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Recent work shows that highly excited many-body localized eigenstates can exhibit broken symmetries and
topological order, including in dimensions where such order would be forbidden in equilibrium. In this paper
we extend this analysis to discrete symmetry-protected order via the explicit examples of the Haldane phase
of one-dimensional spin chains and the topological Ising paramagnet in two dimensions. We comment on the
challenge of extending these results to cases where the protecting symmetry is continuous.
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I. INTRODUCTION

The long conjectured phenomenon of many-body local-
ization (MBL) [1] has been put on a much firmer basis
by the work of Basko, Aleiner, and Altshuler (BAA) [2,3]
and a set of following investigations [4–14]. For a range of
energy densities above the ground state, the highly excited
eigenstates of sufficiently disordered quantum Hamiltonians
with locally bounded Hilbert spaces exhibit a set of interlinked
properties: (i) These states fail to satisfy the eigenstate
thermalization hypothesis (ETH) [15,16] so that the canonical
ensemble and temperature are no longer meaningful; (ii) the
long wavelength thermal conductivity vanishes within this
energy range; (iii) neighboring eigenstates in the many-body
spectrum differ significantly in their local properties; and,
(iv) the entanglement entropy of macroscopic domains is
subextensive. This last point should be contrasted with usual
extended states wherein the entanglement entropy scales with
the volume of the domain and ought agree with the canonical
thermodynamic entropy.

While the above complex of properties is generally appli-
cable to any MBL phase,1 recently Huse et al. [8] observed
that the eigenstates could be more finely classified with
reference to various measures of order. MBL eigenstates
can spontaneously break or preserve global symmetries and
exhibit or fail to exhibit topological order. These phenomena
could violate the naive expectation from Peierls-Mermin-
Wagner-type arguments. Essentially, the localization of defects
allows order to persist at energy densities where equilibrium
arguments predict destruction of order.

In this article we extend the analysis of Ref. [8] to a
case intermediate between symmetry-breaking and topological
order. This is the case of symmetry-protected topological
order (SPT) [17–20], wherein a symmetry is needed for the
phase to exist but the order itself is topological in nature and
cannot be characterized by a local order parameter. Clean zero
temperature SPT phases have a bulk gap to well-defined excita-
tions whose quantum numbers are not fractional. Furthermore,

1Here, a “phase” corresponds to a region in the energy density
and parameter space, which mimics the terminology for equilibrium
systems. Readers will keep in mind that the system is by definition
not in equilibrium in an MBL phase.

SPT ground states cannot be continuously connected to trivial
product states without either breaking the protecting symmetry
or closing the energy gap; however, such a continuous path
must exist if the protecting symmetry is explicitly broken. The
canonical example of an SPT phase is the Haldane phase in
d = 1 [21,22] and the most celebrated one is by now surely
the Z2 topological insulator in d = 3 (reviewed in Ref. [23]).

With this background, we can now state our central
question: Can highly excited eigenstates exhibit SPT order
in the presence of MBL? We take such order to generalize
the cluster of properties listed above. Specifically, we wish to
examine Hamiltonians invariant under a protecting symmetry
with highly excited eigenstates that lie in a mobility gap.
We will require an eigenstate phase transition (at which
the properties of the eigenstates change in some singular
fashion) between the SPT region and the trivial region, which
is well captured by product states as long as the protecting
symmetry is intact. Furthermore, there should be a path along
which such a phase transition is absent when the symmetry is
explicitly broken.

In the following, we address this question via two examples.
The first is the Haldane phase protected by a discrete symmetry.
We present strong evidence that the SPT order extends in
an MBL version to highly excited eigenstates even though
equilibrium considerations preclude such order. We do so by
introducing an appropriate generalization of the AKLT model
of Affleck, Kennedy, Lieb, and Tasaki [24,25] that allows the
arguments of BAA to be brought to bear on highly excited
states. We discuss various diagnostics of the Haldane phase
that extend to this regime. We also note that the Haldane
phase with continuous SU(2) symmetry does not obviously
extend to an MBL version and explain the obstacles involved
in settling this question. Our second example is the topological
Ising paramagnet in two dimensions [26,27]. Here again we
adapt the BAA arguments to establish MBL and discuss the
diagnostics needed to establish SPT order. We conclude with
some comments on generalizations and open questions.

