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Quantitative modeling of solute drag by vacancies in face-centered-cubic alloys
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Transport coefficients, the elements of the so-called Onsager matrix, are essential quantities for modeling
solid-state kinetics controlled by diffusion. In a face-centered-cubic structure, drag of solute atoms by vacancies
can be caused by solute-vacancy binding at nearest neighbors. In order to investigate solute drag in alloys with
interactions up to the third-nearest-neighbor sites, we extend an analytic method: the self-consistent mean field
method. With this method, we calculate the Onsager matrix of model alloys to identify kinetic effects arising
from individual and collective jump frequencies and assess the results on select cases using atomic kinetic
Monte Carlo simulations. Using preexisting density functional theory data from various sources, we show that
many impurities have low-temperature solute drag before changing to solute exchange at high temperatures.
We evaluate the transition temperature for these alloys between these two regimes and compare the results with
available experimental data. Some disagreement is found, which can be due both to experimental and numerical
shortcomings. In order to guide diffusion calculations, the sensitivity of the Onsager matrix to the range of the
kinetic correlation and to the input density functional theory data is studied.
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Usually, a specific microstructure is required to obtain
an alloy with outstanding mechanical properties. Controlling
the microstructure requires knowledge of atomic diffusion in
different situations, as atomic transport drives phenomena
such as the chemical homogenization during casting [1,2]
or the rate of precipitation of secondary phases during heat
treatment [3,4]. An important case is that of alloys under
irradiation where point defects are created in the bulk of
the material. These defects enhance diffusion [5], but also
induce new phenomena such as the creation of dynamical
microstructure [6] or the solute segregation and precipitation
at microstructural elements like dislocations, grain boundaries,
and surfaces [7–9]. This segregation is due to a kinetic coupling
between the point defect fluxes and the atomic species present
in the alloy. In austenitic steels, radiation-induced segregation
leads to a chromium depletion at grain boundaries under irra-
diation, which could affect corrosion resistance [9–12]. Flux
coupling can even lead to the nucleation of thermodynamically
unstable phases like Ni3Si in the case of undersaturated Ni(Si)
alloys under irradiation [8,13].

In a near-equilibrium system, the atomic flux per unit area
J α of a chemical species α is related to the gradients of
chemical potential ∇μβ of all atomic species β by the Onsager
matrix Lαβ :

�J α = −
∑

β

Lαβ
�∇
(

μβ

kBT

)
, (1)

where kB stands for the Boltzmann constant and T for the
temperature. The Onsager matrix thus describes the flux
coupling and its calculation can predict radiation-induced
segregation [11]. The Onsager matrix is also required for
accurate mesoscopic kinetic simulations such as the phase
field approach [14–16]. However, in most cases only simplified
models are being used for the description of kinetic properties;
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for example, in DICTRA only the diagonal terms of the Onsager
matrix are considered [17]. These approximations limit the
possibilities for these models to provide quantitative predic-
tions, as they miss qualitative effects induced by correlations
terms in the Onsager matrix like solute drag by vacancies. In
particular, in the presence of a gradient of chemical potential
of vacancies, solute atoms can diffuse even if the chemical
potential of solute is spatially uniform. This phenomenon
is due to the off-diagonal terms in the Onsager matrix
that are induced by kinetic correlations, and was observed
experimentally in quenched dilute alloys [18–20]. This effect
of a flux of vacancies on atomic diffusion is called the
inverse Kirkendall effect [21,22]. If a sufficiently stable solute-
vacancy complex is formed, the vacancy will drag the solute
during its migration [23], leading to solute segregation near
a vacancy sink. If, instead, the complex quickly dissociates,
then solute drag does not occur but the inverse Kirkendall
effect remains and site conservation results in a flux of atoms
in the opposite direction of the vacancies to fill the empty
spaces. If solute atoms diffuse faster than matrix, the net result
is a depletion of solute atom near the vacancy sink. In the
opposite case, with matrix atoms that diffuse faster, solute
atoms segregate near a vacancy sink, even without solute drag.

The crystal structure plays an important role in the onset of
solute drag. Consider a dilute alloy on a face-centered-cubic
(fcc) lattice, which is the focus of this work. The vacancy
can move around the solute from one first-nearest-neighbor
(NN) site of the solute to another, without breaking the solute-
vacancy complex. If the frequency for the vacancy to move
around the solute is larger than the frequency of dissociation
of the complex, the vacancy will stay on an orbit of first-NN
sites around the solute atom (which we will refer to as “1”
orbit) long enough to drag the impurities [24]. However, other
mechanisms can also induce solute drag. In a recent work [25],
it has been shown that solute drag by vacancies could take
place in an alloy on a body-centered-cubic (bcc) lattice with
solute-vacancy binding energy limited to the nearest-neighbor
sites. In this case and in contrast to the fcc lattice, the vacancy
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can not remain on first-NN sites of the solute when it diffuses
by exchanging position with solvent atoms. Nonetheless, the
vacancy can induce solute drag by alternating dissociation and
association jumps around the solute. Moreover, as shown in
Ref. [25], solute drag can also be caused by the trapping of
the vacancy in the neighborhood of the solute, or by following
other orbits when solute-vacancy interactions are important at
larger distances.

First-principles thermodynamics have been very successful
in predicting the equilibrium structure and properties of
materials, and a growing effort is being done to obtain
similarly kinetic properties of alloys by computing the fre-
quencies of atomic jumps [2,4,26–34]. Density functional
theory (DFT) results can then be coupled with analytic
models [31–36] or atomic kinetic Monte Carlo (AKMC)
simulations [26,29,30,37] to compute the Onsager matrix.
Analytic methods are extremely computationally efficient
since only a single matrix inversion is required to obtain
the Onsager matrix [24]. As a consequence, they served as
a guide to define the frequencies to compute in a number of
cases [33,36]. In practice, these methods require a truncation
of the solute-vacancy interactions. The first calculations for the
fcc structure were performed within the five-frequency model
where interactions are limited to the first-NN sites [38,39]. In
the most advanced case, second-NN interactions have been
only partially taken into account [40]. Moreover, a truncation
of the kinetic correlations is required, and has an important
effect in the case of alloys on a bcc lattice [25]. While AKMC
simulations are not limited by the number of frequencies
considered (cf. Ref. [24] and references therein), when
complex atomic interactions or strong kinetic correlations are
involved, as in the case of solute drag, the computational cost
of AKMC simulations can make their use impractical. As the
accuracy of the results provided by DFT calculations comes
at the cost of ever more complex interatomic interactions,
analytic methods remain desirable for efficient predictions and
for error estimation and propagation.

