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Stripe order in superfluid 3He confined in narrow cylinders
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We theoretically investigate pairing states of the spin-triplet p-wave superfluid 3He confined in narrow
cylinders. The surface-induced distortion and the multiple internal degrees of freedom of the order parameter
lead to the occurrence of a stripe structure along the cylinder axis in the superfluid 3He-B phase. We
show that in sufficiently small cylinders with an anisotropic surface scattering, the stripe order with broken
translational symmetry may be stabilized as the lowest energy state. Periodic spin-current textures caused in this
inhomogeneous superfluid phase are also discussed.
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The superfluid phases of liquid 3He are in spin-triplet
p-wave Cooper pairing states. Because of the multiple spin
and orbital degrees of freedom of Cooper pairs, superfluid 3He
provides a rich variety of examples of symmetry breaking,
which is commonly seen in various contexts in condensed
matter physics such as superconductors, magnets, and liquid
crystals. The superfluid state associated with broken gauge
symmetry is usually translationally invariant, as Cooper pairs
condense into the coherent quantum state with total momentum
q equal to zero, similarly to a Bose-Einstein condensation. In
this Rapid Communication, we address a special case with
spontaneous translational symmetry breaking in superfluid
3He.

The bulk liquid 3He is a highly clean homogeneous
system, and can potentially host various types of pairing
states owning to the internal degrees of freedom. However,
only two superfluid phases are realized in the bulk 3He,
A and B phases, which are respectively identified with the
Anderson-Brinkman-Morel (ABM) and the Balian-Werthamer
(BW) pairing states [1]. One possible way to stabilize different
types of pairing states would be confinement of the superfluid
in geometrically restricted spaces such as slabs, cylinders, and
porous mediums such as aerogels. Scattering of 3He particles
by surfaces of confining vessels and strands of the aerogels
causes bending and pinning of the orbital components of the
superfluid order parameter. In films of the 3He-B phase, the
surface-induced distortion of the superfluid gap and a resultant
transition into the A or planar phase have been suggested [2–6].
In aerogels, pinning effects in the ABM pairing state have been
discussed [7–12], and the polar pairing state which does not
exist in the bulk is expected to appear in uniaxially stretched
mediums [9,13]. Also in narrow cylinders, occurrence of
the polar state is theoretically predicted [14], but so far any
signature of this state has not been observed in experiments
[15–19]. Perhaps the most intriguing question is whether or not
there may be new pairing states other than BW, ABM, planar,
and polar states in the restricted geometries. In this Rapid
Communication, we show that in the B phase confined in a
sufficiently small cylinder, translational symmetry along the
cylinder axis (z axis) is spontaneously broken, i.e., qz becomes
nonzero, as a result of the surface scattering.

From recent theoretical studies of the surface scattering
effect, it is becoming clear that pairing states with spon-

taneous spatial modulations (q �= 0) appear in thin films
of unconventional superconductors [20,21] and superfluid
3He [22]. These spatially modulated phases are discussed
by analogy to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)
state [23,24], which was originally studied in the context of
spin-singlet superconductors in a strong Zeeman field. The
FFLO state is characterized by a nonzero q which is induced to
compensate paramagnetic depairing, i.e., splitting of spin-up
and spin-down Fermi surfaces due to the Zeeman effect. In
the film case without magnetic fields, bending of the order
parameter near the film surface plays a role similar to the
paramagnetic depairing, driving spatial modulations along the
film plane. For the geometry of cylinder, the surface-induced
distortion of the order parameter would trigger the FFLO-like
instability. In superfluid 3He, however, the existence of the
internal degrees of freedom is essential for the occurrence
of the spatially modulated phase. As we will show below,
in contrast to the FFLO state usually restricted to the quite
low temperature region, spatially modulated stripe orders of
superfluid 3He appear from relatively high temperatures below
Tc, taking advantage of the internal degrees of freedom. This
is our main finding of this work.