As we were finishing this article, we became aware of the
preprint (Ref. [10]). In this preprint, the authors study MBL in
a one-dimensional spin-1/2 model related to our first example,
the Haldane phase, from the perspective of edge modes, the en-
tanglement spectrum, and string order. We discuss the precise
connection between our work and theirs at the end of Sec. II.
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II. HALDANE PHASE

A. Review of low energy physics

We begin with the Haldane phase of the spin-1 antiferro-
magnetic chain. Although usually understood in the context
of continuous rotational symmetry,2 the Haldane phase is an
SPT which may be protected by any one of the following
discrete symmetries: inversion, time reversal or the dihedral
group D of π rotations around the x,y,z-spin axes [28–30].
At zero temperature, the clean phase is a gapped quantum spin
liquid which breaks none of these symmetries. It has several
defining characteristics. First, the bulk exhibits simultaneous
long-range “string” order [31,32] in the operators (α = x,y,z),

σα
ij = −Sα

i

(
j−1∏

k=i+1

Rα
k

)
Sα

j , (1)

where Rα
j = eiπSα

j represents a rotation by π around the α-spin
axis of site j and Sα

i are the usual spin-1 operators. Second,
the boundary exhibits protected spin-1/2 edge modes as a
consequence of which the ground state is fourfold degenerate
on open chains. Third, the presence of the protected spin-1/2
edge modes implies a twofold degeneracy in the entanglement
spectrum for virtual (Schmidt) cuts in the bulk of the chain.
Furthermore, the underlying spin-1 degrees of freedom do not
fractionalize in the bulk, in consonance with the definition of
an SPT. The low energy excitations are gapped spin-1 bosons
called “triplons,” discussed later in the text. In contrast, in the
trivial phase with the same discrete symmetries, the ground
state can always be smoothly connected to a product state
through a symmetric path [29]. The trivial phase has no string
order, boundary modes or degenerate entanglement spectra;
hence these properties signal the SPT order of the Haldane
phase.

B. Ergodicity and localization in highly excited states

In the following, we will review how these signatures of
the Haldane phase disappear at T > 0 in clean systems as
a consequence of the delocalization of the triplons in highly
excited states. On the other hand, in the presence of sufficient
disorder, we will argue that individual triplons Anderson
localize. At sufficiently small, but nonzero, energy density,
the dilute gas of localized triplons interacts only weakly so
that the perturbative arguments of BAA apply and the system
is many-body localized. Finally, we will discuss how various
defining characteristics of the Haldane phase persist to finite
energy density in a suitably modified form in this MBL phase.

To be concrete, we introduce a frustration-free model
for the Haldane phase. As the SPT order requires only the
dihedral group D = {1,Rx,Ry,Rz} ≡ Z2 × Z2 to protect it,
our model has precisely this symmetry, but is otherwise
very closely related to the celebrated O(3)-symmetric AKLT
model [24,25]. The Hamiltonian, which we refer to as the

2It is interesting to note that Haldane discovered the phase that
bears his name studying a dihedral-symmetric perturbation of the
SU(2) invariant spin chains.

BKLT Hamiltonian, is

HBKLT =
∑
i,α

P
(2)
i,i+1

(
Ji + cα

i

(
Sα

i + Sα
i+1

)2

+ dα
i

(
Sα

i + Sα
i+1

)4)
P

(2)
i,i+1, (2)

where P
(2)
i,j projects onto the spin-2 representation of the

spins i and j , and Ji,c
α
i ,dα

i > 0 are coupling constants.3 The
ground state space of HBKLT is identical to that of the AKLT
model: There are four ground states on open chains, each
of which possesses an explicit, compact matrix product state
(MPS) representation simultaneously annihilated by all P

(2)
i,i+1

and therefore by HBKLT. The excitation gap is of order Ji

and the eigenstates may be labeled by the one-dimensional
representations of Z2 × Z2. Even though the ground states are
exactly known, HBKLT is not fully integrable. Its excited states
should therefore be generic with respect to thermalization and
many-body localization.

The A/BKLT ground states can be constructed by splitting
each spin-1 site into two virtual spin-1/2 degrees of freedom.
Pictorially,

|A; vL,vR〉 =
vL

vR

,

(3)

where each small circle represents a virtual spin 1/2, the solid
lines denote singlet pairings, and the ovals the symmetrization
to reproduce a spin-1 physical degree of freedom. Here, vL

and vR are the state vectors for the boundary spins that label
the four-dimensional ground-state space on the open chain.
This picture immediately reveals the physical origin of the
spin-1/2 boundary modes—they correspond to the unpaired
virtual degrees of freedom left on either end of the open chain.
The picture also suggests the origin of the twofold degeneracy
in the entanglement spectrum as the cutting of the virtual Bell
pair shared by a link.

The virtual spin structure of the A/BKLT state suggests a
natural candidate for the low energy bulk excitations,

|j,α〉 = j , (4)

where the double line at bond j indicates a virtual pair in
triplet state α. Note that we have suppressed the explicit
boundary spin states vL,vR . The single “triplon” states |j,α〉
are nonorthogonal but linearly independent. They span the
manifold studied in the single-mode approximation (SMA)
provided by Sα

j operators acting on |A〉 [33].4 These states are

3If cα
i ,dα

i > 0, then each term is strictly positive. Note that in the
spin-2 representation, the coupling constants are not all independent
as (Sα

i + Sα
i+1)2 = 6 Taking cα

i ,dα
i to zero reduces BKLT to the

traditional AKLT model.
4On a periodic chain of length L, there are L linearly independent

bond triplons as we have defined them. The spin operators Sα
j create

superpositions of the form Sα
j |A〉 ∝ |j,α〉 − |j − 1,α〉 and thus there

are only L − 1 linearly independent states in the traditional SMA
calculation.
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believed to be good variational approximations to the local
excitations of HAKLT, in part because the SMA calculations
produce a single triplon band quantitatively in good agreement
with numerical studies [33]. We note in passing that the bond
triplon states provide a superior framework for the study of
excitations in higher dimensional valence-bond solid states as
well, where the SMA is inadequate.