Similar to the work performed for bcc alloys [25], the aim of
this work is to understand the atomic scale origin of vacancy-
induced drag effect in fcc alloys. For that purpose, systematic
calculations of the Onsager matrix are required, including for
systems with strong kinetic correlations. In order to overcome
the limitations discussed in the previous paragraph, and gain
physical insight, we rely on an analytic method to efficiently
and systematically compute the Onsager matrix: the self-
consistent mean field method (SCMF) [25,41]. An analytic
model describes diffusion in fcc alloys with interactions up
to the third-nearest-neighbor sites. We calculate all the coeffi-
cients (Lij ) of the Onsager matrix and identify solute drag with
the drag ratio LBV /LBB , where B designates the solute atom
and V the vacancy to identify solute drag [42]. LBB is propor-
tional to the tracer diffusion coefficient and is always positive
while LBV is positive when the solute atoms are dragged by
the vacancies, and negative otherwise. As a consequence, the
sign of the drag ratio is determined by LBV , which measures
the correlation in the diffusion of solute atoms and vacancies,
and LBB serves as a scaling factor. In the dilute limit, the drag
ratio is independent of the vacancy and solute concentration.

We first briefly recall the general nomenclature for vacancy-
atom exchanges and the results of the SCMF approach.

We analytically calculate the Onsager matrix in a fcc alloy
with solute-vacancy interactions up to third-NN sites that
can be described by a set of 16 different frequencies. Next,
we investigate the conditions for solute drag using AKMC
simulations on select cases for verifying SCMF results. We
determined the effect of each atomic frequency independently
in the case of an ideal model alloy, and some collective
effects are explored to identify the phenomena at the origin
of solute drag by the vacancy. Finally, using DFT data from
the literature, we identify the onset of solute drag for several
Al-based, Ni-based, and UC-based fcc alloys and comment on
the reliability of the results.

I. ANALYTIC CALCULATIONS OF THE ONSAGER
MATRIX BY THE SCMF METHOD

We consider an alloy represented by a system of interacting
atoms and vacancies distributed on a rigid lattice, where
consecutive atomic jumps are considered to be independent
random events, with stationary probability. In the case of
a binary dilute alloy, where we consider vacancy-mediated
kinetic events only, each transition from one configuration to
another is due to the jump of an atom from an atomic site
into the vacancy. Using the three-index notation defined in
Ref. [25] for dilute alloys, the transition frequency between
two configurations can be written w

(ζ )
abc, where each index

defines the relationship between two sites: a is the distance
(in nearest-neighbor distances) from the site of the jumping
atom to the vacancy site, b the distance from the site of
the jumping atom to the solute site, and c the distance from
the site of the solute to the vacancy site (see Fig. 1). As a
consequence, b designates the vacancy-solute distance after
the jump, while c is the distance before the jump. Moreover,
for any distance beyond the solute-vacancy interaction range,
the value ∞ is assigned to the index, as the numerical value is
no longer relevant. The type of jump is identified with an index
ζ corresponding to the five-frequency notation illustrated in
Fig. 2: ζ = 2 for a jump of the solute atom, ζ = 0 for a jump
of a matrix atom without any solute in interaction range, ζ = 1
for a jump between two sites interacting with the solute, ζ = 3
for a dissociative jump leading to a configuration where the
solute atom is outside the interaction range, and ζ = 4 for an

FIG. 1. Schematic of a vacancy jump in a dilute alloy in the
initial configuration n (top) and final configuration m (bottom). The
full circles represent the solute atom, the open circles a matrix atom,
and the squares a vacancy, while a,b,c describe the distances between
each species.
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FIG. 2. Vacancy jump frequencies in a dilute fcc binary alloy with
first-nearest-neighbor interactions. Arrows indicate the direction of
the jumps. The solute atom is represented by a filled circle, and the
numbers on lattice sites indicate the distance from the solute atom
site, while an ∞ indicates sites beyond the range of the interactions.

associative jump leading to a configuration where the solute
atom is inside the interaction range.

The SCMF method was developed initially for computing
the Onsager matrix in vacancy-mediated diffusion in regular
solid solutions (corresponding to a mean field Bragg-Williams
approximation in alloys) [41] and later improved to take into
consideration pair correlations [43]. A detailed description
of the SCMF method can be found in Ref. [25]. A SCMF
calculation is based on an atomic diffusion model related to
the maximum range of the solute-vacancy interactions. Once
this range is defined, the use of the SCMF method involves
performing a single approximation: beyond a given distance,
kinetic correlations are neglected. Considering interactions
up to the first-nearest-neighbor sites, in the most simple
calculations (usually called first shell approximation, here de-
noted 1NN), the kinetic correlations are neglected beyond the
first-nearest-neighbor sites [38]. In a more refined calculation
called second shell approximation, all the nearest-neighbor
sites of these 12 sites are also included in the calculation of the
kinetic correlation. SCMF calculations have been previously
run in this approximation, here denoted 1NN1NN [43], which
produces good agreement with other analytic methods [24].
In order to study the effect of the truncation of kinetic
correlations, we performed more extended calculations. Extra
shells were iteratively added for this purpose, increasing the
number of sites involved by adding the ensemble of sites
that can be reached by one jump starting from any site of
the previous shell, resulting in a series of approximations
1NN(1NN)k , where k takes an integer value.

In this work, in order to study alloys with solute vacancy
interactions up to the third-nearest-neighbor sites, SCMF
calculations were performed considering all the sites up to
the third-nearest neighbors of the third-nearest-neighbor sites
of the solute atom. Analytic results for this approximation,
called 3NN3NN approximation, are given in the Appendix,
and a routine is provided in the Supplemental Material [44] to
reproduce the results obtained within this approximation and
extending them to other alloys as input data become available.
As this approximation is designed to handle systems with

third-nearest-neighbor interactions, it is also able to provide
results for systems with shorter-range interactions.

