that
of the anomalous Hall effect. In theory, one can perform both
measurements along each field direction to obtain the fieldlike
and dampinglike terms. However, for the latter, the assumption
|HA| � |H sin θH | causes the magnetization to rotate along
the transverse field direction as soon as |H | is larger than
|HA|, thus hindering evaluation of the dampinglike term.

To circumvent this difficulty, we show two alternative
approaches. One is to make use of the anisotropic magne-
toresistance (AMR) of the magnetic material and measure the
longitudinal voltage (VXX), which in turn provides information
of the dampinglike term. The external field is swept along
the film normal but must be kept small to maintain θ ′

0 � 1
when θ0 = π

2 ± θ ′
0. During the field sweep, one can measure

VXY and VXX to obtain the fieldlike and dampinglike terms,
respectively. The second approach is to sweep the external field
(H ) again along the film normal but in a larger field range, i.e.,
|H | must be larger than the anisotropy field (|HK |). Here, the
second harmonic voltage at low field provides information on
the fieldlike term, as noted above, but its high field value
(when |H |�±|HK |) gives information on the dampinglike
term. We start from the small field limit with simultaneous
measurements of Hall and longitudinal voltage measurements,
followed by the large field sweep measurements.

1. Low field limit

a. Harmonic Hall voltage and the fieldlike term. The
external field is directed along or close to the film normal
(θH �0 or π ) but small enough so that the equilibrium
magnetization direction does not deviate much from the film
plane, i.e., θ0 = π

2 +θ ′
0

(
θ ′

0 � 1
)

for �M pointing along one
direction within the film plane and θ0 = π

2 − θ ′
0

(
θ ′

0 � 1
)

for
the case where the direction of �M is reversed from the former
(ϕ0 → ϕ0 + π ). We assume ϕ0 ∼ ϕH . Keeping terms that are
linear with θ ′

0, Eqs. (5) and (6) give

θ ′
0 = ± H cos θH

(HK − HA sin2 ϕH ) − H sin θH

, ϕ0 ∼ ϕH . (27)

The ± sign corresponds to the case for θ0 = θ ′
0 ± π

2 .
Substituting Eq. (27) into Eqs. (14), (15) and (19) give

Vω ≈ −1

2
�RA

H cos θH

(HK − HA sin2 ϕH ) − H sin θH

�I, (28)

V2ω ≈ −1

2

[
1

2
�RA

�HZ

−(HK − HA sin2 ϕH ) + H sin θH

+�RP

(−�HX sin ϕH + �HY cos ϕH ) cos 2ϕH

−HA cos 2ϕH + H sin θH

]
�I.

(29)

The second term (the �RP term) in Eq. (29) dominates
the second harmonic voltage for samples with large |HK |,
which is usually the case for in-plane magnetic materials (HK

includes the demagnetization field). Thus, for a typical in-plane
magnetized sample, one can ignore the first term in Eq. (29) if

the external field is small (i.e., |H | � |HK |) and obtain

V2ω ≈−1

2

[
�RP

(−�HX sin ϕH+�HY cos ϕH ) cos 2ϕH

−HA cos 2ϕH + H sin θH

]
�I.

(30)

When the magnetization points along the x axis and the in-
coming electrons’ spin polarization is set along the y axis [p̂ =
(0, ± 1,0)], the dampinglike effective field is directed along the
film normal (not to be confused with the dampinglike torque
that points along the film plane) and its in-plane component
�HX is nearly zero. See the inset of Fig. 3(b) in which we show
the three effective field components �Hi for this geometry.
Thus in Eq. (30), only the fieldlike term �HY remains.

Equation (30) indicates that when the field is exactly along
the film normal (θH = 0 or π ), the field dependence of V2ω

vanishes. Experimentally, it is preferable to look at the field
dependence of V2ω rather than its absolute value to obtain �HY

(see, for example, Fig. 5(d) and the related discussion). Thus
we apply a tilted magnetic field (0< θH <π ) in using Eq. (30).

Using Eqs. (28) and (30), we derive a simple formula,
similar to that shown in Eq. (25), to estimate �HY . For a
tilted external field, it is preferable to apply the in-plane field
component along the magnetic easy axis (ϕH = 0 or π ) to
unambiguously set the equilibrium magnetization azimuthal
angle ϕ0. Substituting ϕH = 0 in Eqs. (28) and (30) gives

∂Vω

∂H
≈ −1

2
�RA�I

cos θH

HK

, (31)

∂(1/V2ω)

∂H
≈ − 2 sin θH

�RP �I�HY

. (32)

Thus �HY (the fieldlike term) can be obtained by

�HY ≈ sin 2θH

2ξHK

[
1

/(
∂Vω

∂H

)(
∂(1/V2ω)

∂H

)]
. (33)

Unlike the case derived in the previous section [Eq. (25)],
here one needs to substitute HK and θH to calculate the
effective field. This is because the field dependence of the first
harmonic voltage is primarily determined by the change in the
magnetization direction along the z axis (relevant anisotropy is
HK ), whereas that of the second harmonic voltage is dominated
by the magnetization angular change within the film plane
(relevant anisotropy is HA); therefore taking the ratio of the
two harmonic voltages will not cancel out HK (and θH ).

b. Harmonic longitudinal voltage and the dampinglike term.
As noted above, in order to obtain the dampinglike term, one
can make use of the AMR effect, if any, of the magnetic
material. The longitudinal resistance RXX is expressed as

RXX = R0 + 1
2�RMR sin2 θ cos2 ϕ, (34)

where R0 and �RMR are, respectively, the resistance indepen-
dent of the magnetization direction and the change in the re-
sistance due to the AMR effect. The current is assumed to flow
along the x axis. We substitute θ = θ0+�θ , ϕ = ϕ0+�ϕ into
Eq. (34) and assume �θ � 1 and �ϕ � 1, which then give

RXX ≈ R0 + 1
2�RMR[sin2 θ0 cos2 ϕ0 + �θ sin 2θ0 cos2 ϕ0

−�ϕ sin2 θ0 sin 2ϕ0 − (�θ2 + �ϕ2) sin2 θ0 cos2 ϕ0].