In the O(3) symmetric AKLT case, the three triplon states
|j,α〉 are strictly degenerate. Breaking the O(3) symmetry
down to the dihedral subgroup, as in BKLT, lifts the degeneracy
and selects the dihedral-symmetric states |x〉,|y〉,|z〉 as an
appropriate basis. In terms of virtual spins,

|x〉 = (|↑↑〉 − |↓↓〉)/√2,

|y〉 = (|↑↑〉 + |↓↓〉)/√2,

|z〉 = (|↑↓〉 + |↓↑〉)/√2,

where |x〉 has eigenvalues +1, − 1, − 1 under Rx,Ry,Rz,
|y〉 has −1, + 1, − 1, and |z〉 has −1, − 1, + 1. The reader
should recognize that dihedral symmetry has picked out the
maximally entangled Bell states!

Consider now the three diagnostics of the Haldane phase
in the presence of a maximally localized triplon. (i) As the
virtual spins in |j,α〉 form a Bell state across every bond,
the entanglement spectrum exhibits twofold degeneracy across
any real space cut. It is straightforward to confirm this using the
explicit MPS representation of |j,α〉 following from Eq. (4).
(ii) The triplon excitation produces a topological defect in the
string order parameter σ

β

ik . Explicitly,

〈j,α|σβ

ik|j,α〉 =
{−(−1)δαβ 4

9 i � j < k.
4
9 else

(5)

That is, if the string operator crosses the triplon, it picks up a
minus sign unless the flavors of the string and the triplon agree.
(iii) On open chains, there remain four degenerate, linearly
independent variational states corresponding to the choice of
boundary conditions (vL,vR) for the localized triplon state
|j,α〉.5

The demise of the Haldane phase at finite energy den-
sity in the clean system is now apparent. Diagonalizing
HBKLT in the variational single triplon manifold gives rise
to three delocalized bands of triplons corresponding to each
of the flavors α. This follows from solving the generalized
eigenvalue problem where HBKLT is purely diagonal in the
localized triplon basis while the overlap matrix 〈j,α|k,β〉 ∼
δαβ(1/3)|j−k| produces the off-diagonal dispersion. At low
energy densities, we expect a dilute gas of these delocalized
triplons in the eigenstates of HBKLT. This fluctuating gas (i)
produces an extensive entanglement entropy for macroscopic
domains which precludes an MPS representation for the highly
excited eigenstates and washes out the twofold entanglement

5The issue of linear independence for bond triplon states is
somewhat delicate. On an open chain of length L, there are
naively 12(L − 1) triplon states corresponding to the four boundary
states, three triplon flavors, and L − 1 positions. These span only a
12(L − 1) − 4-dimensional space. On a closed chain, there are 3L

linearly independent states.

degeneracy. (ii) As the triplons act as defects in the string
order Eq. (1), their spatial fluctuations suppress this order
on the length scale of the inverse density. Finally, (iii) the
spin-1/2 boundary modes decohere due to interaction with the
delocalized bulk triplons on a time scale set by the density of
triplons. This is all consistent with the expectation that there
is no order, topological or otherwise, at finite temperature in
one dimension.

The presence of sufficient disorder leads to an entirely
different picture of the highly excited eigenstates—that they
may many-body localize and thus retain their SPT character.
Consider the introduction of disorder in the couplings of
HBKLT. So long as Ji > 0, the ground state is completely unper-
turbed by this variation, which is an extreme manifestation of
the insensitivity of gapped phases to weak spatial disorder. The
excitation spectrum, on the other hand, changes dramatically.
Even for weak variations δK 
 K for K = J,c,d, we expect
the single triplon eigenstates to Anderson localize. This
follows from analyzing the generalized eigenvalue problem
described in the paragraph above with spatially varying
diagonal matrix elements. Figure 1 shows the typical localized
triplon wave functions found by this analysis.

We now make the case for MBL following BAA. Consider
the excited states with a low density of localized triplons. The
interaction U between two triplons separated by a distance l

scales as Je−l/ξ , where ξ is the longer of the triplon overlap
decay length [1/ log(3)] and the localization length. When
the typical spacing l between excitations is sufficiently large
so that the typical energy splitting between nearby states (of
order 1) is much larger than the interactions, U ∼ ±Je−l/ξ ,
the perturbative BAA arguments protect triplon localization.
That is, the system remains many-body localized up to a finite
energy density ε such that the typical separation J/ε is small
on the scale ξ .