II. DRAG EFFECT MECHANISM
IN THE FIVE-FREQUENCY MODEL

The reference five-frequency model is designed to describe
alloys on a fcc lattice with vacancy-solute binding energy
limited to first-NN sites. Using SCMF calculations in the
3NN3NN approximation, the onset of solute drag in an
alloy described by this model is investigated. The terms of
the Onsager matrix are nonlinear functions of the different
frequencies. However, the drag ratio LBV /LBB describes
the relative diffusion speed of the pair solute vacancy with
respect to the diffusion of solute atoms, and so depends
only on the ratios of the frequencies with w

(0)
1 . Moreover,

as solute-vacancy exchanges do not change the barycenter of
the pair, the corresponding frequency w

(2)
1 does not impact the

drag ratio. Finally, detailed balance determines the value of the
ratio of two variables w

(4)
11∞ and w

(3)
1∞1 from the solute-vacancy

binding energy.
We define an ideal model alloy as a solution in which

solute-vacancy binding energies are null at all distances (zero
heat of mixing), but in which the solute still disturbs the jump
frequencies in its neighborhood. In this case, due to detailed
balance w

(4)
11∞ = w

(3)
1∞1. Thus, the drag ratio of an ideal model

alloy described by the five-frequency model depends only
on two different parameters: w

(4)
11∞/w

(0)
1 and w

(1)
111/w

(0)
1 . In

Fig. 3, the value of the drag ratio computed using the SCMF
method is represented as a function of w

(4)
11∞/w

(0)
1 , in the 1NN,

1NN1NN, and 3NN3NN approximations for a model alloy
with w

(1)
111/w

(0)
1 = 1. In order to validate the SCMF results

and the choice of the kinetic approximation, atomic kinetic
Monte Carlo simulations are performed to compute Onsager
matrices using atomic jump frequencies identical to those used
in SCMF calculations. AKMC simulations were performed

FIG. 3. (Color online) LBV /LBB ratio in a dilute fcc binary
alloy described by the five-frequency model as a function of the
ratio w

(4)
11∞/w

(0)
1 . Points represent the results of AKMC simulations,

while the continuous (resp. dotted and dashed) lines represent
SCMF calculations in the 3NN3NN (resp. 1NN and 1NN1NN)
approximation. Error bars represent the statistic variance of the
AKMC results.
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using a 4 × 103 site simulation box containing a single solute
atom and a single vacancy. The initial configuration is obtained
by choosing random locations for the vacancy and the solute
atom, and equilibrating the system for 10 Monte Carlo steps
(MCS) (1MCS = 2 × 123 vacancyjumps). Displacements of
the atoms are recorded during 10MCS and the values averaged
over 106 simulations. The Onsager matrix is obtained using the
Kubo-Green formula [45,46]

Lαβ = cv

〈
RαRβ

6V τ

〉
, (2)

where cv is the vacancy concentration, V is the atomic volume,
and Rα the total displacement of all atoms of type α during
the integration time τ . As a single vacancy is present in the
simulation box, the Onsager matrix thus obtained corresponds
to the dilute limit in vacancy concentration, even though
the nominal concentration might be high. As in the dilute
limit the Onsager matrix is a linear function of the vacancy
concentration, the Onsager matrix of a system with a more
realistic vacancy concentration can be obtained by replacing
the nominal vacancy concentration with the desired vacancy
concentration. The AKMC simulations show that the 1NN
approximation fails to predict the qualitative kinetic behavior
of the model alloy, as in the 1NN approximation LBV remains
negative for any value of w

(4)
11∞/w

(0)
1 > 1. In comparison, the

1NN1NN approximation predicts the frequency at which this
change of sign of LBV occurs with a relative accuracy of 50%,
while the 3NN3NN predicts this value within 5%.

Figure 4 provides a complete picture of the onset of solute
drag as a function of both w

(4)
11∞/w

(0)
1 and w

(1)
111/w

(0)
1 , in the

case of an ideal model alloy described by the five-frequency
model. It can be observed that solute drag occurs either when
w

(4)
11∞/w

(0)
1 � 20 or when w

(1)
111/w

(4)
11∞ � 10. The first case

corresponds to a vacancy turning around the solute atom by
alternating dissociative and associative jumps. This situation
is similar to what happens in the bcc structure described
by the four-frequency model [25], where this movement has
been called “1+” orbit. In the second case, w

(1)
111/w

(4)
11∞ � 10

FIG. 4. (Color online) Contour map of LBV /LBB as a function
of the ratios of frequencies w

(1)
111/w

(0)
1 and w

(4)
11∞/w

(0)
1 . The black

continuous line signals the onset of solute drag, while the dashed one
shows LBV = −LBB . The two dotted lines represent the equations
w

(4)
11∞ = 20w

(0)
1 and w

(1)
111 = 10w

(4)
11∞.

means that the vacancy turns around the solute from a nearest-
neighbor site to another faster than it can escape from the
solute and return to the bulk. The vacancy is thus trapped near
the solute, which also occurs in the bcc structure, but only
when interactions extend beyond first-NN sites [25]. As a ratio
of 10 between two frequencies corresponds to a difference of
migration barriers of the order of 50 meV at room temperature,
vacancy trapping by the solute can be reasonably expected in
real alloys.

III. DRAG EFFECT MECHANISM IN
THE 16-FREQUENCY MODEL

In a dilute binary alloy, when solute-vacancy interactions
are considered up to third-nearest-neighbor sites, 16 different
frequencies are required to fully describe the movements of
the vacancy among the 42 sites in interaction with the solutes
and all their NN sites. Following the notation recalled in Sec. I,
w

(0)
1 describes vacancy jumps in the bulk, far away from any

solute atom, and w
(2)
1 describes the vacancy-solute exchanges.