(35)
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Here, we have kept the second-order terms that scale with
�θ2 and �ϕ2 to show that these terms cannot be neglected
when the current induced effective field �Hi (that determines
the magnitude of �θ and �ϕ) becomes larger. This is
because, for a typical geometry that would be employed here
(the equilibrium magnetization pointing along the x axis),
sin(2θ0)�0 and sin(2ϕ0)�0, and thus the linear terms that
scale with �θ and �ϕ can be smaller than the second-order
terms when �θ or �ϕ become large. As a consequence,
there is a limit in �Hi above which we cannot neglect the
second-order terms and this limit is much smaller than the
other geometries described previously. For simplicity, we
only consider the small limit of �Hi here.

Application of a sinusoidal excitation current I =
�I sin ωt results in a longitudinal voltage, which is expressed
as

VXX = RXXI = RXX�I sin ωt. (36)

Assuming that θ0 = π
2 ± θ ′

0

(
θ ′

0 � 1
)
, ϕ�ϕH and the cur-

rent induced effective field works in sync with the excitation
current, Eqs. (35) and (36) give

VXX = V XX
0 + V XX

ω sin ωt + V XX
2ω cos 2ωt

V XX
0 = 1

2 B̃�I,

V XX
ω = Ã�I,

V XX
2ω = − 1

2 B̃�I, (37)

Ã = R0 + 1
2�RMR cos2 θ ′

0 cos2 ϕH ,

B̃ = 1
2�RMR(∓�θ sin 2θ ′

0 cos2 ϕH

−�ϕ cos2 θ0 sin 2ϕH ).

Substituting Eq. (27) into Eqs. (14), (15) and (37) give

V XX
ω =

{
R0 + 1

2
�RMR cos2 ϕH

×
[

1 −
(

H cos θH

HK − HA sin2 ϕH − H sin θH

)2]}
�I,

(38)

V XX
2ω = 1

2
�RMR cos2 ϕH

×
[

H cos θH�HZ

(HK − HA sin2 ϕH − H sin θH )2

]
�I. (39)

These expressions are similar to those of Eqs. (23) and (24).
If we consider that the external field is directed along the z axis,
i.e., θH �0 or π , then the ratio of the field derivatives of the first
and second harmonic signals directly provides the dampinglike
term (�HZ):

�HZ = −2

(
∂V XX

2ω

∂H

/
∂2V XX

ω

∂H 2

)
. (40)

Equations (33) and (40) show that combination of the Hall
and longitudinal voltage measurements can provide means to
evaluate both components of the effective field for in-plane
magnetized samples.

2. Large field sweep

In material systems with small anisotropic magnetoresis-
tance (AMR), it is difficult to evaluate the dampinglike term
using the method described above. To overcome this problem,
one can sweep the external field along the film normal and
estimate the fieldlike and dampinglike terms from the low-
and high-field regimes, respectively. This is a method that
combines the approaches described in previous sections: the
low-field regime is discussed in Sec. III B 1 a, whereas the
high-field regime where the geometry becomes similar to that
of the out of plane magnetized system is described in Sec. III A.
So far, we have assumed that the equilibrium magnetization is
close to either along the film plane or the film normal and the
change in θ0 due to the external field application is small. This
assumption allowed us to derive approximate expressions for
the first and second harmonic voltage signals. If θ0 varies with
the field in a large way, such approximation cannot be made.
Thus here we instead use the first harmonic Hall voltage (Vω)
to estimate θ0 at each applied field and substitute it into the
second harmonic Hall voltage (V2ω) expression.

Substituting Eqs. (14) and (15) into Eq. (19) give to the following expression:

VXY = V0 + Vω sin ωt + V2ω cos 2ωt

V0 = 1

2
(B̄θ + B̄ϕ)�I,

Vω = Ā�I,

V2ω = −1

2
(B̄θ + B̄ϕ)�I

Ā = 1

2
�RA cos θ0, (41)

B̄θ = 1

2

�RA sin θ0 [�HZ sin θ0 − (�HX cos ϕH + �HY sin ϕH ) cos θ0]

(HK − HA sin2 ϕH ) cos 2θ0 + H cos (θH − θ0)
,

B̄ϕ = �RP (−�HX sin ϕH + �HY cos ϕH ) sin2 θ0 cos 2ϕH

−HA sin θ0 cos 2ϕH + H sin θH

.
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It turns out that for p̂ = (0, ± 1,0), it is sufficient to measure
the harmonic signals along the x direction, i.e., ϕH = 0 or π .
Then Vω and V2ω can be simplified as

Vω = 1

2
�RA cos θ0�I, (42)

V2ω = −�RA

2

[
1

2

sin θ0 cos ϕH

HK cos 2θ0 + H cos (θH − θ0)
aJ

+ ξ
sin2 θ0 cos ϕH

−HA sin θ0 + H sin θH

bJ

]
�I, (43)

where we have used aJ and bJ from Eq. (21) and ξ ≡ �RP

�RA
as

before. To obtain Eq. (43), we first note from Eq. (21) that

� �H = (�HX,�HY ,�HZ)

= (−aJ cos θ0,bJ ,aJ sin θ0 cos ϕH ) for p̂ = (0,1,0) .

(44)

Using Eq. (44), the expression inside the square bracket
of the numerator in B̄θ [Eq. (41)] can be simplified, that
is, �HZ sin θ0 − �HX cos ϕH cos θ0 = aJ cos ϕH (we assume
ϕH = 0 or π ). Substituting these expressions into Eq. (41)
yields Eq. (43). Equation (43) takes a form similar to that
of Eq. (29): the first term depends on aJ and �RA but its
contribution is small unless H�|HK | or larger. The second
term is proportional to bJ and �RP and dominates V2ω at low
fields. Thus the low-field values of V2ω provide information of
bJ , whereas the higher-field values give aJ .