Here we consider superfluid 3He in cylinders with radius
R less than the dipole length ∼12 μm. For specular surface
scattering, the ABM state is stable in a wide range of the
T -R phase diagram [25], while for the diffusive one, the BW
state is favorable down to small R ∼ 5ξ (T )[ξ (T ) = ξ0/(1 −
T/Tc)1/2, the temperature-dependent coherence length] fol-
lowed by the second-order transition into the polar phase
at TBP (R) [14]. First, we will examine the FFLO-like in-
stability in the BW state near TBP . Next, relative stabilities
of possible pairing states including the ABM state will be
discussed for two different conditions of surface scatterings.
Throughout this Rapid Communication, we restrict ourselves
to liquid 3He at 0 bar which is in the weak-coupling
limit [1].

Properties of liquid 3He near the superfluid transition
temperature Tc are well described by the Ginzburg-Landau
(GL) theory [1]. As our focus is on pairing states in micron or
submicron cylinders, we will neglect the dipole interaction
as well as the φ dependence of the order parameter. The
corresponding functional in the cylindrical coordinate system
is obtained as an expansion in the spin-triplet p-wave order
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parameter Aμi(r,z) [26],

FGL = 2π

∫ Lz

0
dz

∫ R

0
r dr(fbulk + fgrad),

fbulk = αA∗
μiAμi + β1|AμiAμi |2 + β2(A∗
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2
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∗
μiA

∗
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∗
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∗
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∗
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∗
μj ,

fgrad = K1A
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∗
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∗
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+2r−1 Re{K1(A∗
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μrAμr )

+2(K1 + K3 + 2K2)Re{A∗
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ziAzi − A∗

μzAμz)], (1)

with Aμi,j ≡ ( ∂Aμi

∂r
, 1
r

∂Aμi

∂φ
,
∂Aμi

∂z
)j . In the weak-coupling limit,

the coefficients are given by α = 1
3N (0) ln(T/Tc), −2β1 =

β2 = β3 = β4 = −β5 = 2β0, β0 ≡ 7ζ (3)N (0)/(240π2T 2),
and K1 = K2 = K3 = K ≡ 1

5N (0)(Tc/T )2ξ 2
0 , with N (0)

as the density of state per spin on the Fermi surface and
ξ0 = (vF/4πTc)

√
7ζ (3)/3 as the superfluid coherence length

at T = 0. The presence of r−2 centrifugal barriers in fgrad

identifies the polar axis as a singular line, imposing constraints
on the order parameter at r = 0. This requires Arr = Aφφ and
Arz = Azr = Azφ = 0 at r = 0 for the BW and ABM states
considered below.

The effect of the cylinder surface can be incorporated by the
boundary condition on the order parameter Aμi . For specular
surface scattering, the following condition must be satisfied at
r = R [26]:

Aμr = 0,
∂Aμφ

∂r
= 1

R
Aμφ,

∂Aμz

∂r
= 0. (2)

This ensures that the normal component of the current vanishes
at the walls. When the cylinder surface is sufficiently rough
such that particles are randomly scattered independent of the
incident direction, the boundary condition Eq. (2) is replaced
with the diffusive one, i.e., Aμi |r=R = 0 for any μ and i.

Now we turn to the stability of the BW state. In the BW
state in the cylinder, the order parameter is usually assumed to
be uniform along the cylinder axis (z axis), and its basic form
is given by A

(B)
μi (r) = arr (r)r̂μr̂i + aφφ(r)φ̂μφ̂i + azz(r)ẑμẑi .

It has been known that due to the surface-induced distortion
of aμi(r), the BW state is gradually deformed into the polar
state Aμi(r) = azz(r)ẑμẑi as cylinder radius R shrinks [14,25].
The basic assumption of this study is that the uniform BW
state is described by A

(B)
μi (r). To examine the possibility

of translational symmetry breaking in the z direction, we
take the z dependences of Aμi into account, replacing
the diagonal components aμi(r) with the z-dependent ones
aμi(r,z). With this replacement, however, FFLO-like states
are not obtained, at least within the GL theory. Instead,
we notice that the z-dependent Arr and Aφφ couple with
the additional component Arz through the gradient term
K Re{A∗

rz,rArr,z + r−1A∗
rzAφφ,z}. As we will see below, this

gradient term connecting Arz with Arr and Aφφ gives rise to

stripe ordering. We stress that this mechanism of the modulated
state, i.e., coupling between the original components of the
order parameter and the additional one, is specific to superfluid
3He with the internal degrees of freedom. In this study,
based on the above discussion, we assume that the order
parameter in the BW state takes the form of Aμi(r,z) =
A