Eight different frequencies describe the jump of the vacancy
from a site in interaction with the solute toward another one:
w

(1)
111, w

(1)
121, w

(1)
112, w

(1)
131, w

(1)
113, w

(1)
132, w

(1)
123, and w

(1)
133. The next

six frequencies describe the dissociation of the vacancy-solute
pair (w(3)

1∞1, w
(3)
1∞2, w

(3)
1∞3) or their association (w(4)

11∞, w
(4)
12∞,

w
(4)
13∞). Figure 5 provides a representation of the displacements

to which these frequencies are associated.
The SCMF method used in the 3NN3NN approximation

can evaluate the impact on the Onsager matrix of each of the
16 frequencies. The terms of the Onsager matrix are nonlinear
functions of the jump frequencies, and so is the case for the
drag ratio LBV /LBB . Due to the high number of parameters,
a complete parametric study is out of reach. In an ideal
model alloy, detailed balance requires each jump frequency
wX

abc to be identical to its return jump frequency wY
acb. The

number of parameters required to describe an ideal model alloy
from a kinetic point of view is thus reduced to nine different
frequencies. To identify the main trends, the independent effect

FIG. 5. Vacancy jump frequencies in a dilute fcc binary alloy with
third-nearest-neighbor interactions. Arrows indicate the direction of
the jumps. The solute atom is represented by a filled circle, and the
numbers on lattice sites indicate the distance from the solute atom
site while an ∞ indicates sites beyond the range of the interactions.
Names of the return jumps have been omitted for the sake of clarity.
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of each frequency on such a system is studied. Collective
effects involving several frequencies are then investigated.
Nonideal alloys have also been studied within two classic
models: the linear interpolation of the migration barrier and
the broken bond model. These results can be found in the
Supplemental Material [44].

A. Independent effect of each frequency

As a first approach, the effect of each frequency is studied by
considering an ideal model alloy where all jump frequencies
are identical with the exception of a single frequency and
the corresponding return jump frequency. Results of SCMF
calculations performed in the 3NN3NN approximation for this
system are represented in Fig. 6. The drag ratio LBV /LBB is
plotted as a function of each frequency while all the others are
kept at a fixed identical value. As solute-vacancy exchanges
do not change the barycenter of the solute-vacancy pair, the
corresponding frequency w

(2)
1 does not impact the drag ratio.

Four different frequencies can lead independently to solute
drag: w

(1)
111, w

(1)
112, w

(1)
113, and w

(4)
13∞. The effect of w

(1)
111, which

induces drag by displacements of the vacancy on the “1”
orbit, had already been identified in the five-frequency model
and remain unchanged. However, the frequency w

(4)
11∞ of the

five-frequency model, that induces drag by displacements of
the vacancy on the “1+” orbit, is split in three different ones
in the 16-frequency model: increasing w

(1)
112 and w

(1)
113 induces

drag, while w
(4)
11∞ appears to have an opposite effect. This

differentiation of the behavior can be understood by observing
the fcc structure. As can be seen on Fig. 5, the vacancy
can orbit around the solute by alternating either first- and
second-nearest-neighbor sites on a so-called “1-2” orbit or
first- and third-nearest-neighbor sites on a “1-3” orbit, while
the fourth-nearest sites reached from a first-nearest-neighbor
site is not neighboring any other first-nearest-neighbor sites,
and the vacancy escapes from the solute. This last route thus
reduces the drag ratio. These displacements are summarized
on Fig. 7, where these pathways are represented in a simplified
manner. Finally, jumps between third- and fifth-nearest sites,

FIG. 6. (Color online) Parametric study of LBV /LBB in a dilute
fcc binary alloy within the 16-frequency model. For each curve, all
frequencies but the designated one are equal to w

(0)
1 .

FIG. 7. Schematic pathways of the vacancy around the solute
atom in a fcc alloy that involve first-nearest-neighbor sites. The filled
circle represents the solute atom, the arrows the possible vacancy-
atom exchanges, with a different style of line for each unique site-
pairing type.

controlled by the frequency w
(4)
13∞, also allow the vacancy to

orbit around the solute, and thus induces solute drag.

B. Collective effect

Figure 6 shows that an increase of the w
(1)
123 or the w

(1)
133

frequency increases the drag ratio. However, this effect is
too weak to induce solute drag by the vacancy. As the
drag ratio is a nonlinear function of the jump frequencies,
collective effects may still appear. The drag ratio has thus
been computed in the 3NN3NN approximation as a function
of both w

(1)
123 and w

(1)
133 and the results are displayed on Fig. 8.

The simultaneous increase of the two frequencies leads to
solute drag. This behavior can be explained by observing the
fcc structure, which allows the vacancy orbiting around the
solute by performing alternatively the two kinds of jumps on
a more complex “2-3-3” orbit.

Similarly, the sequence 2-5-3-5 (in NN distance from the
solute) can induce solute drag. This path is similar to the
“2-4-3-4” orbit of the bcc lattice described in Ref. [25]. In
both cases, one of the frequencies involved already allows

FIG. 8. (Color online) Contour map of LBV /LBB as a function
of the w

(1)
123 and w

(1)
133 frequency. The black continuous line signals the

onset of solute drag, while the dashed one shows LBV = −LBB .
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FIG. 9. Schematic pathways of the vacancy around the solute
atom in a bcc alloy that do not involve first-nearest-neighbor sites.
The filled circle represents the solute atom, the arrows the possible
vacancy-atom exchanges, with a different style of line for each type
of bond.

solute drag on the simpler “3+” orbit. The pathways involving
the third-nearest-neighbor sites are represented on Fig. 9 for
the fcc lattice. The w

(4)
13∞ allows solute drag by motion of the

vacancy on the “3+” orbit, which masks the effect of the more
complex 2-5-3-5 orbit. As a consequence, this orbit has very

little effect on solute drag, as illustrated on Fig. 10. In this
figure, the drag ratio is represented as a function of both w

(4)
12∞

and w
(4)
13∞ for different values of w

(4)
11∞. Increasing w

(4)
12∞ has

nearly no effect on the drag ratio when w
(4)
11∞ > 1. However, for

w
(4)
11∞ � 1, an area where solute drag takes place appears at low

values of w
(4)
13∞ and w

(4)
13∞. This area corresponds to a trapping

effect similar to the one observed in the five-frequency model.
By reducing simultaneously these three frequencies, an area
surrounding the solute atom is isolated from the bulk of the
crystal. The trap corresponds this time to the 42 sites that are
either first-, second-, or third-nearest neighbor of the solute. A
vacancy that enters this zone will then jump many times around
the solute before escaping, and will induce solute drag.