To estimate aJ and bJ experimentally, we use the measured
Vω and Eq. (42) to evaluate θ0 at each H . The H dependence
of Vω also provides value of �RA�I and information on HK .
HK can be roughly estimated by extrapolating a linear fitting
of Vω versus H near zero field to the saturation value of Vω

at large fields (the intersection field is �HK ), as commonly
done in estimating HK using magnetization hysteresis loops.
At each H , one can substitute θ0 obtained from the Vω versus
H curve into Eq. (43) and fit V2ω versus H with aJ and bJ as
the fitting parameters. It should be noted that when the field
direction is reversed in one field sweep, it is not appropriate to
substitute a negative H in Eq. (43); rather one needs to change
θ0,θH , ϕH to π–θ0, π–θH, ϕH +π , respectively, and keep H

positive. In effect, this will result in changing the sign of V2ω

for negative fields.
As described in Sec. II C, possible magnetization angular

dependence of aJ and bJ can influence the fitting process here
as the change in the magnetization angle (θ0) is large, i.e.,
the magnetization direction changes from in-plane to out of
plane orientation. In general, one can include the angular (θ0,
ϕ0) dependence of aJ and bJ in Eq. (21), and consequently
in Eq. (43), and fit the field (H ) dependence of V2ω with a
magnetization angle-independent effective field components
as fitting parameters. For simplicity, here we assume aJ and
bJ to be constant, i.e., they do not depend on the relative angle
between the magnetization and the current flow direction [or
p̂ in Eq. (21)].

IV. COMPARISON TO NUMERICAL CALCULATIONS

The analytical solutions derived above are compared to
numerical calculations. We solve Eq. (21) numerically to

obtain the equilibrium magnetization direction and the associ-
ated harmonic voltage signals. A macrospin model [36,37] is
used to describe the system. Substituting Eq. (1) into Eq. (21),
the following differential equations are obtained:

1 + α2

γ

∂θ

∂t
= αhθ + hϕ,

(45)
1 + α2

γ

∂ϕ

∂t
sin θ = −hθ + αhϕ

hθ = aJ cos ϕ + bJ cos θ sin ϕ + hX cos θ cos ϕ

+hY cos θ sin ϕ − hZ sin θ,

hϕ = aJ cos θ sin ϕ + bJ cos ϕ − hX sin ϕ

+hY cos ϕ,

hX = HX − MSNX sin θ cos ϕ,

hY = HY − MSNY sin θ sin ϕ,

hZ = HZ − (MSNZ − HK ) cos θ.

The two coupled differential equations are numerically
solved to obtain the equilibrium magnetization direction when
both the external and the current induced effective fields are
turned on. To mimic the experimental setup, a sinusoidal
current is passed along the x axis and the resulting Hall and
longitudinal voltages are evaluated. Contributions from the
anomalous Hall effect (AHE) and the planar Hall effect (PHE)
are considered for the Hall voltage and the anisotropic magne-
toresistance (AMR) is taken into account for the longitudinal
voltage. For a given time during one cycle of the sinusoidal
current application, we calculate the equilibrium magnetiza-
tion direction and the corresponding Hall and longitudinal
voltages. One cycle is divided into two hundred time steps
to obtain the temporal variation of the Hall and longitudinal
voltages. The calculated voltages are fitted with Eq. (19)
(VXY = V0 + Vω sin ωt + V2ω cos 2ωt) or Eq. (37) (VXX =
V XX

0 + V XX
ω sin ωt + V XX

2ω cos 2ωt) to obtain the first and
second harmonic signals. We compare the numerical results
with the analytical solutions derived in the previous sections.

A. Out-of-plane magnetization systems

Figure 2 shows results for the out of plane magnetized
samples. The equilibrium magnetization angle (θ0) with
respect to the film normal, first and second harmonic Hall
voltages are plotted against an in-plane field directed along the
current flow direction (i.e., along the x axis) in Figs. 2(a), 2(b),
and 2(d), respectively. The transverse field (directed along the
y axis) dependence of the second harmonic Hall voltage is
shown in Fig. 2(f); the corresponding magnetization angle
(θ0) and the first harmonic Hall voltage are the same with
those shown in Figs. 2(a) and 2(b), respectively. The material
parameters used here are typical of perpendicularly magne-
tized heterostructures (see Fig. 2 caption for the details). The
open symbols represent results from the numerical calculations
(squares: magnetization pointing +z, circles: magnetization
along −z) whereas the solid/dashed lines correspond to the
analytical results. As evident, the analytical solutions agree
well with the numerical results.
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FIG. 2. (Color online) (a) Magnetization angle with respect to
the film normal (θ0), (b) first harmonic Hall voltage and (d) and
(f) second harmonic Hall voltage plotted against in-plane external
field (θH = 90°). The field is directed along the x axis (ϕH = 0°)
for (a), (b), and (d) and along the y axis (ϕH = 90°) for (f). Open
symbols show numerical calculations using the macrospin model.
Solid/dashed lines represent the analytical solutions: (a) Eq. (22), (b)
Eq. (23), (d) and (f) Eq. (24). (c) and (e) x, y, and z components of the
effective field used for the numerical calculations. Left (right) panel
indicates the effective field when the magnetization is pointing along
+z (–z). Parameters used in the numerical calculations: HK = 3162
Oe, HA = −6 Oe, α = 0.01, γ = 17.6 MHz/Oe, aJ = 3 Oe, bJ = 3
Oe, p̂ = (0,1,0), �RA = 1 �, �RP = 0.1 �, �I = 1 A.

The x, y, and z components of the current induced effective
field are shown in Figs. 2(c) and 2(e) when the in-plane field
is swept along x and y axes, respectively. We use p̂ = (0,1,0),
aJ = 3 Oe and bJ = 3 Oe. At low magnetic field, one can
consider �HX and �HY representing aJ and bJ , respectively,
[see Eq. (44)]. We test the validity of Eq. (26) by fitting the
external field dependence of the first and second harmonic
voltages with parabolic and linear functions, respectively, and
calculate quantities corresponding to BX and BY [Eq. (25)].
Substituting BX and BY into Eq. (26), we obtain �HX � −3.03
Oe and �HY � 2.99 Oe, which match well with aJ and bJ

used in the numerical calculations.

B. In-plane magnetization systems

1. Low field limit

Numerical results of in-plane magnetized systems for the
low-field limit are shown in Fig. 3. The material parameters
used are relevant for in-plane magnetized systems with a small
perpendicular magnetic anisotropy (HK�−4500 Oe).

