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Plasticity of hexagonal systems: Split slip modes and inverse Peierls relation in α-Ti
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The plasticity of hexagonal titanium is reexamined based on the split slip modes phenomenon, revealing the
existence of subslip modes in prismatic and pyramidal hcp slip systems. The energetics of dislocation emission
and motions were described using all-dimension relaxed atomic models of crystal slip, calculated with density
functional theory. The proposed computational methodology is based on the generalized stacking fault energy
concept and respects all elastic effects arising within dislocation nucleation. As a result, improved accuracy
has been obtained with regard to ductility prediction and a breach has been discovered in the fundamental
Peierls-Nabarro rule. This approach is essential for the Rice and Peierls-Nabarro models and can be used as an
effective tool for ductility predictions when designing new hexagonal alloys.
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I. INTRODUCTION

Intense research in green technologies is focusing on re-
ducing energy consumption in all transport sectors, providing
incentives for designing new light, strong materials. Taking
into account these two parameters, it is clear that Ti and
Mg, which have the highest strength-to-density ratios, are
potentially prime elements when considering new construc-
tional alloys. Of the various key requirements, ductility seems
to be crucial from the production and application points
of view. As a consequence, there has been much interest
shown in developing plastic deformation theory and practical
methods that allow one to predict the brittle/ductile behavior
of materials. Complex and universal models are the current
challenge in the field of alloy design.

There are a number of methods for estimating the ductility
of materials. The most important ones include the analysis
of the electronic structure and directionality/type of chemical
bonds [1] and values of elastic constants such as the Poisson
ratio and Pugh’s criterion [2]. While these methods are
common, they do not reflect the physics of plastic deformation
such as dislocation emission and motion. A direct approach
to this problem can be found in the Peierls-Nabarro (P-N)
model [3,4], which was the first meaningful assessment of
lattice resistance during dislocation motion. The next key
achievement was the concept of the generalized stacking fault
energy surface (γ surface) introduced by Christian and Vı́tek
[5]. The γ surface is the interplanar potential energy for sliding
one-half of a rigid crystal over the other half along the glide
plane through an arbitrary vector δ. The importance of the γ

surface lies in periodic distribution of restoring stresses,

F (δ) = −∇[γ (δ)], (1)

which determine lattice resistance during dislocation nucle-
ation, while its physical meaning is similar to Peierls stress
(critical stress needed for translation of rigid dislocations at
zero temperature) in the P-N model [3]. Both quantities impede
deformation by slip of the dislocations. The adoption of the
γ surface facilitated rapid development of the P-N model
and the dislocation properties [6–9], with the conclusion that
Peierls stress can be estimated directly from the γ surface
[7]. Another concept of the ductility of materials in terms

of dislocation emission was postulated by Rice and Thomson
[10]. They proposed that the onset of ductile behavior occurred
when the spontaneous emission of dislocations at the crack
tip became feasible. Further, Rice showed that the unstable
stacking fault energy, γus (maximum of the γ surface), is
a measure of the energy barrier for dislocation nucleation
[11]. The above achievements, although incredibly valuable
for deformation by dislocation emission/motion, do not cover
the twinning phenomenon. This gap was filled by Tadmor
and Hai [12], who reported that critical stresses needed to
generate leading, trailing, and twinning partial dislocations
can be expressed using γus, γsf (γ minimum at path for
partial dislocation), and γut (γ maximum for twinning partial
dislocation). This allowed them to form the new material
parameter called twinning tendency. An excellent summary
of the presented notions is the disembrittlement (D) parameter
introduced by Waghmare et al. [13], who concluded that γus is
fundamental for all current models and the increase/decrease
of D = free surface energy/γus leads to the increase/decrease
of ductility.

The main inaccuracy of the approaches listed above is
the fact that they are based on the γ surface, which is a
nonphysical projection of crystal slip. Dislocation emission
and motion incorporate two energy components: (1) initial
elastic deformation and (2) breaking of atomic bonds. While
the second term can be assessed by the γ surface, the
contribution of elastic deformation is absent from the rigid
γ model.

In this paper, we propose a computational approach con-
taining an all-dimension relaxation procedure that overcomes
the “rigid γ ” problem and radically improves the ab initio
predictions of crystal slip. Our method has been used to inform
a comprehensive study of α-Ti plasticity—multiple glide plane
system. We also show the separation of slip modes effect
occurring in hexagonal structures, which is fundamental to
the physics of plastic deformation.