(B)
μi (r,z) + arz(r,z)r̂μẑi [27]. When uniformity is assumed

in the z direction, the additional component arz is found to
vanish for boundary conditions used here, suggesting that the
existence of arz leads to the energy costs for the uniform
state. Hereafter we will examine a single-mode instability and
express the order parameter as

Aμi(r,z)

=
⎛
⎝arr (r) cos(Qz) 0 arz(r) sin(Qz)

0 aφφ(r) cos(Qz) 0
0 0 azz(r)

⎞
⎠ ,

(3)

where Q = 2πn/Lz is the wave vector characterizing the
spatial modulation of the order parameter along the cylinder
axis (z axis). Other combinations of the z dependences of
Aμi including simple phase modulations e±iQz do not yield
a Q-linear gradient term, and thus do not lead to modulated
states (see the text below). We also note that the cylindrical
geometry requires the modulation to be along the z axis. This
is in contrast to the film case where the possibility of complex
spatial structures with two-dimensional modulations cannot
be ruled out. In what follows, we demonstrate that near the
BW-polar transition TBP , the BW state lowers the energy by
introducing the modulation Q and extends its stability region
to higher temperatures.

First, to get an insight into the mechanism of the modulated
BW state, we consider the case with specular surface scattering
and take the following trial state satisfying Eq. (2):

arr (r) = 
1 cos
(πr

2R

)
, aφφ(r) = 
1

cosh
(

r
R

) − e−1

1 − e−1

azz(r) = 
2, arz(r) = 
3 sin
(πr

2R

)
. (4)

Translational symmetry breaking in the BW state is signaled
by finite values of Q and 
1,3. In fact, nonzero values of Q and

1,3 indicate amplitude modulations of the order parameter,
similar to the LO state [see Fig. 1(b)].Inserting the expression
Eq. (4) into Eq. (1) and integrating over r and z, we obtain
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2
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2
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2
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,

(5)

with D = g′
1


2
1 + g′

3

2
3. The coefficients are calculated as

a1 = 1.185, a2 = 1, a3 = 0.351, b11 = 5.912, b12 = 2.370,
b13 = 0.505, b22 = 3, b23 = 2.108, b33 = 0.650, g1 = 7.120,
g′

1 = 1.185, g3 = 1.191, g′
3 = 1.054, and gc = −4.464. It
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FIG. 1. (Color online) (a) The BW-polar transition curves
TBP (R) in cylinders with radius R and the specular surface. TBP

for the BW state with a spatial modulation along the cylinder axis
(red solid curve) is higher than that for the uniform BW state (black
dotted curve). The inset shows the evolution of the modulation Q

along the TBP (R) curve. (b) Sketch of the spatial profile of the order
parameter in the stripe BW state with the spatial modulation along
the z axis. (c) Temperature dependences of 
1 (blue), 
2 (black),
and 
3 (red) at ξ0/R = 0.17 for the modulated (solid curves) and
uniform (dotted curves) BW states.

should be emphasized that the gradient term linear in Q shows
up and, consequently, the modulation takes the nonzero value
Q = −gc
1
3/(2DR) as long as 
3 is nonzero to lower
the gradient energy fg . This situation is in sharp contrast to
conventional FFLO states for which a Q-linear gradient term
does not exist and nonzero Q appears because the coefficient of
the Q2 term becomes negative at very low temperatures for the
strong depairing effect [28]. The present system is, however,
rather similar to noncentrosymmetric superconductors (NCSs)
with Rashba spin-orbit coupling [29,30] in a magnetic field
where the so-called helical phase with a field-induced phase
modulation eiQ·r is believed to be realized [31–34]. In Rashba-
type NCSs, broken inversion symmetry allows a Q-linear
gradient term coupled with the field, and, as a result, the
phase modulation exists even at the superconducting transition
temperature in the magnetic field. From the analogy to NCSs,
it is inferred that the modulated 3He-B phase would emerge
from high temperatures near Tc.