FIG. 3. (Color online) (a) Polar (θ0) and (b) azimuthal (ϕ0) angles
of the magnetization, (c) first and (d) second harmonic Hall voltages
(VXY ), (e) first and (f) second harmonic longitudinal voltages (VXX)
as a function of a slightly tilted out of plane field (θH = 5°).
The in-plane component of the tilted field is directed along the x

axis (ϕH = 0°). Open symbols show numerical calculations using
the macrospin model. Solid lines represent the analytical solutions:
(a) and (b) Eq. (27), (c) Eq. (28), (d) Eq. (30), (e) Eq. (38),
(f) Eq. (39). Inset of (b) shows the x, y, and z components of the
effective field used for the numerical calculations. Parameters used
in the numerical calculations: HK = −4657 Oe, HA = −4 Oe, α =
0.01, γ = 17.6 MHz/Oe, aJ = 0.3 Oe, bJ = 0.3 Oe, p̂ = (0,1,0),
�RA = 1 �, �RP = 0.1 �, �RMR = 1 �, R0 = 0 �, �I = 1 A.

Figure 3 shows results when an out of plane external field,
slightly tilted (θH = 5°) from the film normal, is applied. The
in-plane component of the tilted field is directed along the
magnetic easy axis, which is the x axis here (ϕH = 0°, the
in-plane anisotropy field (HA) is �–4 Oe). The open symbols
represent the numerical results. The equilibrium magnetization
angles (θ0, ϕ0) are plotted against the slightly tilted out of plane
field in Figs. 3(a) and 3(b), respectively. The magnetization
direction reverses [Fig. 3(b)] due to the in-plane component
of the tilted field. Figures 3(c) and 3(d) show the first and
second harmonic Hall voltages whereas Figs. 3(e) and 3(f)
display the first and second harmonic longitudinal voltages.
The solid lines represent the analytical solutions, which agree
well for the Hall voltages [Figs. 3(c) and 3(d)] but show a small
deviation at low fields for the longitudinal voltages [Figs. 3(e)
and 3(f)]. The deviation is due to the nonlinear (higher order)
terms in RXX [Eq. (35)].

To reduce contributions from the nonlinear terms in RXX,
we have used aJ = 0.3 Oe and bJ = 0.3 Oe to generate the
effective field in Fig. 3 [p̂ = (0,1,0) is assumed as before]. For
aJ = 3 Oe and bJ = 3 Oe, as used in the calculations shown in
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Fig. 2, the nonlinear terms dominate the harmonic longitudinal
voltages, i.e., the analytical solutions do not match the numeri-
cal calculations in this external field range (the solution shows
better agreement when the external field range is expanded).
Note that such effect is negligible for the harmonic Hall volt-
ages [Figs. 3(c) and 3(d)] for aJ = 3 Oe and bJ = 3 Oe. The re-
sulting components of the current induced effective field �Hi

are shown in the inset of Fig. 3(b). One can identify that �HZ

is the dampinglike term, which changes its sign upon mag-
netization reversal, and �HY is the fieldlike term. Since the
magnetization lies within the film plane, �HX is nearly zero.

We fit the numerically calculated harmonic Hall voltages
versus external field (H ) with a linear function and use Eq. (33)
to estimate �HY [see Fig. 3(d) inset for V−1

2ω versus H and the
corresponding linear fit]. We obtain �HY �0.32 Oe for both
magnetization direction (pointing along +x and −x). This
agrees well with bJ used in the numerical calculations.

For the harmonic longitudinal voltages, we use Eq. (40)
to obtain �HZ . Fitting the external field dependence of the
first and second harmonic signals with parabolic and linear
functions, respectively, we find �HZ�0.30 and �−0.30 Oe
for magnetization pointing along +x and −x, respectively.
Although these values match that of aJ , it should be noted that
nonlinear effects start to take place when aJ and bJ becomes
large. Since the nonlinear terms become apparent when the
external field is small, it is desirable to fit the respective
curvature and slope of Vω and V2ω at higher fields (but much
smaller than |HK |).

2. Large field sweep

We next show the validity of solutions (42) and (43) by
comparing them to numerical calculations. Solid symbols
of Fig. 4 show results from the numerical calculations. The
external field is directed nearly along the film normal (θH = 5°)
and we apply large enough field to force the magnetic moments
to point out of plane. The symbols in Figs. 4(a) and 4(b) show
the external field dependence of the equilibrium polar angle of
the magnetization and the first harmonic voltage Vω. The solid
line in Fig. 4(a) is calculated from the numerical data shown in
Fig. 4(b) using Eq. (42), i.e., θ0 = cos−1(Vω/ 1

2�RA�I ). Here,
we take the value of �RA�I used in the numerical calculations
to obtain θ0 (in experiments, we need to estimate �RA�I by
measuring Vω versus H at θH = 0°). Figures 4(c) and 4(d) show
the second harmonic voltage (V2ω) as a function of the external
field for aJ = 3 Oe, bJ = 3 Oe and aJ = 3 Oe, bJ = −3 Oe, re-
spectively. The resulting x, y, and z components of the effective
field are shown in Figs. 4(e) and 4(f): p̂ = (0,1,0) as before.

As described in the previous section, the �1/H dependence
of V2ω at low field is due to contribution from the fieldlike term
(�HY , or bJ ) via the planar Hall effect. Indeed, V2ω reverses its
sign at low field when Figs. 4(c) and 4(d) are compared owing
to the difference in the sign of bJ . In addition, one can observe
a shoulder and a humplike features in Figs. 4(c) and 4(d),
respectively, when H�±|HK | (HK � −4600 Oe in Fig. 4).
Such feature is due to the first term in Eq. (43), which is related
to the presence of the dampinglike term (aJ ), that dominates
over the second term when H�±|HK |. We substitute HK ,
θH , ϕH , �RA�I , ξ used in the numerical calculations and θ0

obtained from Vω [Fig. 4(b)] to Eq. (43) and fit V2ω versus H

with aJ and bJ as fitting parameters. The results are shown by

FIG. 4. (Color online) (a) Polar (θ0) angle of the magnetization,
(b) first and (c) and (d) second harmonic Hall voltages as a function of
a slightly tilted out of plane field (θH = 5°). The in-plane component
of the tilted field is directed along the x axis (ϕH = 0°). Solid
symbols show numerical calculations using the macrospin model.
Solid lines represent the analytical solutions: (a) Eq. (42), (c) and
(d) Eq. (43). (e) and (f) x, y, and z components of the effective
field used for the numerical calculations. Parameters used in the
numerical calculations: HK = −4561 Oe, HA = −4 Oe, α = 0.01,
γ = 17.6 MHz/Oe, p̂ = (0,1,0), �RA = 1 �, �RP = 0.1 �, �RMR =
1 �, R0 = 0 �, �I = 1 A. (c,e) aJ = 3 Oe, bJ = 3 Oe, (d,f) aJ = 3
Oe, bJ = −3 Oe.