II. SEPARATION OF SLIP MODES IN HEXAGONAL Ti

The plastic deformation theory establishes that nucleation
and the motion of dislocations are possible for certain
directions and planes called slip systems. The group of active
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slip systems can be obtained from the original P-N model
[14,15], which allows one to assess the critical stress σP needed
to move rigid dislocation:

σP = 2μ

1 − ν
exp

[
− 2πd

b(1 − ν)

]
, (2)

where μ, ν are elastic constants and b, d are Burgers vector and
interplanar spacing, respectively. Although Eq. (2) assumes a
sinusoidal form of the restoring stress (which is not always
correct), it reproduces well the strong correlations between
Burgers vector, interplanar distance, and Peierls stress σP —
increased interplanar distance and decreased length of the
Burgers vectors lead to a reduction of Peierls stress. The
dependence presented in Eq. (2) is called the Peierls relation
and is widely used in the physics of plastic deformation. Based
on this knowledge, most of the slip modes in typical crystal
lattices have been identified and described [14,16].

Plastic deformation in α-Ti can be realized by four types
of slip systems on three glide planes [17]: 〈112̄0〉 (0001) - 〈a〉
on the basal plane, 〈112̄0〉 {101̄0} - 〈a〉 on the prismatic plane,
〈112̄0〉 {101̄1} - 〈a〉 on the pyramidal plane, 〈112̄3〉 {101̄1} -
〈c + a〉 on the pyramidal plane, and a fifth deformation mode,
namely, twinning. It is reported that the critical resolved shear
stress (CRSS) for systems with 〈a〉 Burgers vector is relatively
similar and the 〈c + a〉 {101̄1} system exhibits a distinctly
higher CRSS value [17,18]. Moreover, it should be noted
that all modes are sensitive to the presence of dopants and
alloying elements, which can suppress or enhance individual
systems differently [18,19]. Various reactions of slip systems
to the presence of alloying elements make hexagonal structures
problematic during the alloy design process, and, for correct
ductility prediction, all systems have to be taken into account.

Figure 1(a) shows a set of slip systems in fcc, bcc,
and hcp crystal structure—which are the most common for
metals. According to the current definition of slip modes
and the Peierls rule, nucleation and motion of dislocation
should be fully described using only indexes of directions
and planes. Considering the slip systems in both cubic fcc
and bcc crystal lattices, it is evident that glide planes exhibit
constant interplanar distance in particular modes, similarly
to the 〈a〉 basal mode in the hcp structure. However, an
entirely different situation can be observed for hcp prismatic
and pyramidal planes. In these cases, two types of interplanar
distance exist that differ significantly in size. The prismatic
and pyramidal planes also have a fourfold stacking sequence,
ABCDABCD. . ., which is presented in Fig. 1(c). Those
structural features lead to a key fact: in hcp systems, two types
of each prismatic and pyramidal slip modes exist which have
the same type of slip planes and Burgers vector plus various
interplanar spacing. In Fig. 1(c), the dashed lines denote
possible glide planes for all prismatic and pyramidal modes,
and I, II symbols represent the Burgers vectors. Although
the vectors are equivalent (same direction and length for
individual systems), it is clear that the interplanar distance
is unequal and slip may be performed in various ways along
modes I or II. As an example, for 〈a〉 prismatic systems, red
atoms have differently located neighbors than green atoms
(red/green atoms slide over green/blue ones in types I and II,
respectively), which should also result in various γ shapes
and σP for both modes. Concluding the observations above,

the standard definition of slip systems fails in hcp prismatic
and pyramidal planes since it does not reveal the existence
of separate modes (I and II) and, for a precise description of
these systems, information about interplanar distance must be
added.