The naive application of the same argument fails as one
approaches the O(3) symmetric AKLT point by taking ci,di

to zero. In this limit, the local fields splitting the triplet
degeneracy vanish so that there is no regime where the
typical interaction strength U is smaller than the typical
local level spacing. Rather, the localized triplons carry spin-1
and the system of a dilute random array of noninteracting
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j

−1.0

−0.5

0.0

0.5

1.0

ψ
z j

FIG. 1. (Color online) Seven typical eigenmodes of the Anderson
problem in the single α = z triplon manifold in a 500-site chain with
periodic boundary conditions. The coupling constants Ji are drawn
uniformly from the interval (0,1).
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triplons is highly degenerate. From this point of view,
the interactions (still of order U ∼ Je−l/ξ ) split this large
degeneracy according to a disordered system of both ferro-
and antiferromagnetic exchanges. Whether such an effective
O(3)-symmetric random spin-1 chain can exhibit an MBL
phase is an intriguing open question. The application of the
real space renormalization group to such a system suggests
that the system ought to grow large effective moments [34,35]
which, if they behave classically as one expects of large
spins, would lead to thermal conduction and equilibration
[36,37].

Finally, we consider how the three signatures of the Haldane
phase persist to finite energy density in the MBL regime.
First, take the “caricatures” of the excited states at low energy
density given by the MPS with a low density of double lines
at prescribed bonds as in Eq. (4). We have already noted that
(i) the entanglement spectrum is doubly degenerate, (ii) the
string order is “glassy” [Eq. (5)], and (iii) the expectation
value of HA/BKLT is independent of the virtual spins vL, vR

on the boundary. Thus, if the “caricature” states were the
true excited eigenstates in the presence of disorder, all of
the characteristics of the Haldane phase would persist to low
energy density.

Of course, the simple caricatures neglect the “fuzziness”
in the position of the triplons in Anderson-localized single-
particle wave functions such as in Fig. 1. To construct
multitriplon “filled” Anderson localized states, we define the
bond triplon creation operators:

tαj =
∏
i�j

Rα
i . (6)

These commuting, self-adjoint, unitary operators place
triplons of type α at bond j when acting upon the A/BKLT
ground-state space. The single triplon localized states are then
created by

tαψ =
∑

j

ψα
j tαj , (7)

acting on the A/BKLT vacuum, where ψα
j are the eigenmodes

in the single triplon problem. We caution that the mode
functions ψα

j are not orthonormal as they are coefficients
with respect to a nonorthogonal basis, and neither do the
tαj satisfy a canonical algebra. Nonetheless, for sufficiently
dilute collections of triplons, we expect the Fock states |
〉 =
t
α1
ψ1

t
α2
ψ2

· · · tαN

ψN
|A〉 to be good approximate representations of

the MBL eigenstates. Just as localized Fock states of normal
bosons and fermions have entanglement entropy satisfying
an area law, |
〉 has an area law for localized ψα

j . Thus,
such states can be recast to exponential accuracy as finite
dimensional MPS states which in turn fall into the twofold
SPT classification of dihedral symmetric states [29,38]. We
recapitulate this argument in more detail in Appendix for
nontranslation invariant states. In the same appendix, we
argue that the fuzzy Fock states above are in the same
nontrivial class as the A/BKLT ground state, that is, they
exhibit twofold degenerate entanglement spectra in the bulk
for a single spatial cut. Numerical exact diagonalization results
are consistent with this prediction. In Fig. 2, we plot the
entanglement spectra of a few excited states of the 12-site
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FIG. 2. (Color online) The entanglement spectra of four consec-
utive excited states, starting with the 60th state above the ground
state, for a 12-site open BKLT chain with disorder in all coupling
constants. Each state is decomposed into two equal halves.

open BKLT chain with disorder. Dihedral symmetry forces
the physical spin halves at the two boundaries to be maximally
entangled; thus the spectrum should be fourfold degenerate
if the excited state has SPT order. There is evidence of this
degeneracy in Fig. 2. In conclusion, states such as |
〉 exhibit
(i) twofold degenerate entanglement spectra in the bulk, and
(ii) long-range string glass order with softened frozen in
domain walls, and (iii) spin-1/2 boundary modes associated
with the projective representation of the corresponding finite
dimensional MPS.

In the presence of dihedral symmetry, the string glass order
diagnoses the nonanalyticity of the eigenstates at the transi-
tions between the SPT MBL phase and the trivial MBL phase
(or the ergodic phase). On the other hand, without dihedral
symmetry, such an order parameter distinction disappears.
For example, turning on a local Néel field induces a Néel
magnetization, and as shown in Ref. [32], string order. Thus,
the nonanalyticity associated with the loss of the long-range
string glass order will be lost and the eigenstates in both MBL
phases can be smoothly connected.