the solid lines in Figs. 4(c) and 4(d), which agree well with the
numerical calculations. The fitting results give aJ �2.90 Oe
and bJ � 3.08 Oe for Fig. 4(c) and aJ �3.10 Oe and bJ �
−3.08 Oe for Fig. 4(d) that are not far from the nominal values
used in the numerical calculations. Thus these results show
that one can estimate the dampinglike (aJ ) and the fieldlike
(bJ ) terms for in-plane magnetized samples by sweeping the
field along the film normal direction.

V. EXPERIMENTAL RESULTS

We study two different film structures to evaluate the current
induced effective field using the formula provided above. In
particular, we show results from in-plane magnetized samples
as this system has not been evaluated in detail previously. The
two film structures are Sub|3 Pt|1 CoFeB|2 MgO|1 Ta and
Sub|10 CuIr|tCoFeB CoFeB|2 MgO|1 Ta. The thickness (tCoFeB)
of the CoFeB layer in the latter film varies from �1–3 nm
in the substrate (the CoFeB layer forms a wedge): here we
use tCoFeB�1.3 nm. Both samples are annealed at 300 °C for
one hour. The CuIr underlayer film [27] is annealed under the
application of in-plane field (4 kOe) along the x axis in Fig. 1.
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No field is applied during the annealing for the Pt underlayer
film. Both underlayers (Pt and CuIr) have been reported to
possess the same sign of the spin Hall angle (γ SH): γ SH�0.01–
0.07 for Pt [38–41] and γ SH�0.02–0.03 for CuIr [27,42]. For
the CuIr underlayer films the current induced effective field
has been estimated using spin torque switching phase diagram
measurements [27], thus giving a reference for comparison.
As Pt underlayers typically promote in-plane anisotropy for
CoFeB|MgO, we choose this material as a comparison to CuIr.

Hall bars are patterned from the films using conventional
optical lithography and Ar ion etching. 10 Ta|100 Au or 10
Cr|100 Au (in nanometers) electrodes are formed by lift-off
processes. The width of the Hall bar is �10 μm: the device
structure is similar to that reported previously [23]. We
apply a constant amplitude sinusoidal voltage (amplitude:
VIN , frequency∼507.32 Hz) to the Hall bar. Since the Hall
bar longitudinal resistance (RXX) shows little dependence
on the applied voltage, the source can be considered as a
constant amplitude sinusoidal current (�I ) source. Lock-in
amplifiers are used to measure the in-phase first and the
out of phase second harmonic voltages simultaneously. We
use experimentally determined values of ξ ≡ �RP

�RA
:∼ 0.1

for Sub|3 Pt|1 CoFeB|2 MgO|1 Ta and ∼0.05 for Sub|10
CuIr|�1.3 CoFeB|2 MgO|1 Ta.

A. Pt|CoFeB|MgO

Figure 5(a) shows in-plane and out of plane magnetization
hysteresis loops of Sub|3 Pt|1 CoFeB|2 MgO|1 Ta (nm)
measured using vibrating sample magnetometry (VSM). The
easy axis is oriented along the film plane and HK�−2000 Oe.
Owing to the perpendicular magnetic anisotropy originating at
the CoFeB|MgO interface [43], HK is significantly reduced in
magnitude from 4πMS . Figure 1(b) shows the first harmonic
voltage plotted as a function of the external field swept along
near the z axis with different tilt angles: θH �0° (black squares),
θH �−9° (pink circles) and θH �+9° (brown triangles). Note
that here we use negative polar angles for convenience. In
polar coordinates (0 � θH � π and 0 � ϕH � 2π ), θH �−9°
(and an arbitrary ϕH ) corresponds to θH �9° and ϕH →ϕH +π ;
the latter should be substituted in the equations. The in-plane
component of the external field is directed along the x axis (i.e.,
ϕH �0). The estimated HK for θH �0°more or less agrees with
that of the VSM measurements [Fig. 5(a)].

The field dependence of the second harmonic voltages are
shown in Figs. 5(c)–5(e) for the three field tilt angles (θH �0°,
9°, −9°). When the tilt angle is nonzero, we obtain a curve
similar to that of the analytical and numerical calculations
shown in Fig. 4(d). Note that the sign of V2ω reverses when
the tilt direction (θH ) is reversed. This is in accordance with
Eq. (30) [or Eq. (43)]. The 0 degree tilt curve should be
ideally constant with the external field, however, multidomain
formation at low fields and/or a small misalignment of the field
may create features as shown in Fig. 5(d).

We use Eq. (43) to fit V2ω versus H for nonzero θH :
exemplary fitting results are shown by the solid lines in
Figs. 5(c) and 5(e). The fitting parameters are aJ , bJ (and an
offset voltage which is typically less than �1 μV) and we use
Vω versus H [Fig. 5(b)] to obtain θ0 at each H . The obtained aJ

and bJ are shown in Figs. 5(f) and 5(g) as a function of the input

voltage amplitude VIN for θH �9°. To show the magnetization
direction dependence of the dampinglike and fieldlike terms,
aJ and bJ are converted to �HZ and �HY using Eq. (44),
respectively, when the magnetization points along the x axis.

Both components of the effective field, �HZ and �HY ,
linearly scales with VIN . The slope of �HZ(Y ) versus VIN is
plotted in Figs. 5(h) and 5(i) as a function of the field tilt
angle θH for the dampinglike and fieldlike terms, respectively.