Despite numerous works devoted to the plasticity of
hexagonal structures, including recent experimental [17] and
theoretical [20] investigations, the dual nature of pyramidal and
prism planes has not been noticed. It should be emphasized
that various interplanar distances between atomic planes with
the same indexes cannot occur in face- or body-centered-cubic
lattices due to their higher structural symmetry (Fig. 1). The
existence of additional parameters (the interplanar distance),
which need to be taken into account for a full description of
slip modes, begs the fundamental question: Which system is
easier/active? The answer should be found in the Peierls rule
derived from the original P-N model. Nevertheless, the P-N
concept does not give any special information about structures
in which slip planes exhibit double types of interplanar
distance. In order to surmount the above uncertainties and
to establish active slip systems in α-Ti, γ calculations have
been performed for all types of slip modes. Regarding the
various interplanar distance, the list of possible slip systems
can be written anew [Fig. 1(c)]: 〈a〉 basal, 〈a〉 prismatic I,
〈a〉 prismatic II, 〈a〉 pyramidal I, 〈a〉 pyramidal II, 〈c + a〉
pyramidal I, and 〈c + a〉 pyramidal II, where I or II denote
large or small interplanar spacing, respectively. Additionally,
the modes marked with symbols I or II are called, here, the
split modes.

III. METHOD

The ab initio calculations of γ curves were done in
two ways. First, conventional (all atoms are relaxed only in
directions perpendicular to the glide planes and displacements
of the crystal half part along the direct slip path are constants)
computations of direct crystal slips for all seven slip modes
were performed using density functional theory (DFT) imple-
mented in the Vienna Ab initio Simulation Package (VASP) code
[21,22], with the projector augmented wave (PAW) method
for core-valence electron interaction [23]. To estimate the
exchange and correlation energy, the Perdew-Burke-Ernzerhof
(PBE) [24] functional was adopted. The Fermi smearing of
the electronic occupancy with 0.2 eV and plane-wave cutoff
energy of 425 eV were used. The Brillouin zone was sampled
in accordance with the Monkhorst-Pack scheme [25]. A large
number of preliminary γ curve calculations were performed
to establish the correct size of the atomic structures used in
the computations. Finally, 18 atomic layer models (4 atoms in
each plane) with 8, 12, and 10 Å of free space, respectively, for
basal (5 × 5 × 1 k-points mesh), prism (3 × 5 × 3 k points),
and pyramidal (3 × 5 × 3 k points) slip modes were chosen
for calculations [Fig. 1(c)]. Increasing the size of the atomic
planes did not lead to better accuracy of the γ results since all
Burgers vectors and elastic displacements of the atoms were
much smaller than the dimensions of the atomic models. At this
point, an important issue must be highlighted: the γ model does
not contain a dislocation line and, consequently, the increased
size of the supercell is not needed—all considered effects are
fully periodic in each unit cell. Similarly, the number of atomic
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FIG. 1. (Color online) (a) Slip modes in fcc, bcc, and hcp single unit cells. The Burgers vectors and glide planes are labeled as red vectors
and planes, respectively. (b) The interplanar spacing d{X} is shown in the side view (parallel to the glide planes) of the 2 × 2 × 2 unit cells.
(c) The slab supercells used in γ curve calculations; arrows marked I and II describe split slip modes with different interplanar distance, while
A,B,C,D denote the stacking sequence of atomic planes (colored spheres).

planes and vacuum region should be big enough to prevent
interaction between the free surfaces and slip planes. Further
increases in the size of atomic planes did not improve the
quality of the γ results. The relaxation of ions was stopped
when 1 and 30 meV/Å force (for equilibrium and distorted
structures, respectively) and 1 meV energy convergences were
reached. These parameters allowed one to obtain very good
agreement of lattice constants a = 2.94 Å and c/a = 1.583
with experiments a = 2.95 Å and c/a = 1.587 [26]. In the
second part of our calculations, we used the climbing image-
nudged elastic band (CI-NEB) method [27] to determine the γ

curves along the unconstrained path (nine transition images)
of crystal slips with precise values of saddle points—γ(NEB)us.
In order to achieve the listed force and energy convergence

criteria, global force NEB optimizations (instead of image
by image) were performed using limited-memory Broyden-
Fletcher-Goldfarb-Shanno, fast inertial relaxation engine and
quick-min ionic optimizers [28].

IV. RESULTS AND DISCUSSION

The results of conventional rigid γ curve computations for
straight slip paths are shown in Fig. 2(a) as dotted lines. It
should be noted that the differences between the type-I and
type-II split modes are significant. Unique are 〈a〉 pyramidal
modes with smaller γus for type II, which is the inverse
to the Peierls relation [Eq. (2)] that predicts lower Peierls
stress for longer interplanar distances. Nevertheless, the rigid
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FIG. 2. (Color online) (a) Results of the rigid (direct) and NEB γ

curve calculations for seven α-Ti slip modes, slip traces (solid colored
lines), and movements of atoms [colored circle stacking is similar to
Fig. 1(c)] located below the glide planes: (b) view perpendicular to
Burgers vector and parallel to glide plane, and (c) view perpendicular
to Burgers vector and glide plane. The half black points represent
equilibrium positions, and “S” and “F” symbols indicate start and
finish of the slip paths, respectively.