We end with a few comments. First, the recent numerical
study in Ref. [10] probed the boundary modes of excited MBL
states in a related one-dimensional model using spin echo.
Such numerical experiments are unavailable in the disordered
BKLT model due to the large intrinsic correlation lengths as
compared to accessible system sizes. Second, a consequence
of the existence of boundary modes is a “pairing” regime
in the many-body energy spectrum of open chains. In this
regime, the four boundary states can be identified by their
small splitting relative to the exponentially small many-body
spacing [8]. However, there is evidence from perturbative and
numerical calculations in the nonintegrable Majorana chain
that this pairing may persist to the clean limit [39]. The
relationship between pairing and coherent boundary modes
is thus not settled and requires further study. Finally, the entire
discussion in this section is not special to the A/BKLT point.
The MBL phase at low energy densities continues away from
these points.
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III. TOPOLOGICAL ISING PARAMAGNET IN D = 2

A. Review of low energy physics

We now turn to discrete SPT phases in higher dimension.
In particular, we consider two-dimensional spin systems with
Z2 symmetry, where there is a twofold classification of SPTs:
the trivial and the topological Ising paramagnets [26,27,40].
We work near an exactly solvable model in the topological
SPT phase, first constructed by Levin and Gu [26]:

HLG = −
∑

s

�sBs, Bs = −σx
s

∏
〈sqq ′〉

i
1−σ

z
q σ

z
q

2 . (8)

Here, �s are coupling constants, σs are Pauli spin-1/2
operators living on the sites s of a triangular lattice, and the
product in Bs runs over the six triangles 〈sqq ′〉 intersecting
the site s (see Fig. 3).

The Hamiltonian is invariant under the protecting Ising
symmetry S = ∏

s σ x
s . The Bs operators on different sites

commute with each other, and the gapped paramagnetic ground
state is the simultaneous Bs = +1 eigenstate ∀s. On closed
manifolds, this ground state is unique and can be written
explicitly in the σ z basis as a superposition of all spin
configurations each with amplitude (−1)Ndw , where Ndw is the
number of domain walls in the configuration. These nontrivial
phase factors reflect the topological nature of the ground state.

The topological paramagnet (TPM) is to be contrasted
with the better-known trivial paramagnet (TrPM) with exactly
solvable model Hamiltonian,

H0 = −
∑

s

�sσ
x
s , (9)

where �s are coupling constants. The ground state of the trivial
paramagnet is clearly a simple product state which, in the
σ z basis, corresponds to a uniform superposition of all spin
configurations with amplitude 1.

The excitations in both models correspond to “spin
flips” which are sites s with either Bs = −1 or σx

s = −1,
respectively. At the exactly solvable points, such spin flips
are static and thus the highly excited eigenstates are already
many-body localized analogous to the “caricature” states of
the previous section. Absent disorder, this form of MBL is
nongeneric: Any noncommuting perturbations to the model
Hamiltonians induce dispersion of the spin flips, which in

s s

q q

FIG. 3. (Color online) (Left) Trivial paramagnet H0 defined
in (9) is a sum of σ x

s terms on sites s of the triangular lattice. (Right)
Topological paramagnet HLG defined in (8) is a sum of seven-spin

terms involving a product of σ x
s and a phase factor

∏
〈sqq ′〉 i

1−σ
z
q σ

z
q′

2

from the six spins surrounding s.

turn destroys many-body localization. For specificity, we add
a ferromagnetic coupling term to make the spin excitations
dynamical and consider Hamiltonians of the form,

H̃0/LG = H0/LG − J
∑
〈ss ′〉

σ z
s σ z

s ′ . (10)

For J large enough, the ferromagnetic term drives a
transition out of either paramagnet into a symmetry broken
ferromagnetic phase.

B. Ergodicity and localization in highly excited states

Now include randomness in the couplings �s and �s .
For simplicity, keep �s,�s > 0 to preserve the exact ground
state. In this regime, the individual spin flip manifold remains
Anderson localized even with small “hopping” J . BAA
arguments suggest that dilute gases of these weakly interacting
point particles remain many-body localized. It is intuitively
clear that both paramagnets continue into MBL versions at
finite energy density as the defects that would destroy the
SPT order are localized. In the following, we will consider
the extension of various SPT diagnostics to finite energy
density MBL states to substantiate this intuition. We first
distinguish the MBL topological and trivial paramagnets from
the extended thermal paramagnetic phase, and then turn to
diagnostics that differentiate the two MBL paramagnets.

The MBL paramagnets can be easily distinguished from
their thermal counterparts at nonzero energy densities using
the behavior of certain Wilson loops.6 Recall that in 2+1
dimensions magnetic systems with site variables are dual to
gauge theories with bond variables [41]. The spin models
H0/HLG are, respectively, dual to the perturbed toric-code
(t.c.)/ doubled-semion (d.s) Z2 gauge theories, with the t.c/d.s
theories restricted to a static matter sector. These dual gauge
theories live on the honeycomb lattice; their topologically or-
dered deconfined phases map to the paramagnetic phases of the
spin models, while their confined phase maps to the ferromag-
netic phase. The doubled semion model is discussed in [42].