FIG. 5. (Color online) Experimental results for Sub|3 Pt|1
CoFeB|2 MgO|1 Ta (in nanometers). (a) Magnetization hysteresis
loops: open and solid symbols represent out of plane (Hz) and
in-plane (HX) field sweeps, respectively. (b) First harmonic voltage
as a function of external field with different tilt angles (θH ). VIN =
0.5 V. (c)–(e) External field dependence of the second harmonic
voltage (V2ω) for three different θH . VIN = 3.5 V. The solid lines
represent fitting results using Eq. (43). (f) and (g) The dampinglike
term �HZ and the fieldlike term �HY obtained from the fitting of V2ω

plotted against the excitation voltage amplitude (VIN ) for θH �9°. (h)
and (i) θH dependence of the effective field per unit excitation voltage
amplitude for �HZ and �HY . The right axis shows the corresponding
effective field if a current density of 1 × 108 A/cm2 were applied
to the underlayer (3-nm Pt). Squares and circles in (f)–(i) represent
the corresponding effective field for magnetization pointing along
+x and −x axes, respectively. The green dashed line in (i) show the
calculated Oersted field if all the current flows into the underlayer. The
field is calculated for 1 nm above the top surface of the Pt underlayer.
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FIG. 6. (Color online) Experimental results for Sub|10 CuIr|�1.3
CoFeB|2 MgO|1 Ta (in nanometers). (a) First harmonic voltage as a
function of external field with different tilt angles (θH ). VIN = 0.5 V.
(b) and (c) External field dependence of the second harmonic voltage
(V2ω) for θH �−9° (b) and 9° (c). VIN = 3.5 V. The solid lines
represent fitting results using Eq. (43). (d) and (e) θH dependence
of the effective field per unit excitation voltage amplitude for the
dampinglike term �HZ and the fieldlike term �HY . The right axis
shows the corresponding effective field if a current density of 1 ×
108 A/cm2 were applied to the underlayer (10-nm CuIr). Squares and
circles represent the corresponding effective field for magnetization
pointing along +x and −x axes, respectively. The green dashed line
in (e) show the calculated Oersted field if all the current flows into
the underlayer. The field is calculated for 1 nm above the top surface
of the CuIr underlayer.

The corresponding effective field if current, density of 1 ×
108 A/cm2, were to flow in the Pt underlayer is shown in the
right axis. �HZ�−44 Oe when both the magnetization and
the current are directed along +x; the direction of �HZ is
consistent with the sign of the spin Hall angle associated with
the Pt underlayer [38–41]. For �HY , we show the size of the
Oersted field (see Appendix for the calculations) generated
when the same magnitude of current is passed through the Pt
underlayer. Figure 5(i) shows that �HY due to the spin-orbit
torque is directed along +y when current is passed along
the +x axis and is opposite to that of the Oersted field.
Its magnitude is the difference between the measured �HY

(�12 Oe) and the estimated Oersted field (�−18 Oe), which
is �30 Oe. This is comparable to that of the dampinglike term
(�HZ), however, the fieldlike term is directed in way that
the torque associated with it opposes that of the dampinglike
term for current induced magnetization switching [31], i.e., the
fieldlike term points opposite to the incoming electron’s spin
direction (assuming that the spin Hall effect is the source of
the current induced effective field and its sign is in accordance
with previous reports [38–41]).

B. CuIr|CoFeB|MgO

Similar experiments are carried out for the CuIr underlayer
films. The field dependence of the first harmonic voltage is
shown in Fig. 6(a). �RA�I is smaller than that of the Pt
underlayer films since the shunt current through the underlayer
is larger. The second harmonic voltages are plotted against the

FIG. 7. (Color online) Experimental results for sub|10 CuIr|�1.3
CoFeB|2 MgO|1 Ta (in nanometers). (a) and (b) External field
dependence of the inverse of the second harmonic voltage (1/V2ω)
for θH �3° (a) and 9° (b). The solid lines represent linear fitting
to the data. VIN = 3.5 V. (c) �HY , obtained from the fitting and
Eq. (33), plotted against the excitation voltage amplitude (VIN ) for
θH �3°. (d) θH dependence of the effective field per unit excitation
voltage amplitude for the fieldlike term, �HY . The right axis shows
the corresponding effective field if a current density of 1 × 108

A/cm2 were applied to the under-layer (10-nm CuIr). Squares and
circles represent the corresponding effective field for magnetization
pointing along +x and −x axes, respectively. The green dashed line
in (d) show the calculated Oersted field if all the current flows into
the underlayer [same as in Fig. 6(e)].

field in Figs. 6(b) and 6(c) for two field tilt angles, θH �−9°and
9°, respectively. In contrast to what have been observed for the
Pt underlayer films, here we observe a shoulder instead of
a hump at H�±|HK |, a feature similar to that obtained by
the analytical and numerical calculations shown in Fig. 4(c).
Again we use Eq. (43) to fit the V2ω versus H curve to estimate
aJ and bJ . The slope of the obtained aJ , bJ versus VIN are
plotted shown in Figs. 6(d) and 6(e) for the dampinglike and
fieldlike terms, respectively, as a function the field tilt angle
θH . As before, we convert aJ and bJ to �HZ and �HY to show
the magnetization direction dependence of the effective field
explicitly. For magnetization pointing along +x, we find �HZ

to be �−57 Oe and �HY to be �−21 Oe for current flowing
along +x. Taking into account the estimated Oersted field
(�−63 Oe) shown by the green dash-dotted line in Fig. 6(e),
�HY due to the spin-orbit torque is �42 Oe. Both components
(�HZ and �HY ) point along the same direction as that of the
Pt underlayer film, which is consistent with the sign of the
spin Hall angle of the CuIr underlayer [27,42]. Similar to the
Pt|CoFeB|MgO system, the fieldlike term points opposite to
the incoming electron’s spin direction.

We can use the same data set shown in Fig. 6 to test Eq. (33)
in evaluating the fieldlike term (�HY ). The inverse of V2ω is
plotted against H in Figs. 7(a) and 7(b) for field tilt angles of
�3° and �9°, respectively. A small offset voltage of �1 μV
is subtracted before taking the inverse of V2ω. To evaluate
∂(1/V2ω)/∂H in Eq. (33), we fit 1/V2ω versus H in the low-
field regime with a linear function: the fitting results are shown
by the solid lines in Figs. 7(a) and (7b). It is evident that 1/V2ω
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deviates from a linear function of H at smaller fields for larger
θH . It is thus preferable to limit θH to a smaller value when
performing this analysis.