γ results contain a few failures. Apart from the absence of
elastic deformation correction, the path of crystal slips can be
nonstraight [colored lines in Fig. 2(c)]. When analyzing the
geometries of slip planes [Fig. 1(c)], it can be seen that in
the basal mode, the glide should be executed according to the
dissociation of dislocations mechanism. A similar manner is
expected in 〈c + a〉 pyramidal modes in which atoms adjacent

to the glide planes (red/green atoms for type I and green/blue
for type II) repel each other during slip. Calculation of the full γ
surfaces cannot fix these problems since the minimum-energy
path (MEP) determined in this way would still be burdened by
the rigid model regime.

An excellent opportunity to resolve all issues regarding
the rigid γ is to be found in the nudged elastic-band method
(NEB) [28,29]. The NEB is an MEP finding tool for transitions
between known initial and final states. The great advantage of
the NEB is the possibility to perform all-dimension relaxations
of metastable systems. The importance of atomic relaxation
in the context of Peierls stress has been reported in the past
[30], with the conclusion being that atomic displacements
are crucial for accurate lattice resistance results. Furthermore,
NEB has also been employed to predict the mobility of screw
dislocations in silicon [31]. The results of computed γ(NEB)

curves (solid lines) together with slip traces and movements of
atoms located below glide planes are shown in Fig. 2. All of the
obtained γ(NEB) wave forms exhibit pronounced differences to
the rigid γ curves, which are the results of two effects. The first
is the contribution of elastic deformation energy, leading to a
reduction in γ values at the beginning and end of the slips. The
elastic shifts of atoms below the slip planes are significant, with
displacement amplitude reaching half the value of the Burgers
vector [〈a〉 prism II and 〈a〉 pyramidal I in Figs. 2(b) and
2(c)]. In addition, the size of these movements increases with
γ(NEB)us values, which appears to be physically reasonable.
The second factor affecting the γ curves is the shape of the
slip trace. Of all the modes, only slip along prism planes
runs straight, causing similar γ(NEB)us and γus results (Table I).
The nonstraight NEB paths [colored lines in Fig. 2(c) for all
pyramidal modes] of the slips depend on crystal geometry
and enable serious reduction of γus values. However, it should
be emphasized that nonstraight slip trace and elastic effects
are mutually linked. An initial elastic deformation changes
atomic positions below and above the glide planes, which
results in different interplanar potential than occurs in the
rigid γ model and enables one to determine the authentic,
lowest-energy, splinelike slip tracks. This fact allows one to
obtain a dissociated wave form of the slip in basal mode and
the curved slip trace in pyramidal systems, as seen in Fig. 2(c).
The NEB calculations also confirm the existence of inverse
Peierls relations [Eq. (2)] for 〈a〉 pyramidal systems. As is
shown in Fig. 3, in the middle of the type-I slip, pairs of
atomic planes adjacent to the glide plane are directly above
each other, generating a strong energy barrier which does not
appear in 〈a〉 pyramidal II mode. This explains the higher value
of γ(NEB)us in the type-I system.

Since the unstable stacking fault energies cannot be
measured experimentally, the results of γ computations have
been evaluated through comparison of the calculated values
of maximum restoring stresses F [Eq. (1)] with experimental
CRSS, which define the shear stresses component required
to initiate slip in a grain. As the compared quantities are not
physically equal, their normalized values are listed in Table I.

The comparison of Fmax, F(NEB)max, and CRSS ratios
shows that the NEB method allows for a significantly better
projection of deformation by the slip mechanism than the
standard γ approach. It can be seen that the critical restoring
forces calculated from γ -NEB curves can be efficiently used
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TABLE I. Comparison of calculated unstable stacking fault results, their ratios, and proportions of experimental CRSS values. The γ and
Fmax values are in mJ/m2 and meV/Å3, respectively.