Figure 1(a) shows the TBP (R) curves for the BW states of
the form Eq. (4) with (red solid curve) and without (black
dotted curve) a modulation along the cylinder axis. The
TBP transition temperature is enhanced for Q �= 0, which
implies that the superfluid state with broken translational
symmetry is stabilized as the lowest energy BW state.
Moreover, it is striking that it can survive up to relatively high
temperatures. As seen in Fig. 1(c), 
1 and 
3 grow up with
the

√|T − TBP | dependence, suggestive of the second-order
BW-polar transition. Below TBP , the two comparable com-
ponents 
1 � 
3 indicate Q � −gc/[2(g′

1 + g′
3)R] � 1/R,

which is in agreement with the obtained numerical result
shown in the inset of Fig. 1(a). For the optimized Q, we find
that the gradient energy is lowered: fg − g1


2
1/R

2 = {g3 −
g2

c /[4(g′
1 + g′

3)]}
2
3/R

2 � −
2
3/R

2. Thus, the gradient term
fg favors 
3 together with Q. The result obtained by Eq. (5)
is valid only when the trial state Eq. (4) well describes the
exact spatial profile of the order parameter. For completeness,

FIG. 2. (Color online) Pairing states of superfluid 3He confined
in narrow cylinders with radius R and the specular surface. (a) T -R−1

phase diagram obtained by numerically solving GL equations. The
ABM state is realized in the blue colored area, while in the white
colored region at large R’s, the BW state uniform along the cylinder
axis is stable. For specular surface scattering, the stripe order with
the axial modulation is not stable against the ABM state, and thus the
lower and upper instability curves for the stripe phase (red dashed
curves) as well as the TBP (R) curve for the uniform BW state (dotted
curves) are marginal. Radial dependences of the order parameters in
the stripe phase and the ABM states at ξ0/R = 0.15 and T/Tc = 0.85
[the symbol * in (a)] are shown in (b) and (c), respectively.

we numerically solve GL equations δFGL/δA∗
μi = 0 for the

order parameter defined by Eq. (3) at fixed points of T

and R, and determine the lowest energy state to obtain the
phase diagram within the realm of the GL theory. Also,
we take into account the ABM state of the form Aμi(r) =
ẑμ[i azr (r)r̂i + i azφ(r)φ̂i + azz(r)ẑi] [14,25].

Figure 2 shows the numerically obtained whole phase
diagram of superfluid 3He in cylinders with specular sur-
face scattering. In the region sandwiched by red dashed
curves, the stripe BW state with the modulation Q �= 0 is
more stable than the uniform one with Q = 0, where the
lower red curve corresponds to the transition into the state with
Q = π/Lz [35]. This stripe order in the BW state, however,
is not stable against the ABM state. As shown in Fig. 2(a),
the Q �= 0 region is completely masked by the ABM stability
region, and the transitions into the modulated BW state are
marginal for the purely specular surface scattering.

The question is in which case the stripe phase may be
stable as the lowest energy state. In realistic narrow cylinders,
scattering at the wall is not perfectly specular because of
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FIG. 3. (Color online) Stripe phase realized in narrow cylinders
with the anisotropic surface scattering described by Eq. (6). (a) T -R−1

phase diagram obtained by numerically solving GL equations. The
stripe phase with the spatial modulation along the cylinder axis is
stabilized in the region sandwiched by red solid curves. The inset
shows an example of a cylinder with the surface condition, Eq. (6).
(b) The structure of spin currents in this inhomogeneous state at
ξ0/R = 0.12 and T/Tc = 0.79 for which ξ0Q = 0.11. The spatial
modulation gives rise to the periodic planar spin currents Jrφ and Jφr

as well as the oscillating behavior in Jφz and Jzφ . (c) Sketch of the
planar spin currents flowing in opposite directions on adjacent nodal
planes of Arr (Aφφ). Blue and pink colored regions denote positive
and negative values of Arr (Aφφ), respectively. Red (black) arrows
represent the directions of the spin component (flow).

the roughness of the surface. Here, we consider a special
case where the specularity of the surface has a directional
anisotropy. As a simplified model for such an anisotropic
surface scattering, we take the following boundary condition
at r = R,