IV. PREDICTION OF SOLUTE DRAG
IN SPECIFIC ALLOYS

With the improvement of computing capacities, calcula-
tions of the exchange frequencies using DFT are becoming
more common. Using Vineyard’s harmonic transition state
equation [47], the frequency w

(ζ )
abc can be written as the product

of an attempt frequency ν and the exponential of the product of
a migration barrier energy Emig and the inverse thermodynamic

FIG. 10. (Color online) Contour map of the LBV /LBB ratio as a function of the w
(4)
12∞ and w

(4)
13∞ frequency. (a) for w

(4)
11∞ = 5w0, (b) for

w
(4)
11∞ = w0, (c) for w

(4)
11∞ = 0.5w0, and (d) for w

(4)
11∞ = 0.2w0. The black continuous line signals the onset of solute drag. The dashed line used

for clarity corresponds to LBV = −LBB .
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temperature β = (kBT )−1:

w
(ζ )
abc = ν(ζ,abc)e−βEmig(ζ,abc). (3)

In the following, the dependencies of ν and Emig on
ζ, a, b, and c will be omitted when no confusion is possible.
In a bottom-up approach, DFT calculations can provide ν and
Emig for each frequency. These results can be used with SCMF
calculations to predict the onset of solute drag in specific
alloys. Using data from various sources in the literature, drag
ratios are computed for various alloys. We evaluate the effect
of potential sources of error on the reliability of the results and
compare to experimental results.

A. Drag ratio from first-principles calculation

Exchange frequencies for dilute alloys computed from first
principles have been published by several groups studying dif-
fusion properties in fcc alloys [33,34,36,48–50]. In the absence
of complete analytic model for longer-range interactions,
these frequencies have been used within the five-frequency
model even when interactions beyond first-NN sites where
non-negligible. In that case, as the vacancy can jump from a
first-nearest neighbor of the solute towards either a second-,
third-, or fifth-nearest-neighbor sites, three different w

(3)
1∞1

frequencies and three different w
(4)
11∞ can be computed. While

this fact is ignored in Ref. [33], Refs. [34,36] compute a
weighted arithmetic average of the corresponding migration
barriers for a 1NN1NN calculation within the five-frequency
model.

The resulting five-frequency model can be used to in-
vestigate the likelihood of the occurrence of solute drag in
specific alloys. The results for the Ni(Cr), Ni(Fe), Ni(Si),
Al(Cu), Al(Mg), Al(Si), UC(Zr), and UC(Xe) are presented
on Fig. 11. The SCMF calculations were performed in the
1NN, 1NN1NN, and 3NN3NN approximations as a function of
temperature. It can be seen that while the 1NN approximation
provides sometimes qualitatively wrong results, the 1NN1NN
approximation can provide quantitatively acceptable results
compared with the 3NN3NN approximation. In these cases,
solute drag by vacancies is taking place at low temperature
but disappears at higher temperature. However, in many cases
solute drag does not take place at low temperatures. In
Refs. [49,51], a systematic calculation of the nearest-neighbor
binding energy and of the five frequencies for the diffusion of
various impurities in Al has been performed. Using 3NN3NN
calculations, it was found that in many cases solute drag
does not take place at low temperature, when the inequality
w

(1)
111 > w

(4)
11∞ > w

(0)
1 is verified. To identify the changes of

regime for these alloys, the flux ratio φ = 1
cB

LBV

LV V
is computed.

As in the dilute limit φ = − 1
cB

LBV

LAV
, a crossover related to

the relative diffusion speed of impurities and matrix atoms
occurs at φ = −1. For φ > 0, solute drag occurs and an
enrichment near vacancy sinks is expected. For 0 > φ > −1,
the inverse Kirkendall effect results in an enrichment despite
the absence of solute drag, while for φ < −1, a depletion of
solute atoms near the sink is expected. The temperatures at
which φ = 0 and −1 are both presented in Table I as Tdrag and
Te, together with the orbit responsible for solute drag. Across
the different systems, Tdrag varies from a few tens of Kelvin

to more than a thousand. This variation is primarily due to the
difference between the migration enthalpies, which range from
approximately 0.01 eV for w

(0)
1 and w

(4)
11∞ and for Ni(Fe) and

for w
(1)
111 and w

(0)
1 for Al(Mg), and to 0.2 eV for the difference

between w
(0)
1 and w

(1)
111 for Al(Cu). In the case of UC(Xe), the

large difference of 0.8 eV between the migration barriers of
w

(0)
1 and w

(4)
11∞ results in a transition temperature exceeding

2000 K.
In alloy systems where the three association frequencies

are significantly different, one expects non-negligible inter-
actions beyond the first-nearest-neighbor distance. Taking
these interactions into account is likely to be required to
obtain quantitative estimations not only of the Onsager matrix,
but also of the diffusion coefficients. The choice of Tucker
et al. [34] and Bévillon et al. [36] to rely on the arithmetic
average of the migration barriers corresponding to the different
associative or dissociative exchanges to describe the migration
barriers of the effective dissociation and association exchanges
is a convenient way to obtain a five-frequency model. However,
as jump frequencies are exponential functions of the migration
barrier, from a mathematical point of view, an average of the
jump frequencies and not of the migration barrier would be
more suitable, especially at low temperature where the behav-
ior is controlled by the lowest migration barrier. Moreover,
the discussion in Sec. III shows that the five-frequency model
can be insufficient to describe some solute drag mechanisms.
To illustrate the effect of each approximation, we consider a
Ni(Si) alloy for which the 16 frequencies required to fully take
into account interactions up to the third-NN sites have been
computed.

The averaging procedure introduced in Ref. [34] can be
performed on this system to reduce it to only 5 frequencies but a
full calculation with the 16 frequencies can also be performed.1

In the Ni(Si) case, the migration barrier of the dissociation
jumps w

(3)
1∞1, w

(3)
1∞2, and w

(3)
1∞3 are, respectively, 1.128, 1.066,

and 1.068 eV, while the migration barriers of the association
jumps w

(4)
11∞, w

(4)
12∞, and w

(4)
13∞ are, respectively, 1.028, 1.077,

and 1.112 eV. Figure 12 shows the results obtained by using
the 16 frequencies, 5 frequencies averaged using the procedure
introduced in Ref. [34] and a truncated set of 5 frequencies
where w

(3)
1∞1 = w

(3)
121 and w

(4)
11∞ = w

(4)
112. In the case of the

Ni(Si) alloy, the approximation performed by averaging the
association frequencies does not impact the qualitative picture
concerning solute drag. However, based on the understanding
of the origin of solute drag as described in Sec. III, this
approximation can provide qualitatively misleading results if
w

(1)
111 < w

(0)
1 and no higher orbit displacement nor trap effect

takes place, as it is the case when either w
(1)
112 < w

(0)
1 < w

(1)
113

or w
(1)
112 > w

(0)
1 > w

(1)
113 or w

(0)
1 < w

(4)
11∞. In these cases, using a

more complete model that takes into account interactions up to
second- or third-nearest-neighbor distances appears necessary
to establish the presence of solute drag.