(X) Slip system γus γ(NEB)us Fmax F(NEB)max
Fmax(X)
Fmax(1)

F(NEB)max(X)
F(NEB)max(1)

CRSS(X)
CRSS(1)

1 〈a〉 prism I 249 244 20.52 20.83 1.00 1.00 1.00a,b

2 〈a〉 prism II 1243 1215 91.22 95.38 4.44 4.58
3 〈a〉 basal 388 280 29.25 22.88 1.43 1.10 1.19a, 1.15b

4 〈a〉 pyram. I 796 708 56.16 68.38 2.74 3.28
5 〈a〉 pyram. II 421 261 35.76 25.61 1.74 1.23 1.08a

6 〈c + a〉 pyram. I 864 740 45.36 49.21 2.21 2.36 2.62b

7 〈c + a〉 pyram. II 1977 1334 201.10 48.83 9.80 2.34

aExperimental values from Ref. [18].
bIn Ref. [17], the CRSS values were determined via the reverse process of fitting the model load-displacement curves to experimental ones.

for a qualitative description of individual slip modes. The
values of γus, and Fmax for both rigid and NEB approaches,
are significantly lower for systems with greater interplanar
spacing, except for the 〈a〉 pyramidal II mode, implying that
the distance between glide planes and the atomic configuration
during the slip has a dominant impact on these parameters.
The γus, γ(NEB)us, Fmax, and F(NEB)max are also similar for
the lower-energy modes with the same Burgers vector length
〈a〉 and are much higher for longer 〈c + a〉 slip vectors,
which agrees well with experiments [17,18]. The elastic
displacements of atomic positions together with nonstraight
slip paths [Figs. 2(b) and 2(c)] cause a pronounced reduction
of γ(NEB)us relative to γus in most systems. The results in
Table I denote four active α-Ti slip systems which, in ascending
order, are 〈a〉 prism I, 〈a〉 pyramidal II, 〈a〉 basal, and 〈c + a〉
pyramidal I [smaller γ(NEB)us]. Although the sequence of planes
was already known, the partition in terms of split modes is
additionally described here. The other three split systems (〈a〉
prism II, 〈a〉 pyramidal I, and 〈c + a〉 pyramidal II) are inactive
because the slip can always be realized along an easier adjacent
mode. The calculated transition atomic structures indicate that

FIG. 3. (Color online) The 〈a〉 pyramidal slip modes with marked
different interplanar spacing (dashed lines). The arrows denote
Burgers vector and the pairs of red and yellow spheres [the colors
are not equivalent to those used in Fig. 1(c)] indicate the position
of the atomic planes above and below the glide plane in the middle
of the slip. The presented structures were calculated with NEB.

the nucleation of dislocations is fully performed in individual
active systems without any dividing of the crystal slip into
parallel planes. There is no physical reason for distributed
slip along two glide planes with distinctly different γus and
Fmax. Even if the crystal slip could occur simultaneously
in both split modes, it would be visible in atomic positions
presented in Fig. 2. However, it is not. This demonstrates that
the split phenomenon concerns only slip modes, not slip of
the dislocations—it reveals the existence of hcp prismatic and
pyramidal submodes with various interplanar distance, and
executed calculations define modes in which dislocations can
nucleate and move.

V. CONCLUSIONS

In summary, this paper presents a computational approach,
based on the NEB method, to overcome the rigid γ model.
This approach takes into account elastic deformation and
indirect slip shape during γ curve computations, improving
the overall accuracy of the energetics of crystal slips. The split
slip modes phenomenon, fundamental to hexagonal crystals in
plastic deformation physics, is also demonstrated here with the
conclusion that the standard definition of slip systems should
be expanded to include an interplanar distance expression for a
precise description of prism and pyramidal modes. The results
obtained agree very well with experimental data and clearly
show active deformation modes in α-Ti. These allow one to
indicate the unique 〈a〉 pyramidal II system, which shows that
the Peierls relation is not applicable in split hexagonal modes.

The presented calculation methodology in combination
with the determined active hcp slip systems can be used
as an effective tool for the prediction role of the individual
slip modes in the alloying of hexagonal structures. Such a
broad-based approach will be highly valuable when designing
new light, strong materials.

ACKNOWLEDGMENTS

This work was supported be the Polish National Cen-
tre for Research and Development under Grant No.
IN1/31/158446/NCBR/12. Computing resources were pro-
vided by HPC facilities of the Interdisciplinary Centre for
Mathematical and Computational Modelling at Warsaw Uni-
versity.

144105-5
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