As the dual models are pure gauge, their respective decon-
fined phases may be diagnosed by the celebrated perimeter law
of equal time Wilson loops. Each of the two deconfined phases
has a (different) canonical Wilson loop which minimally
probes the confinement of charges without further exciting
the gauge sector [42]. The Wilson loops of the dual gauge
theories correspond to the following operators in the original
spin variables σs :

W0[C] =
〈 ∏

s∈A[C]

σx
s

〉
, (11)

WLG[C] =
〈 ∏

s∈A[C]

Bs

〉
, (12)

where the product is over all sites s lying within A[C], the area
enclosed by the curve C. These Wilson loops exhibit the “zero-
law” W0/LG[C] = 1 exactly at the pure trivial/topological

6The two paramagnets are smoothly connected when thermalized,
so no distinction is necessary.
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paramagnetic points. The zero law continues to a perimeter law
W [C] ∝ e−c|C| on perturbing away from the exactly solvable
points. On the other hand, the Wilson loops exhibit an area law
W [C] ∝ e−c′ |A[C]| in the ferromagnetic phase.

For clean, ergodic systems, both Wilson loops exhibit an
area law at any finite temperature T > 0. This reflects the
presence of a finite density of delocalized vortex excitations in
the dual gauge theories.

The problem with disorder was recently discussed for the
standard Z2 gauge theory by Huse et al. [9]. In the presence
of sufficient randomness in the couplings of the dual gauge
theory, there exists a MBL topologically ordered phase for
the Z2 gauge theory at finite energy density. The excited
MBL eigenstates have a finite density of localized vortices,
whence the Wilson loop W exhibits a “spin-glass” version
of the perimeter law—the magnitude of W decays as the
perimeter of C, but with a sign that depends on the number of
localized vortices enclosed by C [9]. An analogous story holds
for the doubled-semion gauge theory as well. By duality, the
MBL highly excited eigenstates of the trivial and topological
paramagnets exhibit a spin-glass perimeter law for W0[C]
and WLG[C], respectively. By contrast, excited eigenstates for
the thermal paramagnet exhibit area laws for these quantities
just as in the clean limit. Thus, a sharp distinction exists
between the MBL and thermal phases for the two paramagnets,
diagnosed by the behavior of the Wilson loop operator.

We now turn to the question of diagnosing the two MBL
paramagnets as distinct phases. One’s first instinct might be
to use the Wilson loops and, for the ideal Hamiltonians, they
work: W0[C] = 1 for the TrPM and vanishes for the TPM,
while WLG[C] = 1 for the TPM and vanishes for the TrPM.
Unfortunately this does not hold more generally; both Wilson
loops exhibit a perimeter law in both paramagnetic phases.
Possibly the “correct” one is always dominant, but this is a
topic for future work.

Instead, let us consider other possible diagnostics to
separate the MBL TrPM and TPM phases. (i) At T = 0 in
the ground state, the edge of the TPM must either be gapless
or break the Z2 symmetry. (ii) If we gauge the models, the
gauged TPM exhibits vortices with semionic statistics, which,
(iii) in the presence of time-reversal symmetry, bind Kramers
doublets [43].7 We expect each of these properties to extend
to the MBL phase, as we explore below.

The gaplessness of the symmetric edge is not a sharp
diagnostic of the TPM, even at T = 0, as already alluded
to by Levin and Gu in the clean case. The edges can always
spontaneously gap by breaking Ising symmetry for arbitrarily
weak perturbations; of course, gapped symmetry-broken edges
can also be present in the TrPM. With disorder at finite
energy the situation is even worse—the many-body spectrum
is always gapless although local operators may exhibit a
“mobility” gap in localized states. Thus, we might expect
“mobility gaplessness” in the absence of symmetry breaking,
but this is a delicate diagnostic at best.

At T = 0, Levin and Gu proposed a sharp distinction
between the two paramagnets based on a different diagnostic.
They coupled both paramagnets to a static gauge and then

7We thank M. Zaletel for bringing this to our attention.

considered the statistics of braiding π flux vortex insertions.
For the TrPM the statistics are bosonic while for the TPM they
are semionic, as the gauged models are dual to the toric code
and doubled semion theories, respectively. In a putative MBL
state, a slow physical process of inserting fluxes, braiding,
and annihilating them should accumulate the same semionic
statistical phase (on top of “spin-glass”-like Aharonov-Bohm
contribution from each of the encircled localized charges).
The definition of “slow” is subtle as the many-body spectrum
is gapless, but again we expect a local O(1) mobility gap. The
exact mathematical operators which characterize this process
in the exactly solvable models do not have simple extensions
to the general MBL state.