Aμr = 0, Aμφ = 0,
∂Aμz

∂r
= 0. (6)

Namely, the surface of the cylinder vessel is assumed to
be diffusive and specular along the φ and z directions,
respectively. An example of such an anisotropic cylinder
wall is shown in the inset of Fig. 3(a): The wall is smooth
(rough) in the z (φ) direction, and thus at the wall particles
are scattered in the forward direction (random directions)
along the cylinder axis (rim). In the thin dirty layer model
for surface roughness obtained by superposing a layer of
randomly distributed impurities on a specular surface [3,36],
the anisotropic surface structure would correspond to the case

where the mean free path in the z direction is much longer
than that in the φ direction. In this situation, the φ components
of the order parameter should be strongly suppressed at the
wall while the z components are almost unaffected, leading
to a boundary condition similar to Eq. (6). Even for diffusive
cylinder walls, since their specularity can be tuned by coating
their surfaces with 4He [37], such a directional anisotropy
of the surface scattering would exist in the case where the
nonuniformity of the 4He coat is much larger in the φ direction.
Since, for the specular condition, azφ(R) in the ABM state is
larger than aφφ(R) in the BW state [see Figs. 2(b) and 2(c)],
suppression of both azφ and aφφ due to the anisotropic surface
scattering should lead to a more significant reduction of the
superfluid condensation energy in the ABM state than in the
BW state.

Figure 3 shows the phase diagram of superfluid 3He in
cylinders with the anisotropic surface scattering described
by Eq. (6). The ABM state becomes less stable for such
an anisotropic scattering, and the stability region of the
stripe BW state is unveiled. As one can see in Fig. 3(a),
the inhomogeneous stripe phase appears from relatively high
temperatures in narrow cylinders with radius R less than 20ξ0.
When the cylinder surface is diffusive in any direction, the
stripe phase is no longer stable. Thus, the stability region of
the stripe phase would be gradually suppressed as the surface
scattering along the z direction becomes more diffusive.

Finally, we address the physical properties of the stripe
phase. Since the order parameter of this new phase takes real
values, it has neither spontaneous current nor magnetization.
Instead, the stripe structure yields spin currents that are
periodic along the cylinder axis. The flux of spin component
σ in the direction i has been derived elsewhere [26,38,39] and
is given for the BW state as

Jσi = −2Kεσμν{AμiAνj,j + AμjAνi,j + AμjAνj,i

+ r−1[AμiAνr − δνr (AμiAφφ + AμφAφi)

+ δiφ(2AμφAνr − AμrAνφ − δνrAμjAφj

+ δνφAμjArj )]}. (7)

In the stripe phase with the spatial modulation, there are
four nonvanishing components, Jrφ = J

(0)
rφ (r) sin(Qz), Jφr =

J
(0)
φr (r) sin(Qz), Jφz = J

(0)
φz (r) cos(Qz), and Jzφ = J

(0)
zφ (r) +

J
(1)
zφ (r) cos(2Qz). Note that in the BW state uniform along

the z axis we have only the two components Jφz and Jzφ .
Radial dependences of the amplitude of these spin currents
are shown in Fig. 3(b). In the stripe phase, the additional
components J

(0)
rφ and J

(0)
φr are nonzero at r = 0, suggesting the

existence of the planar components −Jxy = Jyx = J
(0)
φr (r =

0) = −J
(0)
rφ (r = 0). As shown in Fig. 3(c), the planar spin

current periodically changes its sign along the cylinder axis,
and the longitudinal flow Jφz exhibits an oscillating behavior as
well. Such periodic textures of spin currents originating from
the spatial variation of the d vector should be, in principle,
reflected in NMR frequency shifts.

To conclude, we find that a spatially inhomogeneous stripe
order can emerge in superfluid 3He confined in a very narrow
cylinder, due to both the surface-induced bending and the
multiple internal degrees of freedom of the order parameter.
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Interestingly, this stripe order appears from high temperatures
near Tc, and exhibits periodic spin-current textures along the
cylinder axis whose signatures could be potentially observed
in NMR experiments.
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