1A full calculation that considers third-nearest-neighbor interac-
tions is impossible from the results of Tucker et al. or Bevillon et al.
as only 9 out of the 16 frequencies have been computed.
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FIG. 11. (Color online) LBV /LBB ratio as a function of the temperature for different alloys described by the five-frequency model. In
each case, the LBV /LBB ratio is computed using the 1NN, the 1NN1NN, and the 3NN3NN approximations using data from first-principles
calculations from Refs. [33,34,36,48]. When several values for the migration barriers of w

(3)
1∞1 and w

(4)
11∞ are available, the five-frequency model

is obtained by averaging the different corresponding migration enthalpies.

B. Reliability of the SCMF prediction of solute drag

The reliability of the solute drag prediction is studied
by analyzing potential sources of error. The effect of the

truncation of kinetic correlations is first studied. The sensitivity
of the results with the input parameters is then explored.
Finally, a comparison with experimental results is performed.
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TABLE I. Transition temperature between solute drag at low temperature and no drag at high temperature, and between enrichment and
depletion regimes for different alloys described by the five-frequency model. When solute drag takes place, the orbit allowing it is provided.
Original data are extracted from Refs. [33,34,36,48,49]. n.t. stands for no transition.

Matrix Impurity Tdrag Orbit Te (K) Matrix Impurity Tdrag (K) Orbit Te(K)

UC Xe >2000 [36] 1 n.t. UC Zr 1220 [36] 1 n.t.

Ni Cr 400 [34] 1 500 Ni Fe 40 [34] 1+ 40
Ni Si 1160 [48] 1 1250 Al Li 240 [49] 1 300
Al Zr 1800 [49] 1+ n.t. Al Ho 360 [49] 1+ 380
Al Zn 320 [49] 1 780 Al Ca n.t. [49] n.t. n.t.

Al Dy 80 [49] 1+ 85 Al Au 820 [49] 1 n.t.

Al Tl n.t. [49] n.t. n.t. Al Sc 840 [49] 1+ n.t.

Al Y 120 [49] 1+ 125 Al Cu 1300 [33], 1100 [49] 1 n.t.

Al In n.t. [49] n.t. n.t. Al Lu 640 [49] 1+ 900
Al Tb 40 [49] 1+ 40 Al Ag 380 [49] 1 n.t.

Al Ga 180 [49] 1 890 Al Tm 500 [49] 1+ 560
Al Mg 40 [33], 80 [49] 1+ 40 [33], 85 [49] Al Gd n.t. [49] n.t. 170
Al Pb n.t. [49] n.t. n.t. Al Er 320 [49] 1+ 330
Al Sm n.t. [49] n.t. 820 Al Hg n.t. [49] n.t. n.t.

Al Sn n.t. [49] n.t. n.t. Al Cd n.t. [49] n.t. 1560
Al Ge 160 [49] 1 2000 Al Bi n.t. [49] n.t. n.t.

Al Si 600 [33], 440 [49] 1 n.t. Al Sb n.t. [49] n.t. n.t.

1. Convergence with the number of shells

The SCMF calculation of the Onsager matrix requires trun-
cating the kinetic correlations. The impact of this truncation
has been shown in the case of the five-frequency model on
Fig. 3. In order to evaluate quantitatively the impact of this
truncation on the Onsager matrix, the convergence of the
terms of the Onsager matrix has been studied with respect
to the number of shells k. The Onsager matrix of a five-
(resp. four-) frequency alloy on a fcc (resp. bcc) lattice

FIG. 12. (Color online) LBV /LBB ratio as a function of the
temperature for the Ni(Si) alloy. In each case, the LBV /LBB ratio
is computed using the 3NN3NN approximation, using data from
first-principles calculations from Ref. [48]. The black continuous
line corresponds to a five-frequency model obtained by considering
only the w

(1)
121 and w

(1)
112 for the dissociation and association events,

the red dashed line corresponds to a five-frequency model obtained
by averaging the different jump frequencies corresponding to the
dissociation and association events, and the dotted line to the
16-frequency model.

has been computed in the 1NN(1NN)k−1 approximation for
various values of k. Assuming the error performed using
the 1NN(1NN)7−1 approximation to be negligible, we define
the relative truncation error εij (k) = Lij (k)−Lij (7)

Lij (7) between the

values computed using the 1NN(1NN)k−1 approximation and
the one computed using the 1NN(1NN)7−1 approximation. As
the bare mobility is not affected by the truncation error, the
error is maximum for the nondiagonal terms of the Onsager
matrix. As shown on Fig. 13, the terms of the Onsager matrix
converge exponentially with the number of shells, following a
law εij (k) = AB−k . The prefactor A varies by several orders
of magnitude according to the lattice structure and the values
of the ratio w

(4)
11∞/w

(0)
1 , while 2.5 < B < 3.5.

FIG. 13. (Color online) Relative error εAB (k) as a function of
the number k of shells considered in a SCMF calculation in the
1NN(1NN)k−1 approximation for an ideal fcc alloy described by the
five-frequency model and on an ideal bcc alloy described by the four-
frequency model. Results are displayed for w

(2)
1 = w

(1)
111 = w

(0)
1 and

different values of w
(4)
11∞/w

(0)
1 .
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When w
(4)
11∞/w

(0)
1 = 1, the LBB term of the Onsager matrix

is proportional to the correlation factor f . Let 〈cos(θ )〉 be
the average angle between two consecutive jumps of the
vacancy; the correlation factor can be written as f = 1 +
2
∑

q〈cos(θ )〉q , where each term corresponds to the correlation
induced by a sequence of q consecutive jumps [52]. By
truncating the correlation beyond the kth shell, a SCMF
calculation performs an exact calculation of the correlations
due to a sequence of k jumps, but induces a partial truncation
of the terms for q > k, which results in an exponentially
decreasing error. If high accuracy is required for a calculation
of the Onsager matrix, this exponential convergence could be
used to extrapolate the results obtained for a low value of the
number of shells.