If the gauged paramagnet additionally has time-reversal
symmetry, then each vortex of the TPM binds a Kramers
doublet (the semion and the antisemion states). This can
be seen in the exactly solvable model by defining a local
charge operator on an area A, Q[A] = ∏

p∈A Bp, gauging it,
and noting that the gauged Q is time-reversal odd (even) if
A encloses an odd (even) number of vortices. This implies
an exact degeneracy for the entire spectrum. On the other
hand, the TrPM vortices are bosonic and do not bind Kramers
doublets (the gauged charge operators are always time-reversal
even in the exact model). The degeneracy lifts exponentially
in the separation between the vortices on perturbing away
from the exactly solvable point and we expect this exponential
degeneracy to persist into the MBL phase. The careful reader
might note that the typical many-body level spacing for highly
excited states is exponentially small in the system volume, and
thus smaller than the separation between paired states. This is
reminiscent of the paired MBL regime discussed by Huse
et al. [9], and the “paired” states share all their local properties
unlike typical MBL eigenstates close in energy. A different
but related diagnostic comes from measuring coherent “anyon
oscillations” between the semion and antisemion states in the
localized background with a time scale set by their separation.

We leave the detailed mathematical understanding of these
last questions as open problems for future work.

Finally, we comment briefly on the requirement that there
be a continuous path connecting the MBL phases of the TPM
and the TrPM if Ising symmetry is broken along the path. Levin
and Gu explicitly construct a local Ising symmetry-breaking
unitary operator U (θ ) which transforms H0 into HLG (with
�s = �s) along a path in Hamiltonian space parametrized by
the continuous variable θ ; the same unitary can also be used
for random couplings �s . The many-body energy spectrum,
and hence the level statistics of H (θ ) are identical everywhere
along the path which strongly indicates the absence of a MBL
to ergodic phase transition in accordance with work done by
Huse et al. [4]. More strongly, each localized excited eigenstate
of H0 continues to a localized eigenstate of H (θ ) under the
action of the local unitary, and there is a continuous mapping
between MBL eigenstates everywhere along the path. This is
to be contrasted with the eigenstate phase transition that we
expect between the TPM and TrPM highly excited eigenstates
when Ising symmetry is preserved.

IV. CONCLUDING REMARKS

Traditionally, the destruction of order and the proliferation
of defects are closely intertwined in statistical mechanics. This
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has led previously to the idea that the localization of defects
can improve order, e.g., in the case of superconductors in a
magnetic field [44] and the quantum Hall effect away from the
center of the plateau [45]. The work of Huse et al. has generated
the interesting possibility that this mechanism can operate
also in many-body localized quantum systems where statistical
mechanics does not apply even for highly excited eigenstates.
In this setting the sought-after order has to be identified for
individual many-body eigenstates and has a “spin-glass” form
or at least a spin-glass component which is eigenstate specific.

In this paper we have considered whether SPT order can
exist in highly excited eigenstates in the MBL setting by
examining two specific models. In both cases it is not hard
to see that thermal states differ qualitatively from the ground
states exhibiting SPT order while MBL states qualitatively
resemble the ground states thanks to the localization of defects.
This is strong evidence for existence of an eigenstate phase
transition that must separate the trivial and SPT regions
at nonzero energy density. For the case of the Haldane
phase in d = 1 we are able to go further and argue that
highly excited MBL eigenstates in the SPT region can be
directly distinguished from highly excited MBL eigenstates
in the topologically trivial region. For the topological Ising
paramagnet in d = 2 this last step still needs to be taken.
In both cases we have argued the absence of an eigenstate
phase transition separating the regions when the preserving
symmetry is allowed to be broken.

Evidently it would be interesting to extend this investigation
to the larger zoo of SPT phases identified in recent work,
including in d = 3 where SPT order can presumably survive
to nonzero temperatures when the disordering defects have the
topology of vortex lines. One immediate restriction suggested
by our analysis is that we found it necessary to protect the
Haldane phase via a discrete symmetry to invoke MBL. If
that restriction is fundamental, it may be that SPT order
is strengthened by MBL only if the protecting symmetry is
discrete.
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APPENDIX: ENTANGLEMENT SPECTRUM OF
DIHEDRAL SYMMETRIC MPS WITHOUT

TRANSLATIONAL SYMMETRY

In Ref. [29], Pollman and co-authors demonstrated the
entanglement spectrum of a spatial cut diagnoses the two
dihedral symmetric translationally invariant phases of integer
spins in one dimension. In the topological/Haldane phase,
they showed that the entanglement spectrum is exactly double
degenerate in the thermodynamic limit, while in the trivial
phase, it is not. The two phases persist in the absence of
translational invariance. In this Appendix, we show that the
classification of the entanglement spectrum of the MPS also
holds without translational symmetry.