The low-field part (|H |��1000 Oe) of Vω is fitted with
a linear function to obtain ∂Vω/∂H . Substituting ∂Vω/∂H ,
∂(1/V2ω)/∂H , θH and the same HK used in Fig. 6 into
Eq. (33), we evaluate �HY at different θH . The input voltage
(VIN ) dependence of �HY is plotted in Fig. 7(c) for θH �3°.
The squares and circles represent the respective �HY values
when the external field (H ) is positive and negative (the
corresponding x component of the magnetization (MX) is
positive and negative, respectively). The slope of �HY versus
VIN is shown against θH in Fig. 7(d). Although the inverse
of V2ω shows a nonlinear H dependence at higher fields for
larger θH [e.g., Fig. 7(b)], �HY /VIN shows rather small θH

dependence. The mean value of �HY /VIN is �−41 Oe (for
current density of 1 × 108 A/cm2 flowing through the CuIr
underlayer), which is larger in magnitude than that shown in
Fig. 6(e). Taking into account the Oersted field (�−63 Oe),
�HY due to the spin-orbit torque amounts to �22 Oe.

We compare the size of the dampinglike and fieldlike
terms with those reported previously [27] using spin torque
switching phase diagram measurements: the dampinglike and
the fieldlike effective fields are reported to be �−51 and
�14 Oe, respectively, when 1 × 108 A/cm2 of current density
flows through the CuIr underlayer. The dampinglike term
estimated here [�−57 Oe, Fig. 6(d)] agrees well with that
of Ref. [27]. However, the difference in the fieldlike term is
rather large, particularly for the former analysis using the large
field range [�42 Oe, Fig. 6(e)]. The latter analysis using the
low-field regime [�22 Oe, Fig. 7(d)] shows better agreement.
It is possible that the recently reported angular dependence (the
relative angle between the current and the magnetization direc-
tions) of the fieldlike term [24], which is reported to be much
larger than that of the dampinglike term, may influence the
fitting of V2ω for a large field sweep. To include this effect, one
needs to introduce the appropriate angular dependence of aJ

and bJ in Eqs. (21) and (43) and fit V2ω versus H using angular-
independent fitting parameters. The discrepancy of the field-
like term (�HT ) for the two analyses we present here [Eqs. (33)
and (43)] requires further investigation for clarification.

We note that it is difficult to evaluate �HY using the small
field analysis [Eq. (33)] for the Pt underlayer films as the
inverse of V2ω diverges at |H | � ±|HK |/2 and influences
the linear fitting of the low field regime. Similarly, since
CoFeB shows small anisotropic magnetoresistance, the second
harmonic longitudinal voltage is too small to resolve its field
dependence. We thus conclude that, for the systems studied
here, fitting the second harmonic voltage for a large field range
using Eqs. (42) and (43) provides a better solution in evaluating
the current induced effective field.

C. Discussion

The effective field we find in Pt|CoFeB|MgO is rather small
[�44 Oe when �108 A/cm2 of current density is passed in the
Pt layer, Fig. 5(h)] compared to what have been reported in the
literature. For example, Emori et al. [25] find the dampinglike
term to be �500 Oe in 3 Ta|3 Pt|0.6 CoFe|1.8 MgO|2 Ta and
Garello et al. [24] report �690 Oe in 3 Pt|0.6 Co|2 AlOx. Our
value is somewhat closer to that reported by Liu et al. [38]

(�174 Oe in 2 Pt|0.6 Co|AlOx), but still more than three times
smaller. We find values of the dampinglike term in 3 Pt|0.6
Co|1 MgO (nm) smaller than what we report here. The Co
layer in 3 Pt|0.6 Co|1 MgO is magnetized along the film normal
(results will be reported elsewhere), thus we consider the small
values we find here is somewhat related to the Pt layer we use.
To clarify the differences, it is essential to study the Pt layer
thickness dependence of the effective field and estimate the
spin diffusion length of this material, which varies from �1 to
�10 nm depending on the measurement methods and perhaps
on the film structure and its quality [41].

As noted above, the fieldlike term is pointing against the
incoming spin direction, assuming that the spin Hall effect is
the source of the fieldlike term and its sign is in accordance with
previous reports. This seems to be a common feature in mag-
netic heterostructures with asymmetric interfaces, e.g., an ul-
trathin magnetic layer sandwiched between a heavy metal layer
and an oxide layer [23–25,27]. Such fieldlike term can hinder
the magnetization switching process triggered by the damp-
inglike term. Note that the fieldlike term here scales linearly
with the input current, which should be distinguished from the
dominant fieldlike torque found in magnetic tunnel junctions
(MTJs) that scales with the square of the bias voltage [44–46].
The direction of the MTJ fieldlike term that is linear with
the bias voltage seems to be more random: it can point either
parallel or antiparallel to the incoming spin direction [46–49].

The size of the fieldlike term seems to depend considerably
on the interface between the heavy nonmagnetic metal (NM)
and the ferromagnetic (FM) layers. The fieldlike term is much
smaller than the dampinglike term in the CuIr underlayer
films [27], whereas the trend is opposite for the Ta underlayer
films (the fieldlike term is �2–3 times larger than the
dampinglike term) [23]. If the spin Hall torque is the source of
the fieldlike term, these results indicate that how spins transmit
across the NM|FM interface is quite different depending on the
underlayer material used. In particular, a large fieldlike term
suggests that the diffusing electrons’ spin rotate at the interface
in a rather coherent way so that electrons with different
wave vectors contribute to the rotation constructively [50,51].
Identifying the origin of the fieldlike term, including the
Rashba-Edelstein effects discussed previously [9–16,24], is
particularly important for device applications [16,17] that
utilize current induced switching in magnetic heterostructures.