2. Sensitivity to the prefactors

Solute drag depends on the relative values of the different
frequencies. DFT calculations are now able to provide accurate
data for the migration barriers, but determination of the pref-
actor is a more difficult task [33,48]. Even if the frequencies
are mostly determined by the migration barriers, the question
of the effect of inaccuracies on the prefactor remains. To study
this problem, we used two examples from the alloys presented
in the previous section. We studied the effect of a variation of
the prefactors ν1 and ν4 of the frequencies w

(1)
111 and w

(4)
11∞ on

the crossover temperature of the onset of solute drag. For that
purpose, values ν that differ from the original prefactors ν∗ by
a factor within [ 1

2 ,2] were used to estimate the impact of an
error on the prefactors. As our point is not to study the effect
of a variation of the binding free energy, the frequencies w

(3)
1∞1

and w
(3)
11∞ have been modified similarly. The results are being

displayed on Fig. 14.
In the case of the Ni(Fe) alloy, solute drag is due to the

“1+” orbit, controlled by the w
(4)
11∞ frequency. The crossover

temperature is then completely insensitive to the value of ν1,
but varies substantially with ν4. In the case of the Al(Cu)
alloy, solute drag is instead due to the “1” orbit, controlled
by the w

(1)
111 frequency. The crossover temperature is then

FIG. 14. (Color online) Temperature Tdrag of onset of solute drag
as a function of the prefactor for the Ni(Fe) and Al(Cu) alloys.
Prefactors ν1 and ν4 are varied independently. Both the temperature
and the prefactors are normalized by the values of the original model
T ∗

c and ν∗.

very sensitive to the values of ν1, but a lesser and nonlinear
dependency with ν4 also appears. Thus, it appears that the
value of the prefactor of the frequency controlling the orbit
causing solute drag has a non-negligible effect on the crossover
temperature, while the impact of the other is much lesser. As
a consequence, in order to accurately predict solute drag in
a given alloy, the prefactors of the frequencies controlling
that orbit need to be carefully evaluated. This sensitivity to
the attempt frequencies can also be translated in terms of
accuracy of the migration barrier. As an error of the order of
10 meV on the migration barrier corresponds to multiplying
the jump frequency by a factor 1.5 at room temperature, an
accuracy of the migration barrier of the order of a few meV is
required.

3. Comparison with experiments

Using results from different experiments [18,53–56], flux
ratios have been computed for several alloys on fcc lat-
tices [19]. Results presented in Refs. [54,56] can be compared
to some extent with the DFT data for the Al(Ge), Al(Mg),
Al(Zn), and Al(Cu) alloys presented in Sec. IV A. These
experiments, conducted near the melting temperature Tmelt

of aluminum at, respectively, T = 860 K = 0.92Tmelt and
T = 760 K = 0.81Tmelt, provide estimates of the ratios of
solute flux over the vacancy JB

cB (JV ) , which is equal in these

experiments to the ratio 1
cB

LBV

LV V
. In the cases of Al(Ge), a

depletion of solute near the sink is found, which corresponds
to a flux ratio below −1. In the case of Al(Zn) and Al(Mg), an
enrichment near the sink is found, which indicates a flux ratio
larger than −1. Finally, in the case of Al(Cu), no segregation
could be measured and this inconclusive result is interpreted
as the indication of a flux ratio equal to −1.

These results, presented in Table II, can be compared to
the results of DFT calculations. The sign of the flux ratio is
correctly predicted by DFT calculations in the case of Zn,
Ge, and Mg impurities. However, a qualitative disagreement
appears in all cases, with DFT calculations predicting an
enrichment of Ge and Cu and a depletion of Mg and
Zn. Similarly, the results of interdiffusion experiments can
be interpreted using the Onsager matrix. Reference [57]
provides experimental determinations of the ratio of dif-
fusivity in the Al(Zn) alloy. In the dilute limit, they can
be expressed as functions of the terms of the Onsager
matrix

DB

DA

=
LBB

CB
− LAB

CA

LAA

CA
− LAB

CB

. (4)

TABLE II. Flux ratios 1
cB

JB

(JV ) at 760 K for the Al(Mg) system and
860 K for the other alloys according to the DFT data from Ref. [49]
and experimental data from Ref. [19] and references therein.

System DFT flux ratio Experimental flux ratio

Al(Ge) −0.39 −1.92
Al(Mg) −3.54 >−1
Al(Zn) −1.15 −0.92
Al(Cu) 0.64 −1
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These experiments, performed at 830 K for Al(Zn), provide for
this ratio a value of 1.7, while a calculation based on the five
frequencies obtained by Simonovic and Sluiter [49] provides
a value of 1.1.

The discrepancies between DFT and experimental results
might have several origins. First, the accuracy of DFT results
can be questioned. The sensitivity of the crossover temperature
on the prefactors has been studied in Sec. IV B 2 and can
be partly responsible for the discrepancy as it was shown
it could modify the transition temperature by a factor 2.
Moreover, these models are based on a calculation including
a single dissociation frequency. As discussed in Sec. IV A,
this reduction to the five-frequency model might also cause
the disagreement observed. The presence of solute-vacancy
interactions beyond the first-NN sites would change the
diffusion properties. However, several experimental causes
can explain the disagreement. The experiments have been
performed at high temperature, in the vicinity of the melting
point. At these temperatures, the energy landscape is modified
due to thermal expansion or lattice vibration. None of these
high-temperature effects have been considered in the DFT data
available for this problem. Also, high temperatures increase
the concentration of divacancies and introduce a competing
diffusion mechanism; sinks generate strain fields that can
alter the diffusion properties [48]. Finally, the interpretation of
these experiments includes some approximations. Specifically,
they rely on the hypothesis of a negligible gradient of solute
concentration, which is valid only in the initial state. Thus, the
final result could be affected by the formation of gradients of
solute concentration.