Our approach and notation closely follows that in Ref. [29].
Consider an open chain of a spin system with integer spin S in
the thermodynamic limit. Let the wave function of the system
have an MPS representation (as is the case for the ground
state of the clean system or the highly excited MBL states in
the dirty system). The canonical form of such an MPS in the
standard pictorial notation is

Γi|Ψ =

σi

Λi

{σi}
|{σi}

, (A1)

where i is the site label, σi is the physical spin index taking
values −S, − S + 1, . . . S, �i is a matrix of dimension χ ,
and �i is a real, diagonal matrix, also of dimension χ , with
non-negative values. χ is interpreted as the dimension of the
virtual spins that make up the spin S.8 For a more detailed
introduction to MPS, see [46,47]. An important property of
the canonical representation is that the transfer matrix at site
i, defined as the tensor in the dashed box below, has a unique
left (and right) eigenvector of eigenvalue one,

ΓiΛi−1

Γ∗
iΛi−1

= . (A2)

The diagonal elements of �i are the Schmidt numbers for a
spatial cut between bonds i and i + 1; the entanglement en-
ergies are the negative logarithms of these diagonal elements.
Properties of the entanglement spectrum therefore follow from
the structure of �i,�i .

To prove that there is a twofold classification of the
entanglement spectrum, we proceed as follows:

(1) Identify the action of the dihedral symmetry on the
physical spins as a site-dependent gauge transformation of the
virtual spins.

(2) Show that the gauge transformation is the identity up
to a site-dependent phase.

8The proof may easily be extended to site-dependent χ (χ̃i). Then,
the χ defined in the text is χ = maxχ̃i .
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(3) Determine that the smallest irreducible representation
for the gauge transformation is either of dimension one, or
two.
When the smallest irreducible representation has dimension
two, the Schmidt values are forced to come in degenerate pairs
and the entanglement spectrum is doubly degenerate. When the
dimension is one, there is no constraint on the entanglement
spectrum. This then is the required classification.

We now go through the steps in turn. Consider the action of
the dihedral group on the state |
〉. The matrix �i in the MPS
representation in Eq. (A1) becomes

�̃σ
i = (

Rα
i

)σσ ′
�σ ′

i , α = x,y,z. (A3)

By definition, under the action of
∏

i R
x
i ,

∏
i R

y

i , and
∏

i R
z
i ,

the given state goes back to itself, up to boundary effects that
are not relevant in the thermodynamic limit. Thus, �̃ should
be related to � by a gauge transformation:

�̃σ
i = eiθα

i

(
Uα

i−1

)†
�σ

i Uα
i , (A4)

where Uα
i is a unitary matrix commuting with �i and θα

i is
real. Physically, the U matrices implement the action of the
symmetry on the virtual spins. They form a χ -dimensional
projective representation of the symmetry group of the wave
function |ψ〉. Note that the MPS with matrices (�̃σ

i ,�i) is
also in the canonical representation. As the dihedral operators
square to identity, another action of the dihedral group provides
a relation for �i :

�σ
i = ei2θα

i

(
Uα

i−1

)†(
Uα

i−1

)†
�σ

i Uα
i Uα

i . (A5)

Substituting Eq. (A5) in Eq. (A2), it is easily seen that

ΓiΛi−1

Γ∗
iΛi−1

= (Uα†
i )2e−2iθα

i(Uα†
i−1)

2

.

(A6)

The input left vector to the transfer matrix and the output vector
are different. However, the norm of both vectors is χ , equal to
the norm of the unimodular eigenvector. As the transfer matrix
has a unique unimodular eigenvector, both vectors have to be
proportional to the identity eigenvector in Eq. (A2) up to a
phase. Thus, (

U
α†
i−1

)2 = eiφα
i−1 1. (A7)

This gets us to the second step in the list above. Furthermore,
as the eigenvalue is one, we obtain a relationship between θα

i ,
φα

i , and φα
i−1.

Finally, after a few steps of algebra, we find that(
Ux

i

)†(
Uz

i

)† = κ
(
Uz

i

)†(
Ux

i

)†
, (A8)

κ = ±1. (A9)

That is, on every site i, Ux
i and Uz

i either commute or
anticommute. If Ux

i and Uz
i commute (anticommute), the

smallest irreducible representation has dimension one (two).
Up to accidental degeneracies, Ux

i ,Uz
i can then be expressed

as direct sums of matrices with dimension one (two). Recall,
however, that Uα

i and the diagonal matrix with the Schmidt
numbers �i commute. Thus, in the former case, there is
no constraint on the entanglement spectrum, while in the
latter, the entire entanglement spectrum (ES) has to be doubly
degenerate.

In the ground states of the clean/disordered A/BKLT chains,
κ = −1 and the (ES) is twofold degenerate. Consider now the
fuzzy Fock states defined below Eq. (7) using the localized
single triplon wave functions, |
〉 = t

α1
ψ1

t
α2
ψ2

· · · tαN

ψN
|A〉. In the

extremely dilute limit, pick a bond m where the weight of all the
single triplon states occupied in |
〉 is small. The local action
of the dihedral group on this bond is the same as in the ground
state and κ = −1 on this bond. As κ is site independent, Ux

i

and Uz
i anticommute for all i and the entanglement spectrum

will be doubly degenerate for any spatial cut. Thus, these
approximate MBL states have the topological order of the
Haldane phase.
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