VI. CONCLUSION

We have derived analytical formulas that describe the adi-
abatic (low-frequency) harmonic Hall and longitudinal volt-
ages measurements when current induced spin-orbit torques
develop in magnetic heterostructures. We treat both out of
plane and in-plane magnetized samples, taking into account
the anomalous and planar Hall effects for the Hall voltage
measurements and the anisotropic mangnetoresistance for the
longitudinal voltage measurements. The derived forms are
compared to numerical calculations using a macrospin model
and show good agreement. We experimentally characterize
two different in-plane magnetized systems, Pt|CoFeB|MgO
and CuIr|CoFeB|MgO, and apply the developed formula to
evaluate the effective field in each system. The effective
field obtained for the latter system shows relatively good
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agreement with that evaluated using a spin torque switching
phase diagram measurements. Utilizing the harmonic voltage
measurements can help gaining solid understanding of the
spin-orbit torques, which is key to the development of
ultrathin magnetic heterostructures for advanced storage class
memories and logic devices.
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APPENDIX

1. Derivation of the analytical solutions

Here, we describe how Eqs. (14) and (15) are derived.
Substituting Eqs. (12) and (13) into Eqs. (8) and (9) gives
the following expressions for the modulation amplitudes of
the magnetization angle:

�θ = 1

F1
[(cos θ0 cos ϕ0 − C sin θ0 sin ϕ0) �HX + (cos θ0 sin ϕ0 + C sin θ0 cos ϕ0) �HY − (sin θ0) �HZ] , (A1)

�ϕ = �HX sin θ0 sin ϕ0

F1F2

[
HA(2 cos2 θ0 cos2 ϕ0+ cos 2θ0 sin2 ϕ0) − HK cos 2θ0− �H · m̂− (HX sin ϕ0 − HY cos ϕ0)

cos2 θ0 cos ϕ0

sin θ0 sin ϕ0

]

+ �HY sin θ0 cos ϕ0

F1F2

[
HA(2 cos2 θ0 sin2 ϕ0− cos 2θ0 sin2 ϕ0)+HK cos 2θ0+ �H · m̂−(HX sin ϕ0−HY cos ϕ0)

cos2 θ0 sin ϕ0

sin θ0 cos ϕ0

]

+ �HZ sin θ0

F1F2

[
−1

2
HA sin 2θ0 sin 2ϕ0 + cos θ0 (HX sin ϕ0 − HY cos ϕ0)

]
. (A2)

F1, F2, and C are described after Eqs. (12) and (13). These expressions are valid for any equilibrium magnetization direction
and are general for arbitrary values of each parameter (no approximation made). Equations (A1) and (A2) can be simplified if
we make the following assumptions. First, if |HA| � |H sinθH |, then Eq. (6) gives ϕ0 = ϕH . Substituting this into Eqs. (A1)
and (A2) gives

�θ = cos θ0 (�HX cos ϕH + �HY sin ϕH ) + sin θ0 [C (−�HX sin ϕH + �HY cos ϕH ) − �HZ]

(HK − HA sin2 ϕH ) cos 2θ0 + H cos (θH − θ0) − 1
2CHA sin 2θ0 sin 2ϕH

, (A3)

�ϕ = [(HK − HA sin2 ϕH ) cos 2θ0 + H cos (θH − θ0)](−�HX sin ϕH + �HY cos ϕH )[
(HK − HA sin2 ϕH ) cos 2θ0 + H cos(θH − θ0) − 1

2CHA sin 2θ0 sin 2ϕH

]
[−HA sin θ0 cos 2ϕH + H sin θH ]

+ HA sin 2ϕH [cos2 θ0(�HX cos ϕH + �HY sin ϕH ) − 1
2 sin 2θ0�HZ][

(HK − HA sin2 ϕH ) cos 2θ0 + H cos(θH − θ0) − 1
2CHA sin 2θ0 sin 2ϕH

]
[−HA sin θ0 cos 2ϕH + H sin θH ]

, (A4)

where C [see after Eq. (13)] is now simplified as C =
HA cos θ0 sin 2ϕH

−HA sin θ0 cos 2ϕH +H sin θH
. We then consider cases when the in-

plane component of the external field is directed along one of
the Cartesian coordinate axes (along x or y axis), which allows
one to drop terms with sin(2ϕH ) and thus C becomes zero.
Equations (A3) and (A4) then reduce to Eqs. (14) and (15).

2. Calculations of the Oersted field

The Oersted field is calculated using the following formula.
We consider a conductive layer (gray slab in Fig. 8) with
width w and thickness d. The center of the z axis is
placed at the top surface of the slab; the y-axis (along
the width direction) center is located at the center of the
slab (see Fig. 8). The y and z components of the Oer-
sted field, HY and HZ , respectively, at coordinate (y, z)
when current I is passed along the gray slab in Fig. 8 is

FIG. 8. (Color online) Schematic illustration of the setup used to
calculate the Oersted field. Current is assumed to flow in the bottom
layer (gray slab). The profile of the Oersted field is calculated in the
upper layer (blue slab).
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given [52] by (in Oersted)

HY (y,z) = I

wd
[U+

Y (y,z) − D+
Y (y,z) + U−

Y (y,z) − D−
Y (y,z)] × 10−3,

U±
Y (y,z) = 2 (z + d) arctan

[
w/2 ± y

z + d

]
+

(
w

2
± y

)
ln

[(
w

2
± y

)2

+ (z + d)2

]
, (A5)

D±
Y (y,z) = 2z arctan

[
w/2 ± y

z

]
+

(
w

2
± y

)
ln

[(
w

2
± y

)2

+ z2

]
,

HZ (y,z) = I

wd
[U+

Z (y,z) − D+
Z (y,z) − U−

Z (y,z) + D−
Z (y,z)] × 10−3,

U±
Z (y,z) = 2

(
w

2
± y

)
arctan

[
z + d

w/2 ± y

]
+ (z + d) ln

[(
w

2
± y

)2

+ (z + d)2

]
, (A6)

D±
Z (y,z) = 2

(
w

2
± y

)
arctan

[
z

w/2 ± y

]
+ z ln

[(
w

2
± y

)2

+ z2

]
.

To obtain HY in a magnetic layer (blue slab in Fig. 8) placed above the conductive slab, HY (y, z) given by Eq. (A5) can be
integrated along y from −w/2 to w/2 and along z from 0 to t (t is the thickness of the magnetic layer). We use d = 3nm for
Pt|CoFeB|MgO, d = 10 nm for CuIr|CoFeB|MgO, and w = 10 μm for both structures.
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