V. CONCLUSION

The goal of this study was to explore the onset of solute
drag in fcc alloys, to identify the mechanisms involved, and
to evaluate the reliability of theoretical prediction of solute
drag. To that end, we analytically calculated the Onsager
matrix in dilute fcc alloys with solute-vacancy interactions
up to third-nearest-neighbor sites and with extended kinetic
correlations. One of the first results of this paper is the
derivation of analytic expressions for the Onsager coefficients
in this case. Comparison with AKMC simulations and a study
of the convergence of SCMF calculation with respect to the
number of shells considered for the calculation of the kinetic
correlation showed that SCMF results converge exponentially
and that the 3NN3NN approximation is often a reliable method
to predict solute drag. The onset of solute drag has been studied

using this approximation. We identified several paths for the
vacancy to orbit around the solute atoms. Collective effects,
involving different types of jumps with low escape frequencies,
can also trigger solute drag if they isolate an orbit around
the solute from the matrix. Calculations applied to a model
dilute alloy with interactions up to third-nearest-neighbor sites
identified cases where solute drag could take place. Using DFT
data from previous works, we found solute drag by vacancies
under a broad set of conditions; solute drag should be con-
sidered as a fairly common phenomenon at low temperatures.
Unfortunately, no experimental data of solute drag is available
at low temperature to confirm the results obtained numerically,
and many reasons can explain the discrepancies found at high
temperature. Finally, in order to guide future DFT studies of
diffusion, a study of the sensitivity of solute drag to the attempt
frequencies has been performed. We demonstrate that the
crossover temperature can be very sensitive to the prefactors
of some jump frequencies. This study shows that qualitative
effects of the relative values of the attempt frequencies can
not be dismissed. Despite this sensitivity, the combined use of
DFT results with SCMF calculations provides a powerful tool
for the prediction of solute drag in alloys, including the onset
temperature.
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APPENDIX: ANALYTIC EXPRESSIONS FOR 3NN3NN
SCMF COMPUTATIONS IN fcc ALLOYS

We consider an alloy on a Bravais lattice under a homo-
geneous gradient of chemical potential oriented by the unit
vector �u. A state of the alloy is defined by a vector n, the
component of which are the occupation numbers of all species
on all sites {nA

1 ,nB
1 , . . . ,nν

1,n
A
2 , . . .} such that nX

i = 1 if the
site i is occupied by the species X ∈ {ν,A,B, . . .} and zero
otherwise. Let α,β,γ,η,ζ designate atomic species, �eis be the
vectors linking sites i and s in a system of volume V tot,
�v be a unit vector in the direction of diffusion, and �u be
the unit vector in the direction of the gradient of chemical
potential. As detailed in Ref. [25], the Onsager matrix can be
written as

L
αβ

�v,�u = 1

2V tot

∑
is

⎡
⎣

⎛
⎝l

αβ

is,(0)
�eis − 2

∑
mj,pq,γ,σ,ζ

�
α,αγ

is,mj
(T −1)αγ,σζ

mj,pq
�Mσζ,β

pq

⎞
⎠ · �u

⎤
⎦ �eis · �v, (A1)

where the first sum is performed over all the pairs of sites i,s.
The values of the different elements involved in this equation
are provided here in the case of the 3NN3NN approximations

for a fcc dilute binary alloy. They are also made available
in the Supplemental Material [44] together with a Matlab R©
routine that computes directly the Onsager matrix from a set
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of 16 frequencies. In a structure with a cubic symmetry like
the fcc structure, the diffusion properties are isotropic and we
can write L

αβ

�v,�u = Lαβ .
For the sake of simplicity, we introduce a compact notation

of the three-point averages W
(ζ )
abc = 〈nα

i n
β

j nν
s w

ζ

abc〉, where a

is the distance between sites i and s, b is the distance
between the sites i and j , and c the distance between j and
s and the indices ζ,a,b,c refer to the four-index systematic
nomenclature defined in Sec. I. Using the notations cB for the
concentration in solute B, cν for the concentration of vacancies
and yBν

d = e−βF (d) for the exponential of the binding energy
between a vacancy and a solute at a distance d, these quantities
take the values

W
ζ

abc = cνcByBν
a w

ζ

abc if ζ = 2

= cνcByBν
c w

ζ

abc otherwise. (A2)

Similarly, we group in a single short notation the two-point
averages X

(ζ )
abc = 〈nα

i nν
s w

ζ

abc〉:

X
ζ

abc = cν

[
1 − cB

(
17 + 12yBν

1 + 6yBν
2 + 24yBν

3

)]
w

ζ

abc if

ζ = 0 = W
ζ

abc otherwise. (A3)

We use the notation A for the matrix species, B for the solute
species, and T = R + Diag(D). For a binary alloy, only the
effective interactions associated to the pair of species A − B

needs to be considered. As a consequence, T is an n × n

matrix where n is the number of symmetry classes considered.
A vector belonging to each of the symmetry classes can be used
to represent them. These vectors are provided in Table III, and
Fig. 15 shows these vectors on a fcc lattice. The indices of
the symmetry classes in Table III and Fig. 15 correspond also
to the order in which they are being used in the following
symbolic expressions.

TABLE III. Cartesian coordinates [x,y,z] in lattice constants of
a representative of each of the bond classes, for diffusion in the [100]
direction. The indices in this table are identical to the row or column
numbers used in the symbolic quantities expressions (cf. Fig. 15).

Index Vector Index Vector

1 a

2 [110] 12 a[200]
2 a[100] 13 a

2 [411]
3 a

2 [121] 14 a

2 [331]
4 a

2 [211] 15 a

2 [141]
5 a[110] 16 a[120]
6 a

2 [131] 17 a[210]
7 a

2 [311] 18 a

2 [133]
8 a[111] 19 a

2 [323]
9 a

2 [132] 20 a[112]
10 a

2 [231] 21 a[211]
11 a

2 [321]

R
=
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FIG. 15. (Color online) Schematic representation of the classes
of bonds associated to the different rows and column of the T matrix.
The number on an atomic site is the class represented by the vector
linking the filled site to this site. The arrow represents the direction
of diffusion.
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As jumps are limited to nearest-neighbor sites only, there is a single class of nonzero contribution to the bare mobility
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